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Abstract

From behavioral sciences to biology to quantum mechanics, one encounters situations where (i) a system outputs several
random variables in response to several inputs, (ii) for each of these responses only some of the inputs may ‘‘directly’’
influence them, but (iii) other inputs provide a ‘‘context’’ for this response by influencing its probabilistic relations to other
responses. These contextual influences are very different, say, in classical kinetic theory and in the entanglement paradigm
of quantum mechanics, which are traditionally interpreted as representing different forms of physical determinism. One can
mathematically construct systems with other types of contextuality, whether or not empirically realizable: those that form
special cases of the classical type, those that fall between the classical and quantum ones, and those that violate the
quantum type. We show how one can quantify and classify all logically possible contextual influences by studying various
sets of probabilistic couplings, i.e., sets of joint distributions imposed on random outputs recorded at different (mutually
incompatible) values of inputs.
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Introduction

Consider a system with two inputs, a,b, and two random

outputs, A,B, about which it is assumed that A is not influenced by

b, nor B by a. A necessary condition for this selectivity of

influences is marginal selectivity [1]: changes in the values of b do not

influence the distribution of A, and analogously for a and B. Let,

for example, both inputs and outputs be binary: a~ a1,a2f g,
b~ b1,b2f g, and A,B attain values z1 and {1 each. Denoting by

Aij and Bij the two outputs conditioned on a~ai,b~bj

(i,j[ 1,2f g), the distribution of Aij ,Bij

� �
is described by the joint

probabilities pij ,qij ,rij ,sij (summing to 1) in the matrix

ai,bj Bij~z1 Bij~{1

Aij~z1 pij qij

Aij~{1 rij sij

: ð1Þ

Assuming all four combinations a1,a2f g| b1,b2f g are possible,

marginal selectivity in this example means

pi1zqi1~pi2zqi2~Pr Aij~z1
� �

,

p1jzr1j~p2jzr2j~Pr Bij~z1
� �

,
ð2Þ

for all i,j[ 1,2f g.
The assumption of selective influences, however, is stronger. It

requires that the joint distribution of the two outputs satisfies, for

all i,j[ 1,2f g,

Aij ,Bij

� �
* f R,aið Þ, g R,bj

� �� �
ð3Þ

where * stands for ‘‘has the same distribution as,’’ f ,g are some

functions, and R is a source of randomness that does not depend

on a,b [2–8]. In our example (1) this means

pij~Pr f R,aið Þ~z1,g R,bj

� �
~z1

� �
,

rij~Pr f R,aið Þ~z1,g R,bj

� �
~{1

� �
,

etc:

ð4Þ

In the quantum mechanical context (see below) R is interpreted as

‘‘hidden variables.’’ Such a representation may or may not exist
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when marginal selectivity is satisfied. For instance, the latter is

satisfied in the following four distributions,

a1,b1 B11~z1 B11~{1

A11~z1 1=4 0

A11~{1 0 3=4

a1,b2 B12~z1 B12~{1

A12~z1 0 1=4

A12~{1 1=2
1=4

a2,b1 B21~z1 B21~{1

A21~z1 0 1=2

A21~{1 1=4
1=4

a2,b2 B22~z1 B22~{1

A22~z1 0 1=2

A22~{1 1=2 0

ð5Þ

It can be shown, however, that no representation (3) here is

possible as the joint probabilities violate the Bell/CHSH

inequalities considered below (Section 1 of Theory and Text S1).

At the same time, a representation in the form of (3) is possible for

the similar distributions

a1,b1 B11~z1 B11~{1

A11~z1 1=4 0

A11~{1 0 3=4

a1,b2 B12~z1 B12~{1

A12~z1 1=4 0

A12~{1 1=4
1=2

a2,b1 B21~z1 B21~{1

A21~z1 0 1=2

A21~{1 1=4
1=4

a2,b2 B22~z1 B22~{1

A22~z1 0 1=2

A22~{1 1=2 0

ð6Þ

One can think of a and b in (5) and (6) as being involved in

different kinds of probabilistic context for the ‘‘direct’’ dependence of,

respectively, B on b and A on a.

We propose a principled way of quantifying and classifying

conceivable contextual influences, whether within or outside the

scope of (3). Our approach is neutral with respect to such issues as

causality or what distinguishes direct influences from contextual.

