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Abstract

In bimanual coordination, older and younger adults activate a common cerebral network but the elderly also have
additional activation in a secondary network of brain areas to master task performance. It remains unclear whether the
functional connectivity within these primary and secondary motor networks differs between the old and the young and
whether task difficulty modulates connectivity. We applied graph-theoretical network analysis (GTNA) to task-driven fMRI
data in 16 elderly and 16 young participants using a bimanual coordination task including in-phase and anti-phase flexion/
extension wrist movements. Network nodes for the GTNA comprised task-relevant brain areas as defined by fMRI activation
foci. The elderly matched the motor performance of the young but showed an increased functional connectivity in both
networks across a wide range of connectivity metrics, i.e., higher mean connectivity degree, connection strength, network
density and efficiency, together with shorter mean communication path length between the network nodes and also a
lower betweenness centrality. More difficult movements showed an increased connectivity in both groups. The network
connectivity of both groups had ‘‘small world’’ character. The present findings indicate (a) that bimanual coordination in the
aging brain is associated with a higher functional connectivity even between areas also activated in young adults,
independently from task difficulty, and (b) that adequate motor coordination in the context of task-driven bimanual control
in older adults may not be solely due to additional neural recruitment but also to aging-related changes of functional
relationships between brain regions.
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Introduction

Aging adversely affects the quality of motor control, and it is

commonly accepted that older adults will show poorer motor

output with regard to speed, coordination of limb movement, or

balance compared to younger adults [1,2,3,4,5,6,7]. However,

despite the fact that normal aging is associated with a declining

structural integrity of the brain [8,9,10,11,12,13,14,15,16], there is

an increasing body of evidence from imaging studies suggesting

that the aging brain can efficiently counteract the neurobiological

changes via a compensatory reorganization of brain function, thus

preserving performance levels comparable to those of young adults

in many areas of cognition and motor control

[1,2,17,18,19,20,21,22,23]. It has been shown that older adults

commonly recruit a wider network of brain regions than younger

adults during task performance [21,24]. This increased activation

has also been reported for a wide range of movement tasks

including auditorily paced thumb to index finger tapping [25],

finger abduction/adduction [26], wrist flexion/extension [26],

sequential finger presses [1,2], hand force production [27,28],

hand/foot coordination [17,18,29], and bimanual motor coordi-

nation [30].

Whilst network functionality of the brain is adversely affected by

neurodegenerative diseases prevalent in older age groups, such as

Alzheimer’s disease [31,32,33,34,35], it has been shown that

normal aging is also associated with changes in network

functionality [36,37,38,39,40]. A number of aging studies have

focused on the assessment of functional brain connectivity in the

context of resting state activations [36,37,38,39,40]. However,

some studies have examined task-related brain connectivity: a

study by Langan and colleagues [41] combined task-driven

activation and resting state fMRI by using a joystick-driven motor

paradigm to identify regions of interest for a resting state

functional connectivity analysis. Their study demonstrated a
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higher resting state connectivity in the right hemisphere and

stronger sensorimotor cortex interhemispheric connectivity in

older subjects. Only one previous study has assessed aspects of the

functional connectivity of the aging brain in a task-related motor

context [42]. The study by Park et al. examined connectivity

across a large number of brain regions by applying an atlas-based

a-priori parcellation of the brain into 93 brain areas. However,

whilst Park et al. could demonstrate increased network connec-

tivity in parietal-occipital cerebellar related networks during

dominant hand use in older subjects, their study focused on

efficiency of information transfer as sole measure but provided no

information on other aspects of functional connectivity associated

with aging.

The present study aimed at expanding the limited previous

work on the impact of aging on functional connectivity in the

context of task-related motor control. This aim included the

questions of whether (a) the greater neural activation of the older

adults during complex bimanual coordination tasks may indeed be

associated with an altered network functionality and (b) whether

any disparities in network functionality between the young and old

may be subject to the task difficulty associated with easier

(intrinsic) in-phase (IP) versus more difficult anti-phase (AP)

coordination modes. The present work built on the study by

Goble et al. [30], who examined cerebral activations during a

bimanual coordination task and were the first to demonstrate that

bimanual movements require greater neural resources for old

adults in order to match the level of performance seen in younger

subjects.

The present work expands the initial analyses of Goble and

colleagues [30] and was inspired by two main hypotheses: (a) based

on previous studies of neural network functionality in aging

populations in a non-motor context [37,43,44], we expected an

effect of age with a decrease in functional connectivity in older

adults within the ‘common’ motor-related brain network (i.e., the

network consisting of regions similarly activated by the old and the

young); (b) we expected an effect of task complexity whereby,

compared to the easier IP movements, the performance of the

more effortful AP task would be associated with an increased

functional connectivity between brain regions. Furthermore,

previous studies have reported positive correlations specifically in

older test groups between motor performance and levels of brain

activation in the areas with increased activation compared to

young controls [18,30]. Hence, we examined if such correlations

between BOLD response and motor performance are mirrored in

similar associations between measures of functional connectivity in

the brain and motor output. We anticipated that this study would

be able to help us better understand the adaptive processes that

play a crucial role in preserving the functionality of the aging

brain.

Materials and Methods

Participants
The present analysis is based on data acquired by the study of

Goble et al. [30]. As part of that study, 16 (mean age = 68.3 years;

range, 61.1–78.7 years; eight females) and 16 gender-matched

young adults (mean age = 25.7 years; range, 21.0–30.9 years) were

recruited from the local community. Participants were right-

handed as indicated by laterality quotients of greater than +90 on

the Edinburgh Handedness Inventory [45]. Subjects were free of

neuromuscular impairment at the time of testing and were not

under psychoactive or vasoactive medication. All subjects scored

within normal limits (i.e., score .27) on the Mini-Mental State

Examination [46]. Written informed consent was obtained for all

participants and procedures were conducted following guidelines

established by the ethics committee of Biomedical Research at the

Katholieke Universiteit Leuven in compliance with Declaration of

Helsinki. The study protocol and consent procedures were

approved by the ethics committee of Biomedical Research at the

Katholieke Universiteit Leuven.

Task Description and Procedure
Subjects performed alternating 21-s blocks of three task

conditions over four runs (i.e., time series) during functional

magnetic resonance imaging (fMRI) [30]. In the first task

condition, involving in-phase (IP) coordination, subjects made

wrist flexion and extension movements in a mirror symmetric

fashion with respect to body midline (i.e., with simultaneous

activation of homologous muscles). The second task condition

involved anti-phase (AP) coordination, with parallel motions of the

hands via simultaneous flexion of one wrist and extension of the

other, and then visa versa. In the third task, a rest condition was

included where subjects abstained from moving either hand. The

three tasks were performed in the presence of clearly audible

pacing tones, which were used to set movement frequency for the

IP and AP task conditions. Subjects were instructed to move

smoothly and continuously, while timing each peak flexion/

extension wrist movement with the occurrence of a tone. The

frequency of tone presentation varied between blocks in a

balanced fashion and corresponded to each subject’s relative

capability in the AP coordination task: for each subject, task speeds

were set at 45, 60, 75, and 90% of the subject’s ‘‘critical

frequency’’. This critical frequency was calculated as the

maximum speed at which subjects were able to maintain AP task

performance within 645 deg of relative phase for at least 3 s.

