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Abstract

Assessments of population trends based on time-series counts of individuals are complicated by imperfect detection, which
can lead to serious misinterpretations of data. Population trends of threatened marine turtles worldwide are usually based
on counts of nests or nesting females. We analyze 39 years of nest-count, female-count, and capture-mark-recapture (CMR)
data for nesting loggerhead turtles (Caretta caretta) on Wassaw Island, Georgia, USA. Annual counts of nests and females,
not corrected for imperfect detection, yield significant, positive trends in abundance. However, multistate open robust
design modeling of CMR data that accounts for changes in imperfect detection reveals that the annual abundance of
nesting females has remained essentially constant over the 39-year period. The dichotomy could result from improvements
in surveys or increased within-season nest-site fidelity in females, either of which would increase detection probability. For
the first time in a marine turtle population, we compare results of population trend analyses that do and do not account for
imperfect detection and demonstrate the potential for erroneous conclusions. Past assessments of marine turtle population
trends based exclusively on count data should be interpreted with caution and re-evaluated when possible. These concerns
apply equally to population assessments of all species with imperfect detection.
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Introduction

Many wildlife monitoring programs worldwide use time-series

counts of animals to infer population trends [1], which are widely

used for global biodiversity assessments [2,3]. However, the

interpretation of trends from raw count data is often complicated

by imperfect detection, a phenomenon associated with double-

counting, misidentifying, or overlooking individuals present during

a sampling period [4]. Imperfect detection may bias inferences and

lead to serious misinterpretations of data unless changes in

detection probability are explicitly considered.

Capture-mark-recapture (CMR) methods applied in combina-

tion with multistate open robust-design (MSORD) statistical

modeling approaches are designed to account for changes in

detection probability of animals at a given sampling location

within and between sampling periods [5–7]. This approach has

provided reliable estimates of population abundance, detection

probabilities, and key demographic parameters [8–10], and is

essential for diagnosing causes of population trends and evaluating

management effectiveness [8,11].

Marine turtle populations, like those of other long-lived marine

species, are inherently difficult to monitor, which increases their

vulnerability to overexploitation [12,13]. Long lifespans, delayed

sexual maturity, and wide-ranging migrations prevent direct

monitoring of individuals during most life stages, especially as

juveniles. Assessments of marine turtle populations usually rely on

data from nesting beaches; counts of females, nests, and/or tracks

left by nesting females provide the primary metrics for evaluation

of population trends [14–16]. The National Research Council [15]

has stressed the limitations of assessments that rely exclusively on

such abundance information for monitoring marine turtle

population trends. Because many marine turtle populations are

threatened, failing to accurately assess population trends may have

critical effects on the long-term conservation and management of

these populations.

We analyze 39 years (1973–2011) of nest-count, female-count,

and CMR data for threatened loggerhead turtles (Caretta caretta)

nesting on Wassaw Island, Georgia, USA. We compare trends in

abundance based on nest-count and female-count data with trends

based on estimates of female abundance corrected for imperfect

detection using the MSORD statistical modeling approach. We

demonstrate how integrating abundance data with statistically

rigorous estimates of imperfect detection can affect interpretations

of long-term trends in marine turtle nesting populations.

Methods

Statement of Ethics
Animal ethics clearance was obtained from Georgia Depart-

ment of Natural Resources, Wildlife Resources Division (Scientific
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Collecting Permit no. 6502 & 29-WBH-12-99), permitting the staff

of the Caretta Research Project to conduct nocturnal patrols, as

well as tag and obtain standard data from live turtles. Under

Georgia state law, the animal welfare ethics of all wildlife research

is approved by the Scientific Collecting Permit evaluation

committee. Federal approval for this research was granted under

US Fish and Wildlife Service permit no. 41620-12-018.

Capture-mark-recapture and Trend Analyses
During the loggerhead nesting season (May–August) from 1973

to 2011, nocturnal patrols were conducted on Wassaw Island, GA,

USA (31.89uN 80.97uW). All loggerhead nests and females that

were encountered were counted, and females were checked for

and, if necessary, fitted with individualized tags (see Text S1 for

patrolling and tagging details).

Open robust design capture-mark-recapture histories were

compiled for 1164 nesting loggerheads tagged on Wassaw Island

over the 39-year period. The primary sampling occasions

consisted of 39 annual summer nesting seasons with eight 13-

day secondary sampling occasions (3 May –22 August) within each

primary occasion (312 sampling occasions). The 13-day secondary

sampling period is the mean interval between successive clutches

within a season for individual loggerheads in this population.

Based on careful consideration of the biological issues inherent

to long-term studies of long-lived species [17–19] and the

limitations associated with fitting complex, highly parameterized

models to sparse datasets [8,18], we used the multistate open

robust design (MSORD) statistical modeling approach [18] in

Program MARK [20] to fit models of different underlying

structure while simultaneously estimating demographic parame-

ters and population abundance. This integrated approach

maintains the variance-covariance structure throughout model

fitting and parameter estimation, which provides more robust

estimates and avoids over parameterization [8]. The MSORD

approach explicitly accounts for temporary emigration due to

skipped breeding behavior and the presence of transient individ-

uals (those seen only once), two biological phenomena inherent to

sea turtle breeding behavior [7,9,17]. The two states in the

multistate framework were nesters (observed state and available for

capture) and the unobserved ‘non-nester’ state for those turtles that

skipped nesting in a given season. It must be assumed that nester

and non-nester states have the same survival probability, while

arrival, departure and detection parameters for the non-nester

state are fixed at zero since they are not available for capture [8].