We merely accept as a given a diagram of direct input-output

correspondences (e.g., A/a,B/b) and study the joint distribution

of the outputs at all possible values of the inputs. The

interpretation of the diagram is irrelevant insofar as it is

compatible with the observed pattern of marginal selectivity: as

a changes while b remains fixed, the distribution of B does not

change, and as b changes while a remains fixed, the distribution of

A does not change. Note that the distribution of A may but does

not have to change in response to changes in a, and analogously

for B and b.

Our approach is maximally general in the sense of applying to

arbitrary sets of inputs and outputs (see Section 5 of Theory). To

demonstrate it by detailed computations, however, we focus

primarily on binary a,b influencing binary A,B; and even more

narrowly, on the ‘‘homogeneous’’ case with the two values of both

A and B equiprobable at all values of the inputs ai,bj (i,j[ 1,2f g),

Pr Aij~z1
� �

~Pr Bij~z1
� �

~1=2: ð7Þ

Marginal selectivity then is satisfied trivially (because all marginal

distributions are fixed).

The example focal for this paper is Bohm’s version of the

Einstein-Podolsky-Rosen paradigm (EPR/B) [9]: a quantum

mechanical system consisting (in the simplest case) of two

entangled spin{12 particles separated by a space-like interval

(see Fig. 1). The two inputs here are spin measurements on these

particles: input a has two values corresponding to spin axes a1,a2

chosen for one particle, and input b has two values corresponding

to spin axes b1,b2 for another particle. The two outputs are spin

values recorded: having chosen axes ai and bj , i,j[ 1,2f g, one

records Aij for the first particle and Bij for the second, each being a

random variable with values z1 and {1. (Note that the spins of a

given particle along two different axes are noncommuting (see Text

S2), because of which if one spin value is determined precisely, +1

or 21, the other one has a nonzero uncertainty. This means that

a1,a2 considered as measurements yielding precise values of spins

are mutually exclusive, and this is the reason a1,a2 can be viewed

as values of a single input a; and analogously for b1,b2 [10,11].)

Marginal selectivity (2) in this context is known under a variety of

other names, such as ‘‘parameter independence’’ and ‘‘physical

locality’’ [12]. We confine ourselves to the case (7), with the two

spin values +1 and 21 being equiprobable for both Aij and Bij .

Formally equivalent situations are abundant in behavioral and

social sciences [8,13–17], where the issue of selective influences

was initially introduced in [18,19], in the context of information

Figure 1. Entanglement paradigm. Schematic representation of
two spin-12 particles, e.g., electrons, in the singlet state (represented by
S:j6S;j{ ;j T6 :j T in quantum-mechanical notation) running away
from each other. The directions a and b are detector settings for spin
measurements (in our language, inputs). The measured spins A and B
(outputs) in these directions are shown by rotation arrows: one
direction of rotation (say, clockwise) represents ‘‘spin-up’’~z1 in one
particle and ‘‘spin-down’’~{1 in the other. By the quantum theory, for

any a,b, Pr A~z1,B~z1½ �~1=2 cos2 h=2 (equivalently, expected value
of AB is cos h). The two measurements are made simultaneously (in
some inertial frame of reference).
doi:10.1371/journal.pone.0061712.g001
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processing architectures. An example of a system here (from our

laboratory) can be a human observer who adjusts a visual stimulus

until it matches in appearance another, ‘‘target’’ visual stimulus.

Let the latter be characterized by two properties, a and b (e.g.,

amplitudes of two Fourier-components), each varying on two

levels, a1,a2 and b1,b2. Denoting by S1
ij and S2

ij the corresponding

properties (amplitudes) of the adjusted stimulus in response to

ai,bj , we define a binary random output Aij as having the value

‘‘high’’~z1 or ‘‘low’’~{1 according as the variable S1
ij is above

or below the median of its distribution; output Bij is defined from

S2
ij analogously. Marginal selectivity in the form (7) is ensured here

by construction.

In an example from a biological domain S1
ij and S2

ij could be

activity levels of two neurons tuned to two stimulus properties, a
and b, respectively. Making a and b vary on two levels each and

defining Aij ,Bij with respect to the medians of S1
ij ,S

2
ij by the same

rule as above, we get precisely the same mathematical formulation.

The formal equivalence of these three examples should by no

means be interpreted as a hint at their physical affinity. Unlike in

the EPR/Bohm paradigm, no physical laws prohibit the activity

level A of a neuron tuned to stimulus property a from being

affected by stimulus property b. Similarly, the amplitude A of the

first Fourier component of the adjusted stimulus in the second

example may very well be affected by the amplitude b of the

second Fourier component of the target stimulus. Our only claim

is that if these ‘‘secondary’’ influences do not change the marginal

distributions of A and B (which in the two examples in question is

ensured by the definition of A and B), they can be viewed within

the framework of a formal treatment that also includes the

(physically very different) case of entangled particles.