Importantly, this protocol lead to normalizing task difficulty (and

thus effort) on an individual subject basis leading to group

performances (measured by phase accuracy/stability) that were

matched for young and old subjects. In turn, this ensured that any

group differences in BOLD activation were unrelated to concom-

itant differences in participants’ ability to perform the study tasks,

an important consideration because older adults show poorer

performance particularly in unmatched bimanual tasks wherein

the two hands are moving out of phase [3,47]. Subcritical speeds

were chosen to prevent phase transitions. Key measures of motor

performance were phase accuracy (mean phase error in degrees)

and phase stability (SD of relative phase). The mean phase error

was determined as the average absolute deviation between the

obtained relative phase and the target relative phase for in-phase

(i.e., 0u) or antiphase (i.e., 180u) movements. The standard

deviation of mean phase error was then quantified to provide a

measure of coordination stability (i.e., phase variability) [30].

MRI Scanning
Within 2 days before all scanning sessions, 45 min of practice

was given in a mock scanner to familiarize subjects with task

procedures and the scan environment. On the actual day of

testing, subjects were placed head first and supine in the scanner

with arms positioned along the trunk and elbows flexed at

approximately 45 deg. This position was maintained throughout

the scanning procedure with the aid of supportive cushioning. A

bite-bar was used to minimize movements of the head, and a

mirror was utilized to allow vision of images from an LCD

projection system displayed on a screen mounted above the

shoulders. This setup was used to cue the different task conditions

during each scan run, preventing subjects from seeing their hands

during the movement task. Subjects wore headphones for

communication with the experimenter and for hearing auditory
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pacing tones. Orthoses, which limited wrist movement to flexion

and extension, were attached to the left and right arms along the

forearm and hand segments measuring joint displacement at a

spatial resolution of 0.09 deg [30]. The displacement signal was

available in real-time to the researchers during scanning, allowing

them to ensure that subjects were complying with task instructions.

This signal was also recorded for off-line analysis following the

experimental session.

Image acquisition was achieved using a Siemens 3-T Magnetom

Trio MRI scanner (Siemens, Erlangen, Germany) with standard

head coil [30]. Each scanning session included a high-resolution

T1-weighted image (MPRAGE; TR = 2,300 ms, echo time

[TE] = 2.98 ms, 16161.1 mm voxels, field of view: 2406256,

160 sagittal slices) for anatomical detail. Functional (fMRI) data

were acquired over four time series (i.e., runs) with an interleaved

EPI pulse sequence for T2*-weighted images (TR = 3,000 ms,

TE = 30 ms, flip angle = 90u, 50 oblique slices each 2.8 mm thick,

interslice gap 0.028 mm, in-plane resolution 2.562.5 mm, 80680

matrix). Three ‘‘dummy’’ scans at the beginning of each run were

discarded from analysis to allow for scanner equilibration. Each

run lasted 378 s (6.3 min) consisting of six blocks of the three task

conditions with each condition lasting 21 s (i.e., seven whole brain

images). The order of conditions within a block was randomized

across time series and the auditorily paced movement frequency

for each block was randomized according to a balanced

presentation across all blocks. Rest periods of approximately

3 min were inserted following each time series. Imaging data

processing used Statistical Parametric Mapping (SPM) 5 software

(Wellcome Department of Imaging Neuroscience, London, UK)

implemented in Matlab 7.4 (MathWorks, Natick, MA).

Neural Network Definition
This study applied a data driven network definition, which was

directly based on task-related cerebral activations in the subject

groups as published in Goble et al. [30], comprising only brain

areas active during performance of the present motor tasks [30].

This resulted in 2 cerebral networks to be examined via a graph-

theoretical network analysis (GTNA): (1) brain regions with

significant activation in both groups (i.e., brain regions represent-

ing common regions between young and old subjects; in each

group, the activation of these areas compared to rest exceeded a

FDR corrected threshold of P,0.01) [30] (network N1 including

21 ROIs, Table 1, Figures 1 and 2, for the extent of cortical

activations and cluster sizes see Table 1 and Figure 3 in Goble

et al., 2010) and (2) brain regions showing significantly higher

activation (overactivation) in the old compared to the young group

(network N2 with 12 ROIs, Table 2, Figures 1 and 3, for the

extent of cortical activations and cluster sizes see Table 2 and

Figure 3 in Goble et al., 2010). Network N1 included areas

typically observed during motor coordination tasks, namely the

sensorimotor cortices (SMI), supplementary motor area (SMA),

cerebellum, and dorsal premotor cortices (PMd), as well as in the

right ventral premotor cortex (PMv). Additionally, the network

included areas in the left and right lateral fissures involving regions

such as secondary somatosensory area (SII), primary auditory

cortex (AI), and the IFG (pars opercularis). Network N2 comprised

several areas that were significantly more active with age,

including parts of the SMA and areas along the left and right

lateral fissures (SII, IFG pars opercularis), as well as areas in

bilateral middle cingulate cortex, secondary auditory area (AII),

left inferior parietal cortex (IPC), and right DLPFC.

The brain regions in each of these 2 networks were then defined

as regions of interest (ROIs) representing the network components

(nodes) for the GTNA (Figures 1–3). In each individual subject,

separate analyses were conducted for each network. We chose to

conduct separate analyses for the common and the overactivation

networks because we considered that the effect of age might not

equally manifest in the overactivation networks.

In each network, ROI size was defined by placing a sphere with

radius 6 mm around the MNI coordinates of the ROI activation

maximum. For each ROI in each subject, the BOLD average time

series (AVT) were then extracted for the runs. The AVT

extraction included whitening, filtering and removing null space

of contrast using SPM code. During extraction, the time series was

adjusted using the contrast ‘Task of interest [either AP or IP] –

Rest’. Hence, this included separate extractions for the in-phase

and the anti-phase epochs. The average time series was the

average (across voxels in a ROI) of all voxel-based time series.

The AVT was taken as the first eigenvariate from the singular

value decomposition of a matrix composed of each time series

from each voxel within the node-sphere, and the time series of all

voxels of the sphere was then element-wise averaged, so as to

obtain a single AVT for each node. Based on the AVT data, the

network connectivity was then determined by calculating undi-

rected matrices of partial correlations between the nodes,

quantifying the unique relationship between each pair of nodes.

The calculation of the partial correlations was based on the inverse

of the covariance matrix. The partial correlation matrix is a

symmetric matrix in which each off-diagonal element is the

correlation coefficient between a pair of variables after filtering out

the contributions of all other variables included in the dataset.