We fitted models comprising time-constant and time-specific

transition probabilities between nester and non-nester states, and,

for the nester state, we fitted models comprising time-constant and

time-specific intra- and inter-seasonal probabilities of survival,

arrival, departure and detection. When full time dependence was

detected, we performed ad hoc step-function analyses to identify

blocks of years (epochs) with similar parameter estimates and fitted

new epoch-specific models to reduce the number of parameters

and improve precision of these parameter estimates. The

parameter index matrices of the suite of models that were fitted

in Program MARK in this study can be made available by the

authors upon request.

The best-fit model based on the Akaike Information Criterion

corrected for sample size and possible overdispersion (QAICc) was

then used to estimate parameters such as apparent annual survival,

conditional breeding (nesting), seasonal arrival and departure, and

detection probabilities. Model goodness-of-fit was assessed using

procedures in Prince & Chaloupka [9]. The MSORD approach in

Program MARK was also used to estimate derived parameters

such as annual female abundance and mean nesting season

residency or ‘stopover’ time [6,7], which is the basis for estimating

annual clutch frequency, the mean number of clutches laid per

female per year [7,21]. Although the primary goal of this study was

to estimate annual female abundance corrected for changes in

detection, we estimated all demographic parameters simultaneous-

ly across all years to integrate across the variance-covariance

structure of the best-fit model and provide robust estimates for

other parameters to help diagnose patterns in long-term trends

[9,10].

Trends in nest counts, female counts, and estimates of female

abundance corrected for imperfect detection were then estimated

using generalized least squares with first-order autocorrelated

error structure [22]. Higher-order autocorrelation was explored,

but was unwarranted [22]. Statistical analyses were performed

with S-Plus version 8.1 software (TIBCO Spotfire Software, Inc.)

with a= 0.05.

Table 1. Summary of model parameters for MSORD models 1–8.

model description QAICc DQAICc QAICc weightsdeviance

1 S(TSM)y(.)pent(.t)w(.TSM)p(.4,t) 10709.23 0.00 0.9345 10623.69

2 S(TSM)y(.)pent(.X10yr,t)w(.TSM)p(.4,t) 10714.55 5.32 0.0654 10593.52

3 S(TSM)y(.t)pent(.t)w(.TSM)p(.4,t) 10734.51 25.28 0.00 10579.60

4 S(TSM)y(.)pent(.X10yr,t)w(.X10yr,TSM)p(.4,t) 10746.89 37.67 0.00 10602.63

5 S(TSM)y(.)pent(.t)w(.TSM)p(t,t) 10750.29 41.06 0.00 10219.25

6 S(TSM)y(.)pent(.X10yr,t)w(.X10yr,TSM)p(t,t) 10795.86 86.63 0.00 10225.05

7 S(TSM)y(.)pent(.t)w(.t)p(.4,t) 10818.17 108.94 0.00 10730.56

8 S(.)y(.)pent(.t)w(.TSM)p(.4,t) 10831.99 122.76 0.00 10748.53

Model descriptions follow Kendall and Bjorkland [7]. QAICc = sample size and overdispersion corrected Akaike Information Criterion based on c-hat = 1.037,
DQAICc = difference between each model and the best-fit model 1, QAICc weights = weight of evidence in support of the model. Model parameters: S(TSM) = constant
time-since-marking (TSM) annual survival probability; S(.) = constant annual survival probability; y(.) = constant transition probability from the nester to non-nester state
and visa versa; y(.t) = constant transition probability from the nester to non-nester state, but time-specific transition probability from non-nester to nester state;
pent(.t) = time-specific inter-seasonal but constant intra-seasonal probability of arrival; pent(.X10yr,t) = time-specific inter-seasonal but constant intra-seasonal arrival
probability within 10-year epochs; w(.TSM) = time-since-marking inter-seasonal but constant intra-seasonal probability of remaining; w(.X10yr,TSM) = time-since-marking
inter-seasonal but constant intra-seasonal probability of remaining within 10-year epochs; w(.t) = constant intra-seasonal but time-specific inter-seasonal probability of
remaining in the study area; p(.4,t) = time-specific inter-seasonal but constant intra-seasonal detection probabilities that differ within four epochs; and p(t,t) = time-
specific intra-seasonal and inter-seasonal detection probabilities.
doi:10.1371/journal.pone.0062326.t001
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Results

From 1973 through 2011, 1164 female loggerheads were tagged

on Wassaw Island, and 399 marked individuals were recaptured at

least once. The most parsimonious MSORD model fitted to the

1164 CMR histories comprised time-specific inter-seasonal but

constant intra-seasonal detection probabilities that differ within

four distinct epochs (1973–1986, 1987–1993, 1994–2002, 2003–

2011; see Table S1 for parameter estimates), and constant intra-

seasonal probability of arriving and remaining in the study area

(Table 1). There was strong support for this model (.93%)

compared to the next best models (Table 1).