Theory

1 Forms of context (determinism)
In the following, symbols i,j,k (possibly with primes) always take

on values 1,2 each, and each of the outputs Aij ,Bij takes on values

z1,{1 with equal probabilities. Representation (3) is equivalent

to the existence of a jointly distributed system

H~ H1
1 ,H1

2 ,H2
1 ,H2

2

� �
, ð8Þ

such that every output pair Aij ,Bij is distributed as H1
i ,H2

j ; in

symbols,

H1
i ,H2

j

� �
* Aij ,Bij

� �
: ð9Þ

As this entails

H1
i *Aij , H2

j *Bij ,

all components of H are random variables with equiprobable +1/

21, and (9) reduces to

Pr Aij~z1, Bij~z1
� �

~Pr H1
i ~z1, H2

j ~z1
h i

:
ð10Þ

The existence of H in (8) satisfying (9) is known as (a special case

of) the Joint Distribution Criterion (JDC) [6,7,14,20,21]. It follows

from (3) by

H1
i ~f R,aið Þ,H2

j ~g R,bj

� �
: ð11Þ

Conversely, if (9) holds for some H, then one can put R~H and

f H,aið Þ~Proji H1
1 ,H1

2 ,H2
1 ,H2

2

� �
,

g H,bj

� �
~Proj2zj H1

1 ,H1
2 ,H2

1 ,H2
2

� �
,

ð12Þ

where Projk stands for the ‘‘k th member’’ (in the list of

arguments). The JDC is a deep criterion that provides a

probabilistic foundation for our understanding of the classical

(non)contextuality (or classical determinism in physics). In

particular, it immediately follows from the JDC that if represen-

tation (3) for Aij ,Bij

� �
exists, the ‘‘hidden variables’’ R can always

be reduced to a single discrete random variable with 24 possible

values (corresponding to the possible values of H).

Using the same notation as above,

pij~Pr Aij~z1, Bij~z1
� �

, ð13Þ

the JDC in our case (two binary inputs and two binary outputs

with equiprobable values) is equivalent to four double-inequalities

0ƒpijzpij’zpi’j’{pi’jƒ1 ð14Þ

with i=i’, j=j’ [6,7]. (See Text S1 for a derivation.) They are

often referred to as the Bell/CHSH inequalities (in the homogeneous

form), CHSH acronymizing the authors of [4], although the first

appearance of these inequalities dates to [5].

The theory of the EPR/B paradigm predicts and experimental

data confirm violations of the Bell/CHSH inequalities [22,23], but

quantum mechanics imposes its own constraint on the same linear

combinations of probabilities:

1{
ffiffiffi
2
p

2
ƒpijzpij’zpi’j’{pi’jƒ

1z
ffiffiffi
2
p

2
: ð15Þ

This constraint is known as the Cirel’son inequalities [24,25] (see

Text S2 for a derivation). Since the class of vectors

p11,p12,p21,p22ð Þ that satisfy these double-inequalities include

those allowed by (14) as a proper subset, it is natural to expect

that (15) represents some relaxation, or generalization of the JDC.

No such generalization, however, has been previously proposed.

Developing one is the main goal of this paper.

This generalization is not confined to quantum mechanical

systems. In other (e.g., behavioral) applications, one cannot

exclude a priori the possibility of the bounds m and M in

mƒpijzpij’zpi’j’{pi’jƒM ð16Þ

being wider than in (15), or falling between the bounds in (14) and

(15), or being more narrow than in (14). One can think of all kinds

of other constraints imposed on the possible values of

p11,p12,p21,p22ð Þ, from confining this vector to one specific value

to allowing it to vary freely. The latter (‘‘complete chaos’’) is

represented by the ‘‘no-constraint’’ constraint

{1=2ƒpijzpij’zpi’j’{pi’jƒ
3=2 ð17Þ

with m~{12 attained if one of p11,p12,p21,p22 is 12 and the rest

are zero, and M~32 attained if three of p11,p12,p21,p22 are 12 and

Measuring Context

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e61712



the remaining one is zero. Recall that we only consider the outputs

with equiprobable outcomes, so

0ƒpijƒ
1=2: ð18Þ

All these conceivable constraints on the possible values of

p11,p12,p21,p22ð Þ represent different forms and degrees of contex-

tual influences. It would be unsatisfactory if all these possibilities,

whether or not empirically realizable, could not be treated within a

unified probabilistic framework including JDC as a special case.