Therefore, the partial correlation between any pair of regions

filters out the effects of the other brain regions. Consistent with

previous studies, partial correlations were chosen to minimize the

impact of indirect dependencies by other brain regions, and to

address the problem of complicating the interpretation of the

GTNA arising from including multiple redundancies in quantify-

ing inter-nodal functional dependencies when using simple

correlation coefficients [48,49,50]. Amongst all methods of

evaluating functional interdependencies between fMRI time

courses in different regions of interest, partial correlations have

been found to be amongst the most reliable approaches [51].

In the connectivity matrices, functional connections were

defined as valid/existing between pairs of nodes based on the

statistical level of significance. We used a threshold of P,0.001.

Thresholding of the connectivity matrices resulted in binary

matrices where existing (valid) connections carried a value of 1

while the absence of a functional connection between network

nodes was designated by a value of 0. Self-connections of nodes

were not included in the analyses. The resulting thresholded

adjacency matrices of partial correlations served as principal input

for the GTNA. It has been shown that manipulating the

connection density in a network by varying the number of valid

network connections can have a noticeable impact on GTNA

metrics [52]. Hence, we repeated the GTNA analyses across 5

threshold values (i.e., for each subject, GTNA analyses were

calculated based on connectivity matrices thresholded at

P = 0.0001, 0.0005, 0.001, 0.005 and 0.01) to ensure that the

statistical results were equivalent across different densities and not

critically dependent on the threshold used. Related to the issue of

repeating the analyses at different density thresholds is the issue of

comparing aspects of network architecture using graph-theory. In

order to be able to compare topological features such as the

distribution of nodal connectivity degree or the formation and

boundaries of different functional communities (functional mod-

ules) within a network, it is deemed essential to keep the

connection density of the compared networks constant [52].

However, the underlying hypothesis to this study postulates that
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aging is not only associated with alterations in brain activation but

will also modulate functional connectivity in the brain resulting in

changes to the number of significant/relevant functional relation-

ships between task relevant areas. In order to capture and quantify

this aspect of motor control in aging, we did not enforce the same

connection density in our networks for the young and old subjects

groups, or the different task conditions. Consistent with this

compromise, we report changes in the mean graph-theoretical

metrics across each entire network but did not assess specific

aspects of network architecture.

In addition to the binary matrices, we also calculated weighted

matrices, where for each valid functional connection between a

pair of nodes, the value of 1 in the binary matrix was replaced by

the value of the partial correlation for this node-pair, with the

partial correlation then representing a proxy measure for the

weight/strength in connection between this pair of nodes. This

approach allowed us to examine connection strength between

Figure 1. Neuroanatomical location of network nodes: N1 - brain regions with significant activation in both groups (i.e., brain
regions representing common regions between young and old subjects), N2 - brain regions showing significantly higher activation
(overactivation) in the old compared to the young group. Extent of network nodes in this figure is limited to 4 mm to visualize the precise
node coordinates. Axial view: dorsal perspective; coronal view: anterior perspective.
doi:10.1371/journal.pone.0062133.g001

Functional Brain Connectivity in the Elderly

PLOS ONE | www.plosone.org 4 April 2013 | Volume 8 | Issue 4 | e62133



Functional Brain Connectivity in the Elderly

PLOS ONE | www.plosone.org 5 April 2013 | Volume 8 | Issue 4 | e62133



node-pairs and calculate a mean connection strength for each

node defined as the sum of its connection weights (i.e., the sum of

partial correlations for valid connections) of a node with other

nodes in the network. Subsequently, the mean connection strength

of a network was then defined as the mean connection strength

across all its network nodes.

Graph Theoretical Analysis
We applied graph-theoretical network analysis (GTNA) [53,54]

to fMRI data in order to examine and quantify whether the

functional connectivity during motor action (i.e., the inter-regional

association in the time course of activation) within the cerebral

networks for bimanual coordination differs between young and

older adults. The examination of complex human brain connec-

tivity using GTNA is a powerful technique to map the

relationships between spatially remote neurophysiological events

in the brain. Graph-theory is an established mathematical field

and has proven a very effective and informative way to explore

brain function and human behaviour [53,54,55]. Graph-theoret-

ical measures have been applied previously to analyze functional

brain connectivity in the context of healthy aging

[36,37,39,40,42]. However, although GTNA offers a broad

selection of measures to examine and quantify relationships

between activations in different brain regions, previous studies

have frequently focused on only a few measures in each case, such

as clustering coefficient, network path length, efficiency, small

worldness, modularity, or connectivity degree. Furthermore,

previous studies (a) commonly used full rather than partial

correlations to quantify the association in activation between

brain regions, thereby not filtering out the influence of indirect

connections between network nodes and (b) applied a template-

based a-priori parcellation of the brain to define the network

components (nodes), hence including brain regions with little or no

task-related activation [36,37,39,40,42]. A recent study by Smith

et al. [51] provides strong indications that, in addition to using

partial correlations to quantify unique functional associations

between nodes, a data-driven approach by defining networks

based only on areas showing clear task-related activation is

preferable to template-based approaches in order to minimize

confounds and obtain a better picture on functional connectivity

within active neural networks. Hence, the present study took

advantage of combining the partial-correlation approach with a

data-driven network definition.

The main GTNA analyses were conducted using the Brain

Connectivity Toolbox [55] (https://sites.google.com/a/brain-

connectivity-toolbox.net/bct/Home). We calculated in each

network and for each subject the regional (nodal) metrics of the

functional network. For each node i of the network, we calculated

(see below for measure definitions) the degree Ki, the local cluster

coefficient Ci, the mean path length Li, the local efficiency Ei, the

betweenness centrality bi and the overall connection strength Si.

For each network, the mean for each of the above GTNA

parameters was calculated as the average of each measure across

all nodes of a network.

Measures of functional connectivity. Connectivity degree

is one of the most basic and important measures of network

analysis. The degree Ki of a node i is defined as the number of

connections to that node. Nodes with a high degree are interacting

with many other nodes in the network. The degree K of a graph is

the average of the degrees of all N nodes in the graph G:

K~
1

N

X

i[G

Ki

Density can be defined as the fraction of present connections to

possible connections.

Connection strength is a measure quantifying how closely

network nodes are connected in terms of showing a relationship in

their time course of activation. The overall connection strength Si

is calculated as:

Si~
X

i=j[G

ri,j

where ri,j is the partial correlation between the average time series

in node i and j.

Measures of Functional Segregation
Measures of segregation quantify the presence of functionally

related, densely interconnected groups of brain regions, known as

clusters within the network. The local (nodal) clustering coefficient

Ci is defined as the number of existing connections among the

node’s neighbours divided by all their possible connections:

Ci~
Ei

Ki Ki{1ð Þ=2

where Ei is the number of existing connections among the node’s

neighbours. The clustering coefficient of a network is the average

of the clustering coefficient of all nodes:

C~
1

N

X

i[G

Ci

in which C quantifies the extent of local connectivity of the

network.