During the study period, there were significant increases in

annual nest counts (Fig. 1A and Table S2; generalized least

squares, t39 = 3.83, p-value = 0.0005) and observed female counts

(Fig. 1B and Table S2; generalized least squares, t39 = 3.10, p-

value = 0.0037). The mean annual growth rates for these metrics

were estimated to be 2.17% nests per year (95% CI = 1.05–3.30%)

and 1.60% females per year (95% CI = 0.58–2.63%). However,

the trend based on estimates of female abundance corrected for

Figure 1. Annual number of observed loggerhead nests and nesting females on Wassaw Island. All (A) nests (open circles) and (B)
nesting females (solid circles) that were encountered during nocturnal patrols were counted for 39 years (1973–2011) on Wassaw Island, GA, USA.
Solid black lines show log-linear regressions using generalized least squares with first-order autocorrelated error structure. Both trends are significant
(see text).
doi:10.1371/journal.pone.0062326.g001
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imperfect detection shows no significant change (Fig. 2 and Table

S2; generalized least squares, t39 = 1.73, p-value = 0.0912). The

number of females nesting each season has fluctuated around a

long-term mean of ca. 60 individuals. A constant mean clutch

frequency of 2.44 nests/female (95% CI = 2.26–2.62) during the

study period was estimated from the best-fit MSORD model.

Discussion

Nest-count and female-count data from a program that

attempted to count every nest and tag every female for 39 years

on Wassaw Island exhibit trends that suggest an increasing nesting

population of loggerhead turtles. Annual population estimates

corrected for imperfect detection of nesting females, however,

demonstrate that this nesting population has remained at a

relatively constant abundance over this period. These results

demonstrate how integrating abundance data with statistically

rigorous estimates of detection probability can strongly affect

interpretations of long-term population trends if changes in

detection probability are not explicitly considered. The long-term

stability of this nesting subpopulation of loggerheads has been

questioned in the past, and accurate assessments of population

trends are critical for identifying the causes underlying these trends

and to predict future trends.

Nest counts are not necessarily reliable indices of female

abundance in marine turtle nesting populations. In addition to

imperfect detection, trends in nest counts could result from changes

in mean clutch frequency rather than changes in the numbers of

females [23]. The apparent increase in nest counts in our study was

not a result of increasing mean clutch frequency. Based on constant

residency (stopover) time estimates from the best-fit MSORD

model, mean clutch frequency remained constant during the study

period. Therefore, because female abundance and clutch frequency

did not change, the apparent increase in nest counts is likely due to

increased nest detection, similar to that of female counts, and not to

an increase in nest abundance.

Changes in detection may result from changes in population

fidelity to a sampling location or from changes in methodology.

Loggerheads nesting on Wassaw Island, as well as other marine

turtle nesting populations, are known to show fidelity to a

particular nesting beach while also using other nearby nesting

beaches within and between breeding seasons [24,25]. Changes in

methodology that may have contributed to increased detection

probabilities on Wassaw Island during the study period include

switching from walking to driving patrols, and changing the type

and number of tags applied to each turtle resulting in improved tag

retention and individual identification. Changes in observer skill

over time likely contribute to changes in detection as well [26,27].

Even the tightest standardization in field protocols and observer

skill levels may still fail to produce constant detection probability

[4]. Thus, statistically rigorous estimates of detection probability

should always be considered. This is especially important for those

working with long-term datasets that include many years of data

without sufficient metadata for current researchers to account for

past changes in methodology.

Population trends of threatened and endangered marine turtles

worldwide are usually based on counts of nests, nesting females,

and/or tracks left by nesting females [15]. Status assessments

[28,29] and recovery plans [30] developed by government

agencies and international conservation organizations are often

based on such trend analyses. Our results demonstrate that

abundance data that do not account for changes in detection may

lead to erroneous conclusions. For some populations of marine

turtles that are threatened, accurate interpretations of long-term

population trends are critical for evaluating effective management

actions. Past assessments of marine turtle population trends based

exclusively on abundance data should be interpreted with caution

and re-evaluated when possible.

Our results apply to a wide range of species – many of which are

threatened or endangered – that are currently monitored with raw

count data not corrected for imperfect detection. Understanding

Figure 2. Annual number of nesting female loggerheads on Wassaw Island corrected for imperfect detection. Estimates (solid line)
were derived from the best-fit MSORD model in Table 1. Dotted lines show 95% confidence intervals. No significant trend (see text).
doi:10.1371/journal.pone.0062326.g002

Accounting for Imperfect Detection

PLOS ONE | www.plosone.org 4 April 2013 | Volume 8 | Issue 4 | e62326



the consequences of failing to account for imperfect detection

when inferring population trends is critical for developing effective

wildlife monitoring programs and avoiding erroneous conclusions

that may detrimentally affect already threatened and endangered

populations.
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