We construct such a framework, based on the classical

(Kolmogorov’s) theory of probability and the probabilistic

coupling theory [26].

2 Connections
It is easy to see that for any vector of probabilities

p~ p11,p12,p21,p22ð Þ one can find a jointly distributed system of

+1/21 variables

H~ H1
11,H2

11,H1
12,H2

12,H1
21,H2

21,H1
22,H2

22

� �
ð19Þ

such that

H1
ij ,H

2
ij

� �
* Aij ,Bij

� �
i:e:

Pr H1
ij~z1,H2

ij~z1
h i

~pij

2
664

3
775 ð20Þ

for all i,j. The JDC then amounts to additionally assuming that

among all such vectors H there is one with

Pr H1
i1=H1

i2

� �
~0,

Pr H2
1j=H2

2j

h i
~0,

ð21Þ

and this is the assumption that is rejected by quantum theory in

the EPR/B paradigm. Once (21) is explicitly formulated, however,

it becomes clear that it is not the only way of thinking of H. Since

Ai1 and Ai2 occur under mutually exclusive conditions, one cannot

identify the distribution of H1
i1,H1

i2

� �
with that of Ai1,Ai2ð Þ. The

latter does not exist as a pair of jointly distributed random

variables. There is therefore no privileged pairing scheme for

realizations of H1
i1 and H1

i2,and zero values for

Pr H1
i1=H1

i2

� �
, Pr H2

1j=H2
2j

h i
are as acceptable a priori as any

other. Analogous considerations apply to H2
1j ,H

2
2j

� �
and

B1j ,B2j

� �
.

Our approach consists in replacing (21) with more general

Pr H1
i1=H1

i2

� �
~2e1

i [ 0,1½ �,

Pr H2
1j=H2

2j

h i
~2e2

j [ 0,1½ �,
ð22Þ

and characterizing the dependence of A,Bð Þ on a,bð Þ by

properties of the set of all 4-vectors e~ e1
1,e1

2,e2
1,e2

2

� �
that are

compatible with or imply certain constraints imposed on the

vectors p~ p11,p12,p21,p22ð Þ. Having adopted a particular diagram

of input-output correspondences (in our case, A/a,B/b), we can

also say that these sets of e characterize the contextual role of a,b
for B and A, respectively.

We call e a vector of connection probabilities. The connection

probabilities are of a principally non-empirical nature: they are

joint probabilities of events that can never co-occur. By contrast,

due to (20) the components of p are joint probabilities of events

that do co-occur, and by observing these co-occurrences the

probabilities in p can be estimated. To emphasize this distinction

we refer to p as a vector of empirical probabilities.

To distinguish our approach from other forms and meanings of

probabilistic contextualism, e.g., [27,28,29], we dub it the ‘‘all-

possible-couplings’’ approach. The term ‘‘coupling’’ refers to

imposing a joint distribution (say, that of H1
11,H1

12) on random

variables that otherwise are not jointly distributed (A11 and A12).

For a rigorous and general discussion of couplings and connections

see Section 5.

3 Extended Linear Feasibility Polytope (ELFP)
ELFP is the set of all possible p,eð Þ for which there exists a

vector H in (19) with jointly distributed components Hk
ij such that

(20) holds, and, in accordance with (22),

Pr H1
i1~z1,H1

i2~z1
� �

~e1
i ,

Pr H2
1j~z1,H2

2j~z1
h i

~e2
j ,

ð23Þ

for all i,j. The existence of such an H means the existence of a

probability vector Q consisting of the 28 joint probabilities

Pr H1
11~h1

11,H2
11~h2

11, . . . ,H2
22~h2

22

� �
, ð24Þ

h1
ij ,h

2
ij[ z1,{1f g. Let P denote the 25{component vector

consisting of 24 empirical probabilities

Pr Aij~aij ,Bij~bij

� �
ð25Þ

and 24 connection probabilities

Pr Ai1~ai1,Ai2~ai2½ �,
Pr B1j~b1j ,B2j~b2j

� �
,

ð26Þ

aij ,bij[ z1,{1f g.
Define a 25|28 Boolean matrix M whose rows are enumerated

in accordance with components of P (i.e., by equalities

Aij~aij ,Bij~bij

� �
, Ai1~ai1,Ai2~ai2½ �, or B1j~b1j ,B2j~b2j

� �
)

and columns in accordance with components of Q (i.e., by

equalities H1
11~h1

11,H2
11~h2

11, . . . ,H2
22~h2

22

� �
). An entry of M

contains 1 if and only if the corresponding random variables in the

enumerations of its row and its column have the same values: e.g.,

if a row is enumerated by B12~b12,B22~b22½ � and a column by

H1
11~h1

11, . . . ,H2
12~h2

12, . . . ,H2
22~h2

22

� �
, then their intersection

contains 1 if and only if h2
12~b12,h2

22~b22.