Local efficiency Ei of a node i is related to the clustering

coefficient and can be calculated as:

Ei~
1

NGi NGi{1ð Þ
X

j,k[Gi

1

Lj,k

where the subgraph Gi is the set of nodes that are the direct

neighbors of the node i. This measure reveals how much the

Figure 2. Visualization of key functional connectivity metrics in network N1 (i.e., the common network employed by both old and
young participants) during AP movements (A+B), and during IP movements (C+D). Each brain region is represented by a sphere. Sphere
size = mean connectivity degree; sphere transparency = mean betweenness centrality (network nodes which participate in many shortest paths, i.e.,
have a higher betweenness centrality, are less transparent than nodes with a low betweenness centrality). The edge width and transparency
represent the summed strength of the partial correlations between nodes (i.e., the networks shown here were constructed by summing the partial
correlation matrices of all participants in each group), edge width = increasing width represents stronger connections; edge transparency = less
transparency indicates stronger connections. In order to visualize the main functional topology of the networks more clearly, only connections with a
summed partial correlation strength of more than 1.0 are shown.
doi:10.1371/journal.pone.0062133.g002
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network is fault tolerant, showing how efficient the communication

is among the first neighbors of the node i when it is removed. The

mean local efficiency of a graph is defined as the mean of the local

efficiency of all the nodes in the graph.

Measures of functional integration. Measures of function-

al integration characterize the ability to rapidly combine

specialized information from distributed brain regions and are

commonly based on the concept of a path, with shorter paths

implying stronger potential for integration.

The mean path length Li of a node i is:

Li~
1

N{1

X

i=j[G

Li,j

in which Li,j is the smallest number of edges that must be traversed

to make a connection between node i and node j. The average

inverse shortest path length is a related measure known as global

efficiency of a network.

Measures of centrality. An important measure to assess

whether a node has importance for information flow and

participates in many shortest paths within a network is betweenness

centrality. The betweenness centrality bi of a node i is defined as:

bi~
1

(N{1)(N{2)

X

h,j[G
h=j,h=i,j=i

rhj(i)

rhj

in which rhj is the number of shortest paths between nodes h and j

and rhj(i) is the number of shortest paths between nodes h and j

that pass through node i.

Small-world brain connectivity. Global network architec-

ture in terms of the small-worldness was quantified via the

normalized clustering coefficient and normalized path length.

Previous research has shown that all networks found in biological

systems have non-random/non-regular or ‘small-world’ architec-

tures [53,56]. Small-worldness is a relative measure for a network’s

level of functional optimization and deviation from randomness

[53,56], with alterations in this topology commonly representing a

decrement in network functionality. Small-world organization

incorporates advantages of regular and random networks,

preserving optimal levels of connectivity within families of

functionally related node-clusters together with short overall

communication distances. Hence, small world network character

is defined as being more clustered than random networks, yet

having approximately the same characteristic path length as

random networks [57], that is.

Lnorm~Lreal
p =Lrand

p &1

Cnorm~Creal
p =Crand

p w1

where the Lreal and Crealare the mean path length and clustering

coefficient of the real network, the Lrand and Crand are the

equivalent values of matched random networks. In order to obtain

the values for the random network parameters in the above

equations, we applied a method estimating these random values

whilst preserving the principal characteristics of the real network.

Figure 3. Visualization of key functional connectivity metrics in network N2 (i.e., the overactivation network of the older
participants) during AP movements (A+B), and during IP movements (C+D). Figure properties as in Figure 2.
doi:10.1371/journal.pone.0062133.g003

Table 1. Areas with significant activation in old and young
individuals.

Activation peak location

Side
(Fig. 1
label) x y z

Precentral gyrus (MI, BA 4) L (1) 230 230 58

R (2) 34 224 52

Postcentral gyrus (SI, BA 1/3) L (3) 236 240 70

R (4) 38 230 66

Middle frontal gyrus (SMA, BA 6) L (5) 24 210 60

R (6) 6 212 58

Precentral gyrus (PMd, BA 6) L (7) 236 212 66

R (8) 28 216 64

Cerebellar hemisphere (IV–V) L (9) 220 246 224

R (10) 24 244 226

Cerebellar vermis (IV–V) L (11) 22 260 216

R (12) 2 248 24

Parietal operculum (SII, BA 43) L (13) 246 228 22

Superior temporal gyrus (AI, BA 41) L (14) 246 236 24

Supramarginal gyrus (SI, BA 2) L (15) 256 226 36

IFG (pars opercularis, BA 44) R (16) 60 10 12

Parietal operculum (SII, BA 43) R (17) 46 226 20

Superior temporal gyrus (AI, BA 41) R (18) 58 230 20

Supramarginal gyrus (SI, BA 2) R (19) 54 232 32

Precentral gyrus (PMv, BA 6) R (20) 58 8 40

IFG (pars opercularis, BA 44) L (21) 254 4 0

doi:10.1371/journal.pone.0062133.t001

Table 2. Areas with significant overactivation in old vs. young
individuals.

Activation peak location

Side
(Fig. 1
label) x y z

Superior frontal gyrus (SMA, BA 6) L (1) 210 218 64

R (2) 12 220 66

Parietal operculum (SII, BA43) L (3) 260 228 28

Superior temporal gyrus (AII, BA 22) L (4) 266 216 12

Parietal operculum (SII, BA 43) R (5) 68 212 14

Superior temporal gyrus (AII, BA 22) R (6) 66 214 10

IFG (pars opercularis, BA 44) L (7) 258 12 2

IFG (pars opercularis, BA 44) R (8) 62 20 4

Inferior parietal cortex (BA 40) L (9) 240 244 52

Middle frontal gyrus (DLPFC, BA 46) R (10) 34 34 38

Middle cingulate cortex (BA 23) L (11) 22 216 44

R (12) 4 28 42

doi:10.1371/journal.pone.0062133.t002
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If the mean vertex degree k of a graph G is defined as k = 2E/N,

where E is the number of edges and N is the number of vertices of

G, a random graph that is similar to G can be defined with the

same mean vertex degree k and number of vertices N as G. Watts

and Strogatz [57] defined a reliable estimate of the mean cluster

coefficient of a random graph with mean vertex degree k and

number of vertices N as Crand = k/N. This estimate can be used to

normalize the actual mean cluster coefficient of G for the

calculation of ‘small world character’ of a network. Similarly,

Watts and Strogatz [57] found an estimate of the mean path

length of a random graph Lrand = ln(N)/ln(k). Fronczak et al. [58]

however showed that this is actually an estimate of the diameter

(i.e., the maximal shortest path length). They also derived an

analytic solution for the mean path length of a random graph with

mean vertex degree k and number of vertices N as

Lrand = ((ln(N)2c)/ln(k)) +0.5 (where c is Euler’s constant). This

estimate can then be used to normalize the actual mean path

length of G with regard to calculation of the ‘small world

character’ of a network.