It is easy to see that H exists if and only if

MQ~P ð27Þ

for some vector Q§0 (componentwise) of probabilities. The

vectors P for which such a Q exists are exactly those within the

polytope whose vertices are the columns of the matrix M. The

term ELFP is due to this construction extending that of the linear

feasibility test in [10]. This test, among other applications, is the

most general way of extending the Bell/CHSH criterion to an

arbitrary number of particles, spin axes, and spin quantum
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numbers [10,11,30–32]. Its application to binary inputs/outputs

(not necessarily with equiprobable outcomes) is shown in Text S1.

To describe ELFP by inequalities on p,eð Þ, we introduce the 16-

component sets

Sp~

+ p11{1=4

� �
+ p12{1=4

� �

+ p21{1=4

� �
+ p22{1=4

� �
:

each+iszor-

8>>><
>>>:

9>>>=
>>>;

,

Se~

+ e1
1{

1=4

� �
+ e2

1{
1=4

� �

+ e1
2{

1=4

� �
+ e2

2{
1=4

� �
:

each+iszor{

8>>><
>>>:

9>>>=
>>>;
:

ð28Þ

S0p and S1p denote the subsets of Sp with, respectively, even

(0,2, or 4) and odd (1 or 3) number of + signs; S0e and S1e are

defined analogously. ELFP is described by

max
max S0pz max S1e,

max S1pz max S0e

	 

ƒ

3=2 ð29Þ

(see Text S3).

4 All, Fit, Force, and Equi sets
Let constr pð Þ denote any constraint (e.g., inequalities) imposed

on p. Our approach consists in characterizing this constraint by

solving the following four problems:

1. Find the set Allconstr of all p,eð Þ[ 0,1=2

h i8

with p subject to

constr pð Þ: i.e., p,eð Þ[Allconstr if and only if

constr(p)and(p,e)[ELFP: ð30Þ

2. Find the set Fitconstr of connection vectors e[ 0,1=2

h i4

that fit

(are compatible with) all empirical probability vectors p

satisfying constr: i.e., e[Fitconst if and only if

constr(p)[(p,e)[ELFP: ð31Þ

3. Find the set Forceconstr of e[ 0,1=2

h i4

that force all compatible

empirical probability vectors p to satisfy constr: i.e.,

e[Forceconstr if and only if

(p,e)[ELFP[constr(p) ð32Þ

4. Find the set Equiconstr of e[ 0,1=2

h i4

for which an empirical

probability vector p satisfies constr if and only if p,eð Þ is in the

ELFP set: i.e., e[Equiconstr if and only if

constr(p)u(p,e)[ELFP: ð33Þ

Clearly, Equiconstr~Forceconstr\Fitconstr:

To illustrate, we focus on the following four benchmark

constraints. The no-constraint, or ‘‘complete chaos’’ situation is

given by

chaos(p)up[ 0,1=2

h i4

, ð34Þ

equivalent to (17). The quantum mechanical constraint is given by

quant(p)umax S1pƒ

ffiffiffi
2
p .

2, ð35Þ

equivalent to (15). The ‘‘classical’’ constraint is given by

class(p)umax S1pƒ
1=2, ð36Þ

equivalent to the Bell/CHSH inequalities (14). Finally, we

consider the constraint

fix pð Þup~specificvector: ð37Þ

For all constraints except for fix pð Þ the sets All, Fit, Force, and

Equi are as shown in Table 1 (for derivations see Text S4).

Thus, Fitchaos is the set of all e such that max Seƒ1=2: if an e is

in this set, then any p (with no constraints) is compatible with it.

Forcequant is characterized by max S0e§
3{

ffiffiffi
2
p

2
: if an e is in this

set, then all compatible with it p satisfy quant(p). Equiclass is the

set of all e such that S0e contains 1: for any such an e, a p is

compatible with it if and only if it satisfies class pð Þ.
For each of these sets we compute Vold , its volume normalized

by that of 0,1=2

h id

, with d being the dimensionality of the set

(Fig. 2). Thus, the defining property of Forceclass, 1[S0e, is satisfied

if and only if either all ek
i are 0, or they all are 1=2, or two of them

are 0 and two 1=2. Hence Vol4 Forceclassð Þ~0. For nonzero

volumes, the derivation is described in Text S4. Each panel of

Fig. 2 can be viewed as a ‘‘profile’’ of the corresponding constraint.

Each of the first three volumes in a panel can be viewed as

characterizing the ‘‘strictness’’ of a constraint, in three different

meanings. The intuition of a stricter constraint is that it

corresponds to a smaller Vol8 Allconstrð Þ, larger Vol4 Fitconstrð Þ,
and smaller Vol4 Forceconstrð Þ. Characterizing constraints imposed

on empirical probabilities by multidimensional volumes is not a

new idea [33], but our computations are different: they are aimed

at sets of nonempirical connection probabilities in relation to

constraints imposed on empirical probabilities.

The constraint fix pð Þ has to be handled separately. Clearly,

Vol8 Allfix pð Þ
� �

~0. Fitfix pð Þ is described by

max S1eƒ3=2{max S0p,

max S0eƒ3=2{max S1p,
ð38Þ

and Vol4 Fitfix pð Þ
� �

is a polynomial function of max S0p and

max S1p, these two quantities forming the triangle

(0,0),(1=2,1),(1,1=2)
� �

. The polynomial and its values are shown

in Fig. 3 (see Text S5, for computational details). Forcefix pð Þ is

clearly empty, hence so is Equifix pð Þ.
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5 All-possible-couplings approach on the general level
We show here how the approach presented so far generalizes to

arbitrary sets of inputs and random outputs. We use the term

sequence to refer to any indexed family (a function from an index set

into a set), with index sets not necessarily countable. We present

sequences in the form xy : y[Yð Þ, xz : z[Zð Þ, or xy
z : y[Y ,z[Z

� �
.

A random variable is understood most broadly, as a measurable

mapping between any two probability spaces. In particular, any

sequence of jointly distributed random variables is a random

variable. For brevity, we omit an explicit presentation of

probability spaces and distributions. In all other respects the

notation and terminology closely follow [15,11].

An input is a set of elements called input values. Let a~ ak : k[K
� �

be a sequence of inputs. A treatment is a sequence w~(xk : k[K)

that belongs to a nonempty set W5Pk[K ak (so that xk[ak for all

k[K ). If w[W, k[K , and I5K , then w kð Þ~xk[ak and wDI is the

restriction of w to I , i.e., the sequence (xk : k[I).

An output is a random variable. Let Ak
w : k[K ,w[W

� �
be a

sequence of outputs such that

1. Aw~ Ak
w : k[K

� �
is a random variable for every w[W, i.e., the

random variables Ak
w across all possible k possess a joint

distribution;

2. i f w,w’[W, I5K , a nd wDI~w’DI , th e n Ak
w : k[I

� �
*

Ak
w’ : k[I

� �
.

Property 2 is (complete) marginal selectivity [8]. Aw is called an

empirical random variable, and A~ Aw : w[W
� �

is the sequence of

empirical random variables.

Remark 1. The interpretation is that for every w, each ak may

‘‘directly’’ influence Ak
w but no other output in Aw. The fact that

inputs in a~ ak : k[K
� �

and outputs in an empirical random

variable Aw~ Ak
w : k[K

� �
are in a bijective correspondence is not

restrictive: this can always be achieved by an appropriate grouping

of inputs and (re)definition of treatments w [10].

Remark 2. The special case considered in the previous sections

corresponds to K~ 1,2f g,

a~ a1,a2
� �
with

ak~ ak
1,ak

2

� �
for k[ 1,2f g,

ð39Þ

W~ w11,w12,w21,w22f g
with

wij~ a1
i ,a2

j

� �
for i,j[ 1,2f g,

ð40Þ

and (abbreviating Awij
as Aij and Ak

wij
as Ak

ij )

A~ A11,A12,A21,A22ð Þ,
with

Aij~ A1
i ,A2

j

� �
for i,j[ 1,2f g,

ð41Þ

where each Ak
ij is a binary random variable with

Pr Ak
ij~ak

1

h i
~Pr Ak

ij~ak
2

h i
~1=2.