Statistical Analysis
GTNA measures were analyzed with a 262 repeated measures

ANOVA with the factors AGE (Old/Young) and PHASE

CONDITION (AP/IP). These analyses were conducted for each

network separately. Pearson R coefficients were used to examine

correlations between GTNA measures and the two key kinematic

measures of phase accuracy (error in degrees) and phase stability

(SD of relative phase). Correlations below a statistical significance

level of P = 0.01 were considered significant. All statistical analyses

were performed with the Statistica software (StatSoft, Inc).

Results

Kinematic Output
Bimanual coordination accuracy and stability did not differ

between young and old at any of the relative movement

frequencies [30]. For both groups, coordinative performance was

significantly decreased during AP versus IP tasks [30]. Movement

amplitude was not different between left and right hands and did

not significantly differ between age groups [30].

Differences in Functional Connectivity between Old and
Young

Effects of age. In both networks, the older group consistently

showed the tighter functional connectivity, manifested in a higher

mean connectivity degree, connection strength, network density

and efficiency, together with shorter mean communication path

length between the network nodes and also a lower betweenness

centrality (Tables 3 and 4, Figures 2 and 3). In both networks,

there were significant effects of AGE for connectivity degree,

network density, efficiency, path length, and connection strength

(N2 only) (Table 4 & 5). These effects of AGE consistently emerged

at stronger levels of statistical significance in the overactivation

network N2. While the mean clustering coefficients in network N1

were basically identical between the groups (Table 3), the older

group showed higher clustering in network N2, with a significant

effect of AGE (Table 4 & 5).

Effects of task difficulty. Compared to the easier IP

coordination mode, the AP mode was associated with an increased

functional connectivity, with a significant effect for PHASE in all

networks for the measures connectivity degree, network density,

efficiency, path length (N2 only), and connection strength (Table 4

& 5). However, there was no AGE X PHASE interaction at the

examination threshold of P = 0.001 (Table 4 & 5).

The comparison of the functionality measures obtained for the

participants’ brain networks with equivalent parameters derived

from random networks indicated a topology largely consistent with

a ‘small world’ network (SWN) character in both groups (Table 3).

No statistically significant group differences were observed

regarding this ‘small world’ topology (Table 4 & 5).

Interhemispheric connectivity. Previous studies have dem-

onstrated an increased bihemispheric activation in older adults

compared to a more lateralized processing in younger individuals

[59,60]. Based on this notion of a changing balance of

communication between the hemispheres during motor processing

in the aging brain, we conducted an exploratory sub-analysis to

examine changes in overall strength of interhemispheric connec-

tivity in our groups via a 262 AGE6PHASE ANOVA. This

analysis included only connections between network nodes in

different hemispheres (i.e., the functional connections ‘travel’

between the hemispheres). In network N1 the older group had the

numerically stronger interhemispheric connectivity for the AP task

(mean connection strength of interhemispheric connections 6 SE:

0.6260.02 vs. young: 0.5660.03) and the IP task (old 0.5960.02

vs. young 0.5660.03) but these differences were too small to result

in a significant effect of AGE [F(1, 15) = 1.73, P = 0.21]. However,

the effect of PHASE was significant [F(1, 15) = 14.65, P = 0.002],

and there was a significant AGE6PHASE interaction [F(1,

15) = 7.88, P = 0.013]. Post hoc tests using Tukey correction

showed that interhemispheric connectivity was significantly higher

in the AP vs. the IP tasks for the older group (P = 0.001), whereas

no such difference was present for the young participants

(P = 0.78).

In N2, the findings were similar, with a significant effect of

PHASE [F(1, 15) = 18.5, P = 0.0006] and a numerically higher

interhemispheric connectivity for the older group in the AP task

(mean connection strength of interhemispheric connections 6 SE:

0.3760.01 vs. young: 0.3660.01) and the IP task (old 0.3660.02

vs. young 0.3560.01). However, there was neither a significant

effect of AGE [F(1, 15) = 0.43, P = 0.52] nor a AGE6PHASE

interaction [F(1, 15) = 0.02, P = 0.91].

Correlations between GTNA Measures and Kinematics
The exploratory analysis of correlations between the GTNA

measures and the kinematic parameters showed that, after

correcting for number of correlations evaluated, there was little

association between the measures of functional connectivity and

the two key kinematic measures of phase accuracy (error in

degrees) and phase stability (SD of relative phase) [30]. In the

analyses based on combining activations across different move-

ment frequencies, significant correlations between GTNA mea-

sures and the means of the kinematic performance measures across

the 4 movement frequencies were largely absent in both networks,

the exception being correlations of the AP mean phase stability

with SWN path length (R = 0.64, P = 0.007) and with the mean

cluster coefficient (R = 0.62, P = 0.009) in the N1 network of the

young group, whereby poorer stability in the AP task (i.e., a higher

SD of relative phase) was linked to longer communication path

lengths but also to increased local clustering patterns.

In the primary fMRI analyses that established the brain

activations underlying the present neural networks [30], two

regions (SMA and the secondary somatosensory area) of the

overactivation network N2 had demonstrated a positive relation-

ship between activation and motor performance in elderly subjects

during the AP task. However, the examination of associations

between task performance and GTNA measures in these two areas

showed only a limited number of significant correlations between

increased functional connectivity and improved task performance
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(smaller errors) in the older group. For the SMA, this included

correlations of AP phase accuracy with efficiency (R = 20.63,

P,0.01) and connection strength (R = 20.69, P,0.01), as well as

correlations of AP phase stability with connection strength

(R = 20.70, P,0.01). In the secondary somatosensory area, no

correlations with kinematics were present. In the young group, no

significant correlations were present between the GTNA measures

and the kinematic output in these two ROIs.

GTNA Analyses at Different Connectivity Thresholds
We calculated the connectivity matrices at different thresholds

(P = 0.0001; P = 0.0005; P = 0.001; P = 0.005; P = 0.01) to ensure

that the results were not critically dependent on the threshold

used. The statistical results were equivalent across network

densities and the secondary thresholds showed no consistent

statistical trends that were critically different to that of the

examination threshold of P = 0.001. For all connectivity thresh-

olds, the numbers of surviving edges between the network nodes

are shown in Figure 4.

Discussion

This study assessed the functional connectivity in the cerebral

networks for bimanual coordination in older adults by applying

graph-theoretical network analysis. The study evaluated functional

connectivity aspects in the elderly and is the first to show that

bimanual coordination in older adults occurs concomitantly with

(a) an increased functional network connectivity between brain

areas also activated in young adults, and (b) an increased

functional connectivity in the overactivation network specific to

the older age group. This effect was independent of ‘phase’

complexity, although, compared to the IP condition, the more

difficult AP mode was associated with an increased network

connectivity in both age groups. Importantly, the current findings

demonstrate that the age-related overactivation seen in some areas

(N2) does not appear to be associated with a decreased network

functionality in the ‘common’ network (i.e., the task-related motor

networks employed by both old and young adults, N1).