Given a sequence of empirical random variables A~ Aw : w[W
� �

, a

sequence of random variables

CA~ CI
t : t[ P

k[I
ak,I[2K{ 1,Kf g

	 

ð42Þ

(not necessarily jointly distributed) is called a connecting set for A if

each CI
t is a coupling for

AI
t~ AI

w : w[W,wDI~t
� �

, ð43Þ

where AI
w~ Ak

w : k[I
� �

. This means that CI
t is a random variable

of the form

CI
t ~ CI

t,w : w[W,wDI~t
� �

ð44Þ

with

CI
t,w*AI

w ð45Þ

for all w[W such that wDI~t. CI
t is called an I ,tð Þ{connection. The

indexation in CI
t,w is to ensure that if I ,tð Þ= I ’,t’ð Þ, then CI

t and

CI ’
t’ are stochastically unrelated. An identity I ,tð Þ{connection CI

t is

one with Pr CI
t,w~CI

t,w’

h i
~1 for any w,w’[W.

Remark 3. It is generally convenient not to distinguish identically

distributed connections. By abuse of language, the distribution of

CI
t (or some characterization thereof) can also be called

Table 1. Characterizations of the sets of four different types (columns) subject to three constrains (rows). In all cells, e[½0,1=2�
4 and

p[½0,1=2�
4.

All p,eð Þ Fit eð Þ Force eð Þ Equi eð Þ

chaos p,eð Þ[ ELFP max Seƒ1=2
arbitrary max Seƒ1=2

quant
max S1pƒ

ffiffiffi
2
p 


2
&

p,eð Þ[ELFP

max S0eƒ
3{

ffiffiffi
2
p

2
,

max S1eƒ12

max S0e§
3{

ffiffiffi
2
p

2

3{
ffiffiffi
2
p

2
[S0e,

max S1eƒ1=2

class max S1pƒ
1=2

&
p,eð Þ[ELFP

max S1eƒ1=2
1[S0e 1[S0e

doi:10.1371/journal.pone.0061712.t001
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I ,tð Þ{connection. We used this language in the previous sections

when we represented kf g,k.ak
i

� �
{connections (without intro-

ducing them explicitly) by probabilities ek
i and called e a

connection vector. See Remark 4.

A jointly distributed sequence

H~ Hk
w : k[K ,w[W

� �
ð46Þ

is called an Extended Joint Distribution Sequence (EJDS) for A,CAð Þ if

for any I[2K{ 1,Kf g and any t[Pk[I ak,

HI
t ~ HI

w : w[W,wDI~t
� �

*CI
t , ð47Þ

where HI
w~ Hk

w : k[I
� �

, and

HK
w ~ Hk

w : k[K
� �

*Aw ð48Þ

for any w[W.

Figure 2. Volume profiles under constraints. Profiles Vol8 Allconstrð Þ?Vol4 Fitconstrð Þ?Vol4 Forceconstrð Þ?Vol4 Equiconstrð Þ for constraints chaos,
quant, and class.
doi:10.1371/journal.pone.0061712.g002

Figure 3. Fit-set volumes for fixed probabilities. Vol4 Fitfix pð Þ
� �

is shown as a function of x~max S0p and y~max S1p. The possible x,yð Þ{pairs

form the triangle (0,0),(1=2,1),(1,1=2)
� �

, and Vol4 Fitfix pð Þ
� �

~1z
r xð Þ

3
{1z8x{24x2z32x3{16x4
� �

z
r yð Þ

3
{1z8y{24y2z32y3{16y4
� �

, where

r zð Þ~1 if z§1=2 and r zð Þ~0 otherwise.
doi:10.1371/journal.pone.0061712.g003
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Remark 4. For the special case considered in the previous

sections, a connecting set for A is (conveniently replacing C
kf g

wij
,

C
1f g

wij D 1f g, and C
2f g

wij D 2f g with Ck
ij , C1

i , and C2
j , respectively)

CA~ C1
1 ,C1

2 ,C2
1 ,C2

2

� �
with

C1
i ~ C1

i,i1,C1
i,i2

� �
, C2

j ~ C2
j,1j ,C

2
j,2j

� �
,

ð49Þ

such that

C1
i,ij*A1

ij , C2
j,ij*A2

ij ð50Þ

for i,j[ 1,2f g. An EJDS for A,CAð Þ is a random variable (using

analogous abbreviations)

H~ H1
11,H2

11,H1
12,H2

12,H1
21,H2

21,H1
22,H2

22

� �
ð51Þ

such that

H1
i1,H1

i2

� �
*C1

i , H2
1j ,H

2
2j

� �
*C2

j ð52Þ

and

H12
ij ~ H1

ij ,H
2
ij

� �
*Aij~ A1

ij ,A
2
ij

� �
ð53Þ

for i,j[ 1,2f g. In the previous sections each Ck
i was represented by

ek
i and each H12

ij by pij .