Increased Functional Connectivity in the Elderly – does
Higher Mean Better?

Our finding of an increased functional connectivity applied

consistently across the vast majority of GTNA measures,

confirming that this effect does not only focus on sub-domains of

functional connectivity but appears to relate homogeneously to the

entire functionality spectrum assessed in the present networks.

Importantly, this increased functional connectivity was not carried

to a critical extent by an increased connection strength in

interhemispheric links that one might have expected based on

previous reports of a decreased lateralization of motor processing

in older adults [59,60].

The current findings also show this age effect to be independent

of the ‘phase’-difficulty of the movement task when considering the

Table 3. GTNA metrics for IP and AP in all networks.

Old group Young group

Network AP IP AP IP

Mean SE Mean SE Mean SE Mean SE

N1 (Table 1)

Cluster coefficient 0.29 0.02 0.28 0.01 0.28 0.01 0.28 0.01

Degree 4.84 0.13 4.71 0.14 4.30 0.15 4.23 0.15

Density 0.24 0.01 0.24 0.01 0.21 0.01 0.21 0.01

Efficiency 0.55 0.01 0.54 0.01 0.51 0.01 0.51 0.01

Path length 1.97 0.03 1.98 0.04 2.14 0.07 2.16 0.07

Betweenness 21.3 0.70 21.4 0.78 25.0 1.48 25.4 1.45

Connection strength 1.21 0.03 1.18 0.03 1.10 0.04 1.08 0.04

N2 (Table 2)

Cluster coefficient 0.36 0.02 0.33 0.03 0.23 0.03 0.25 0.02

Degree 3.76 0.12 3.71 0.13 3.11 0.11 3.06 0.11

Density 0.34 0.01 0.34 0.01 0.28 0.01 0.28 0.01

Efficiency 0.58 0.01 0.58 0.01 0.53 0.01 0.53 0.01

Path length 1.72 0.04 1.74 0.04 1.96 0.06 1.99 0.06

Betweenness 9.67 0.46 9.90 0.49 12.5 0.67 12.9 0.76

Connection strength 1.15 0.04 1.13 0.04 0.98 0.03 0.97 0.02

Small world network measures

N1

Cluster coefficient 1.27 0.05 1.26 0.04 1.42 0.11 1.45 0.09

Path length 0.99 0.01 0.99 0.00 1.01 0.01 1.01 0.01

N2

Cluster coefficient 1.16 0.07 1.11 0.10 0.94 0.09 1.00 0.08

Path length 0.96 0.01 0.96 0.01 0.96 0.01 0.97 0.01

doi:10.1371/journal.pone.0062133.t003
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entirety of the networks as, in both groups, the more difficult AP

condition was consistently associated with a tighter functional

connectivity compared to the simpler and more intrinsically

executable IP condition. A priori, it would have been feasible to

assume that this disparity gradient in the quality of functional

connectivity between AP and IP condition might have been

steeper in the elderly due to their brain having to work harder to

maintain AP motor output. Our analyses showed that this was the

case when focussing on the strength of interhemispheric connec-

tions. Here, the older group showed a tighter interhemispheric

connectivity than the young in the more difficult AP condition.

Whilst this finding seems consistent with the notion of a decreased

lateralisation in older adults, our results suggest that a tighter

interhemispheric connection strength is dependent on task

difficulty and that the effect of AGE may be more specifically

reflected only in more demanding coordination modes.

A crucial point that needs to be considered in the interpretation

of the current findings is the question of whether the increased

functional connectivity of the elderly group indeed represents a

‘better’ functionality. When assessing functional connectivity in a

network, it seems intuitive that any improvements which promote

connections between network components (increased clustering,

Table 4. GTNA measures N12262 ANOVA results.

Measure & Factors 0.001 0.0005 0.0001 0.005 0.01

df F P p p p p

Cluster coefficient

AGE 1, 30 0.13 0.722 0.77 0.86 0.14 0.01

PHASE 1, 30 0.68 0.423 0.94 0.45 0.53 0.22

AGE6PHASE 1, 30 1.71 0.210 0.61 0.23 0.03 0.33

Degree

AGE 1, 30 6.03 0.027 0.13 0.03 0.02 0.04

PHASE 1, 30 12.3 0.003 0.003 0.50 0.29 0.43

AGE6PHASE 1, 30 2.36 0.145 0.10 0.64 0.04 0.59

Density

AGE 1, 30 6.03 0.027 0.13 0.03 0.02 0.04

PHASE 1, 30 12.3 0.003 0.003 0.50 0.29 0.43

AGE6PHASE 1, 30 2.36 0.145 0.10 0.64 0.04 0.59

Efficiency

AGE 1, 30 6.29 0.024 0.36 0.07 0.02 0.04

PHASE 1, 30 9.18 0.008 0.13 0.42 0.30 0.28

AGE6PHASE 1, 30 0.81 0.384 0.03 0.04 0.02 0.56

Path length

AGE 1, 30 6.46 0.023 0.05 0.03 0.02 0.05

PHASE 1, 30 2.05 0.173 0.71 0.50 0.24 0.23

AGE6PHASE 1, 30 0.11 0.747 0.33 0.29 0.02 0.65

Betweenness

AGE 1, 30 6.74 0.020 0.02 0.04 0.02 0.05

PHASE 1, 30 1.01 0.331 0.47 0.99 0.24 0.23

AGE6PHASE 1, 30 0.29 0.599 0.31 0.37 0.02 0.65

Connection strength

AGE 1, 30 4.05 0.063 0.18 0.07 0.05 0.06

PHASE 1, 30 25.5 0.0001 0.0001 0.04 0.01 0.004

AGE6PHASE 1, 30 4.51 0.051 0.20 0.50 0.17 0.44

Small World Network measures

SWN Cluster coefficient

AGE 1, 30 2.31 0.150 0.49 0.20 0.61 0.26

SESSION 1, 30 0.12 0.732 0.40 0.44 0.11 0.11

AGE6SESSION 1, 30 0.34 0.566 0.68 0.26 0.01 0.35

SWN Path length

AGE 1, 30 3.08 0.100 0.65 0.30 0.49 0.94

SESSION 1, 30 1.04 0.324 0.65 0.68 0.35 0.20

AGE6SESSION 1, 30 0.68 0.422 0.03 0.26 0.04 0.77

doi:10.1371/journal.pone.0062133.t004
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higher network density, more connections of the network node,

and stronger synchronization in activation between network

components), together with quicker information transfer (shorter

communication path lengths and decreased betweenness central-

ity) are of benefit to network performance. In this context, it is

pertinent to mention that our finding of a reduced betweenness

centrality in the older subjects is consistent with them having

shorter mean path lengths between network nodes compared to

the young group. Shorter path lengths are a manifestation of a

more direct connection between network nodes, resulting in less

nodes participating in shortest paths between other network nodes.

This is likely to directly affect the betweenness centrality as this

measure quantifies the number of shortest paths (connecting other

nodes of the network) that travel through each node. As a result,

the betweenness of the network will be reduced as a whole.

In over-connected functional systems, however, the balance

between network performance and the required connectivity

architecture can become distorted so that system performance

decreases as a result [53]. The apparent advantage in functional

topology of the elderly subjects has to be interpreted in the light of

the unchanged small world character of their networks compared

to the younger controls. In efficient networks there is an optimal

Table 5. GTNA measures N22262 ANOVA results.

Measure & Factors 0.001 0.0005 0.0001 0.005 0.01

df F P p p p p

Cluster coefficient

AGE 1, 30 7.52 0.015 0.048 0.04 0.06 0.05

PHASE 1, 30 0.27 0.613 0.69 0.89 0.97 1.00

AGE6PHASE 1, 30 2.56 0.130 0.34 0.17 0.81 0.45

Degree

AGE 1, 30 13.7 0.002 0.002 0.004 0.002 0.01

PHASE 1, 30 4.75 0.046 0.16 0.50 0.02 0.06

AGE6PHASE 1, 30 0.00 1.000 0.87 1.00 0.40 0.03

Density

AGE 1, 30 13.7 0.002 0.002 0.004 0.002 0.01

PHASE 1, 30 4.75 0.046 0.16 0.50 0.02 0.06

AGE6PHASE 1, 30 0.00 1.000 0.87 1.00 0.40 0.03

Efficiency

AGE 1, 30 13.7 0.002 0.02 0.006 0.001 0.006

PHASE 1, 30 8.04 0.013 0.14 0.22 0.02 0.13

AGE6PHASE 1, 30 0.02 0.883 0.56 0.82 0.41 0.08

Path length

AGE 1, 30 11.2 0.004 0.004 0.01 0.002 0.004

PHASE 1, 30 8.39 0.011 0.54 0.21 0.04 0.33

AGE6PHASE 1, 30 0.15 0.706 0.71 0.71 0.38 0.26

Betweenness

AGE 1, 30 11.2 0.004 0.03 0.01 0.002 0.004

PHASE 1, 30 8.39 0.011 0.99 0.21 0.04 0.33

AGE6PHASE 1, 30 0.15 0.706 0.87 0.71 0.38 0.26

Connection strength

AGE 1, 30 13.2 0.002 0.004 0.004 0.001 0.003

PHASE 1, 30 12.8 0.003 0.05 0.08 0.003 0.004

AGE6PHASE 1, 30 0.00 0.986 0.91 0.99 0.39 0.03

Small World Network measures

SWN Cluster coefficient

AGE 1, 30 1.79 0.201 0.18 0.27 0.51 0.51

SESSION 1, 30 0.00 0.954 0.82 0.72 0.35 0.47

AGE6SESSION 1, 30 1.87 0.191 0.50 0.17 0.89 0.78

SWN Path length

AGE 1, 30 0.17 0.687 0.11 0.88 0.58 0.32

SESSION 1, 30 0.40 0.538 0.03 0.17 0.44 0.87

AGE6SESSION 1, 30 0.10 0.751 0.05 0.89 0.98 0.45

doi:10.1371/journal.pone.0062133.t005
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balance between the performance output and the best level of

connectivity to deliver that output. In many biological systems this

optimal configuration has been summarized in the term ‘small

worldness’ [53]. Small-world organization combines, and finds an

optimal compromise between, the short overall path lengths of

random networks and the high-level of clustering of regular

networks. As such it combines high levels of local clustering among

nodes of a network and short paths that globally link all nodes of

the network. The preserved small world character of the elderly

indicates that the apparently ‘better’ functional connectivity in

their networks was established within the intact framework of a

small world system comparable to that of the young. Considered

together with the fact that the changes in functional connectivity

seen in the older adults are of a nature that homogeneously

promotes better network function, the finding of a preserved small

world character supports the interpretation that the GNTA

measures of the older group are indeed indicative of a more

favourable functional connectivity of this group.

Increased Functional Connectivity in the Elderly in
Addition to Overactivation

The compensation hypothesis for the additional neural recruit-

ment (or overactivation) of the elderly [24,59] assumes that, in

order to maintain performance equivalent to the young in both the

cognitive domain and a motor context, the overactivation areas

compensate for processing deficiencies or a declining computa-

tional efficiency in areas more commonly used at a younger age.

Based on this assumption, age-equivalent performance of the

elderly is essentially due to benefitting from this additional neural

recruitment. The old group in the present study also showed such

overactivation, demonstrating for the first time that bimanual

movements require greater neural resources for old adults in order

to match the level of performance seen in younger subjects [30].

While it may not be surprising that the GTNA measures for the

overactivation network N2 indeed assigned an increased function-

al connectivity to this network in the older group, our present

analysis shows that the functional connectivity in the common

network N1 was also higher in the elderly. This suggests that the

greater neural activation of the older group in the secondary

network N2 [30] was not induced by a poorer functionality in the

common network N1. In turn, this indicates that the ability of the

elderly to maintain similar levels of bimanual coordination

compared to the young was not solely due to benefitting from

overactivation but also to a tightening of functional relationships

between brain regions also recruited by younger subjects during

task performance. One might argue that the increased functional

connectivity of the elderly was facilitated by the stronger activation

of the older group in the assessed networks, whereby homoge-

neously stronger activations across all network regions might drive

stronger correlations between these areas. However, while this

argument might apply to the overactivation network N2, it cannot

account for the better functional connectivity in the common

network N1, which, in turn, suggests that the present findings are

indeed indicative of an increased functional connectivity in the

elderly group.

The increased functional connectivity in the older adults

suggests more tightly synchronized brain activation patterns that

apply during motor coordination. This finding is consistent with

previous notions of changes in brain activation in response to a

gradually failing neurobiological substrate during advanced aging

[59,60]. Decrements in neurobiological quality promote the brain

becoming less versatile in coping with diversity in the activity levels

among its network nodes, which may lead a simplified functional

architecture characterized by increased functional coherence

between network areas as seen in our present results. It follows

that the activity levels across multiple network nodes will show a

higher level of synchronization compared to younger adults,

concomitantly with successful bimanual coordination. This inter-

Figure 4. Number of edges between network nodes at different connectivity (network density) thresholds. Shown are the number of
valid functional connections (edges) based on significant partial correlations between node-pairs in networks N1 and N2. Consistent with the notion
that fewer connections will be considered as ‘existing’ at lower compared to higher P-level thresholds, both networks showed a steady increase in the
number of existing edges across the 5 different connectivity thresholds.
doi:10.1371/journal.pone.0062133.g004
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pretation is consistent with previous research having shown that

the brain of older adults indeed exhibits a significantly lower

variability in task-related activations compared to younger

controls, and that the aging brain has a poorer ability of exploring

different functional states across brain regions [61]. Our present

results indicate that this likely applies also during complex

bimanual motor control.