An EJDS for A,CAð Þ reduces to the Joint Distribution Criterion

set (JDC set) of the theory of selective influences [11,14] if all

connections in CA are identity ones. Note that no connection has

an empirical meaning: for distinct w,w’[W, the variables AI
w and

AI
w’ corresponding to CI

t,w and CI
t,w’ do not have an empirically

observable (or theoretically privileged) pairing scheme.

Let X be any set whose elements are sequences of empirical

random variables A~ Aw : w[W
� �

. X can be viewed as the set of all

possible empirical random variables satisfying certain constraints. We

define the sets AllX, FitX, ForceX, and EquiX as follows:

1. AllX is the set of all pairs A,CAð Þ such that

A[X

and

there exists an EJDS H for A,CAð Þ:
ð54Þ

2. FitX is the set of all CA such that

A[X

Y

there exists an EJDS H for A,CAð Þ:
ð55Þ

3. ForceX is the set of all CA such that

there exists an EJDS H for A,CAð Þ
Y

A[X :

ð56Þ

4. EquiX ~ForceX\FitX , that is, CA[EquiX if and only if

A[X

m
there exists an EJDS H for A,CAð Þ:

ð57Þ

The all-possible-couplings approach in the general case consists

in characterizing any X (interpreted as a type of contextuality or

determinism) by AllX, FitX, ForceX, and EquiX. A straightforward

generalization of this approach that might be useful in some

applications is to replace CA in all definitions with a subset of CA,

or several subsets of CA tried in turn. Thus one might consider

connections involving only particular I5K (e.g., only singletons),

or one might require that some of the connections are identity

ones.

Conclusion

The essence of the proposed mathematical framework is as

follows. We consider all possible couplings for empirically observed

vectors of random outputs. In the case of two binary inputs/

outputs these vectors are pairs

A11,B11ð Þ, A12,B12ð Þ,
A21,B21ð Þ, A22,B22ð Þ,

ð58Þ

the couplings H for them have the form (19), with the coupling

relation (20). We assume that the joint distributions (in our case

described by pairwise joint probabilities) of the empirically

observed Aij ,Bij

� �
are subject to a certain constraint, given to us

by substantive considerations outside the scope of our approach:

for instance, if a system consists of entangled particles, a constraint,

say (15), is derived from the quantum theory. Due to (20), the

constraint is imposed on

H1
11,H2

11

� �
, H1

12,H2
12

� �
,

H1
21,H2

21

� �
, H1

22,H2
22

� �
:

ð59Þ

We investigate then the unobservable ‘‘connections’’, the sub-

vectors of the components of H that correspond to outputs

obtained at mutually exclusive values of the inputs (i.e., never co-

occurring). In our case these are the pairs

H1
11,H1

12

� �
, H1

21,H1
22

� �
,

H2
11,H2

21

� �
, H2

12,H2
22

� � ð60Þ

corresponding to, respectively,

A11,A12ð Þ, A21,A22ð Þ,
B11,B21ð Þ, B12,B22ð Þ:

ð61Þ

We then characterize the constraint imposed on the empirical

pairs (59) by describing the ‘‘fitting’’ or ‘‘forcing’’ (or both ‘‘fitting

and forcing’’) distributions of the unobservable connections (60).

By fitting distributions of (60) we mean those that are compatible

with any (59) subject to the constraint in question, the

compatibility meaning that all these eight pairs can be embedded

into a single H (with jointly distributed components). By forcing

distributions of (60) we mean those that are compatible with (59)

only if the latter are subject to the given constraint.
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The value of this approach is in providing a unified language for

speaking of probabilistic contextuality. At the cost of greater

computational complexity but with no conceptual complications

the computations involved in our demonstration of the all-

possible-couplings approach can be extended to more general

cases: arbitrary marginal probabilities (satisfying marginal selec-

tivity), nonlinear constraints, and greater numbers of inputs,

outputs, and their possible values. The language for a completely

general theory, involving unrestricted (not necessarily finite) sets of

inputs, outputs, and their values, is presented in Section 5 of

Theory.
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