Correlations between Functional Connectivity and Motor
Performance

Our analyses showed that, when assessing the relationship

between task performance and the mean GTNA metrics

calculated across all network nodes of N1 and N2 respectively,

there was limited association between the level of functional

network connectivity and motor performance in the older group.

Two significant correlations between GTNA measures and

coordinative accuracy were observed in the N1 network of the

young group, and there exclusively for the more complex AP

condition. Our more focused correlation analysis examined the

relationship between functional network connectivity and motor

performance in two areas that showed a positive relationship

between BOLD activation and motor performance in elderly

subjects during the AP task (the SMA and SII region) [30].

However, only in the SMA a stronger link with the activation

levels in other network nodes (connection strength), and shorter

communication pathways with other nodes (increased efficiency)

were associated with better motor performance (reduced error).

While these links between functional connectivity and motor

performance in the more difficult AP task are encouraging, it has

to be acknowledged that the number of links between GTNA

measures and motor performance in the present study was limited,

which may have been due to only assessing the means of the

GTNA measures taken across the entire networks in each subject.

Study Limitations and Considerations for Interpreting the
Current Findings

The present study combined a partial-correlation approach to

quantify functional connectivity with a data-driven network

definition. This approach was chosen as full correlations have

been criticized for not filtering out the influence of indirect

connections between network nodes and template-based a-priori

parcellation of the brain to define the network nodes has the

caveat of including brain regions with little or no task-related

activation. A recent study by Smith et al. [51] provides strong

indications that, in addition to using partial correlations to

quantify unique functional associations between nodes, a data-

driven approach by defining networks based only on areas

showing clear task-related activation is preferable to template-

based approaches in order to minimize confounds and obtain a

better picture on functional connectivity within neural networks.

Using partial correlations allowed us to focus on the unique

variance shared by any pair of network nodes while removing all

effects causing spurious correlations between two regions as a

result of a correlation with a common factor. This makes the use of

partial correlations very promising even in task based fMRI.

Amplitudes of partial correlations are typically low but by using a

statistical criterion we ensured that we only assess functional

connectivity between regions sharing unique variance. However, it

has to be acknowledged that the best methodological approach to

examine functional connectivity is an area of ongoing debate.

It is important to note that defining network nodes based on

task-related activation has the potential problem of being based on

a group analysis rather than subject-specific analyses, and, at least

in our context, on incorporation of general linear models (GLMs)

rather than models that allow for nonlinear effects. However, the

application of the GLMs, and the inference of the group results

being representative of brain activations in the individual, is

established practice in fMRI analysis and was successfully applied

for the primary imaging analysis of the present data [30]. Using

the same GLMs to assess functional connectivity between time

courses of activation in our subjects presented itself as the natural

progression to the primary imaging analysis and ensured that the

examination of functional connectivity was established within, and

relates to, the framework of cerebral activations identified by the

GLM method. Despite a good argument to only focus on areas

with task-related activation for the purposes of task-related

changes in functional connectivity, it has to be considered that a

network definition based on a limited number of task-related ROIs

focuses on partial brain rather than whole brain examination, and

that this method may therefore omit potentially relevant activation

in other brain areas. However, the method of task-related ROIs

ensures that the identified connectivity can be comfortably linked

to the task in question and minimizes the risk of including spurious

contributions of potentially ‘random’ brain activity.

Our main analyses showed consistent increases in functional

connectivity in the elderly that manifested across multiple graph-

theoretical metrics, showing that this increase in mean functional

connectivity could be captured across multiple (albeit inter-related)

sub-domains of functional connectivity. However, it has to be

emphasized that in the present analysis the number of network

connections was not held constant between groups and conditions.

A disadvantage of having a different number of connections (i.e.,

not limiting the network connections to a constant number in the

young and old groups) in our networks is that we cannot make

inferences about specific topological aspects of the networks [52].

Hence, the present findings do not prove that the increased

functional connectivity between young and old is due to significant

changes in network topology but might have been carried

substantially by an increase in number of network connections.

It also should be noted that the sample size of this study was

limited. However, this present sample size was sufficient to

adequately detect and describe fMRI activations related to the

performance of the study task [30]. It follows that the underlying

brain activations were likely sufficiently strong to meaningfully

examine functional correlations between the brain areas activated

in the task.

In interpreting our current findings, it is important to emphasize

that the present findings should not automatically be seen as direct

support of the compensation hypothesis for the additional neural

recruitment of the elderly [24,59]. This hypothesis only refers to

age-related higher levels of brain activation in older adults, which

is, in turn, also expected to show correlations with motor

performance. However, this hypothesis does not make any

statements towards connectivity differences between young and

old. Whilst age-related additional recruitment and a closer

functional network connectivity might be concomitantly occurring

coping mechanisms of the aging brain, caution may be advised in

assuming that these two processes are causally impacting on each

other.

Relevance of the Present Findings
There are previous reports that mirror our finding of a higher

functional connectivity in the elderly, such as a higher number of

connector nodes in the elderly when assessing network modularity

across the entire brain at resting state [37] and a reduced regional

centrality in frontal areas during memory encoding and recogni-

tion [36]. Our results showed an increased network efficiency for
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older subjects, a finding consistent with the findings of the study of

Park and colleagues, the only previous study that has examined

aspects of functional connectivity in a task-related motor context

[42]. They found that their key measure of network efficiency also

increased with age when focusing on connectivity in parietal-

occipital-cerebellar networks, although it has to be emphasized

that this finding in Park’s study was present in this particular sub-

network and did not apply globally thus limiting consistency of our

findings with those of Park et al. [42]. Our findings of a higher

task-related functional connectivity, however, are consistent with

previous findings of higher resting state connectivity between

neuroanatomical regions crucial for motor coordination [41].

However, it has to be acknowledged that some studies have found

that aging decreases the functional connectivity in the context of

cognitive function and resting state activity of some motor-related

brain structures [36,37,38,39,40].

In our present analysis, we add to those previous findings by

specifically examining aspects of functional connectivity related to

age-related overactivation, which is one of the most central

research questions in the field of cognitive neuroscience of aging.

Our present study comprised a more comprehensive selection of

GNTA measures and expands previous findings by showing that

adequate sensorimotor performance in older adults occurs

concomitantly with an increased functional network connectivity

between (a) brain areas also activated in young adults, and (b)

brain areas showing overactivation specifically in older age groups.

The present analysis was further able to demonstrate that the

overactivation seen in older adults does not seem to be associated

with the incidence of a decreased network functionality in the

‘common’ brain network (i.e., the task-related cerebral areas

employed similarly by old and young adults).

In summary, the current findings indicate that in the context of

task-driven bimanual motor control in the elderly, additional

neural recruitment may not be the only mechanism of the aging

brain to preserve motor output. Our findings indicate that the

aging brain adapts and increases functional connectivity among

the nodes of the brain network, presumably to cope with age-

related structural and biochemical changes.
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