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Abstract

Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is
encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As
object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This
phenomenon is termed ‘‘size constancy’’. It is assumed to reflect an automatic re-scaling of visual aperture with perceived
object distance. Recently, it was found that in echolocating bats, the ‘sonar aperture’, i.e., the range of angles from which
sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well
known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in
bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two
simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly
interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously
assigned absolute width information to these objects by combining distance and aperture. The results showed that while
the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats,
the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from
the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that
familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for
visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar
perception in bats.
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Introduction

The representation of object size and its neural encoding is an

important function of sensory systems in general. Realistic size

estimation over large distances could benefit survival (e.g. in

orientation, navigation, foraging, predator avoidance, or intraspe-

cific competition). How organisms perceive the physical object size

of distant objects is a fundamental question and not completely

answered yet [1,2]. In vision, three-dimensional space is two-

dimensionally represented on the retina along its height and width

dimension. Consequently, the extent of the image on the retina in

terms of its visual aperture is explicitly encoded. However, when

the distance between the observer and the object changes, the

visual aperture changes proportionally. ‘‘Size constancy’’ or ‘‘size

distance invariance’’ [3,4,5] is assumed to reflect an automatic re-

scaling of perceived object size with perceived distance. Object

distance, however, is not explicitly encoded in the visual system; a

mismatch of physical and perceived object distance can lead to a

misinterpretation of physical object size and visual illusions [6].

Based on the evaluation of the echoes of self-produced

ultrasonic sounds, bats and dolphins achieve detailed acoustic

images of their surroundings [7,8,9,10,11,12,13]. But, in contrast

to the retina, the sensory epithelium of the auditory system, the

basilar membrane, is not arranged along spatial axes. Instead,

frequency is explicitly encoded and spatial information must be

computed in the central auditory system. Echolocating bats gather

information about the physical properties of objects by comparing

the returning echoes to their emitted calls [14,15,16]. The

physical-object properties are encoded in the acoustic parameters

of the returning echoes.

In contrast to the visual system where only the aperture is

explicitly encoded, the bat auditory system explicitly encodes both,

distance and aperture: distance information is encoded by the

delay between call emission and the returning echoes [17,18,19].

Echo delay and its neural representation were addressed in several

studies [20,21,22,23]. It was also shown that object distance is well

represented in chronotopically arranged delay-tuned neurons in

the bat auditory cortex [22,24,25,26,27,28]. The sonar aperture,

as the echo-acoustic equivalent to the visual aperture, is defined as

the spread of angles of incidence from which echoes impinge on

the bat’s ears. It was shown that bats can evaluate the sonar

aperture independent of echo intensity [13]. Moreover, the sonar

aperture is reliably encoded, independent of echo intensity, in the

auditory midbrain and cortex [13].
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Due to geometric and atmospheric attenuation, echo intensity

changes with object distance [22,29,30,31] However, it is an

ambiguous distance cue as it not only changes with distance, but

also with object size and other physical properties (shape,

orientation, texture).

The current study was designed to formally test the hypothesis

that bats may combine object-distance and sonar-aperture

information to explicitly encode the physical width of a sound-

reflecting object independent of object distance.

Methods

All experiments were conducted under the principles of

laboratory animal care and the regulations of the current version

of the German Law on Animal Protection. As the experiments are

neither invasive nor stressful, they do not require explicit approval.

Approval to keep and breed the bats was issued by the Regierung

von Oberbayern. The study is divided into a Constancy

experiment and a Distance-discrimination experiment. In the

Constancy experiment, bats classified the echoes of virtual objects

that differed in both distance and physical width. In the Distance-

discrimination experiment, the bats were trained to discriminate

changes in the distance of a virtual object, while its sonar aperture

remained constant. In both experiments, target strength varied

proportionally with the spatio-temporal features of the presented

objects, unless otherwise stated. Note that here, we use the term

‘target strength’ not in its original (distance-independent) defini-

tion, but as a quantification of the peak amplitude in the impulse

response (see below).

Experimental setup
The experimental setup of the current study was the same as in

Heinrich et al. [13]. The experiments were performed in a dark,

echo-attenuated chamber. The setup inside the chamber consisted

of a Y-shaped maze that was placed in a semicircular wire mesh

cage (radius = 55 cm). The cage was mounted on a metal post at

an angle of 45u. A starting perch was located at the top end of the

Y-maze. Each of the other two legs held a feeding device. Two

ultrasonic microphones (CO 100K, Sanken) were mounted above

the feeders pointing towards the perch. The cage was plane-

parallel arranged towards a semicircular loudspeaker array

(radius = 71 cm) that consisted of 34 ultrasonic ribbon loudspeak-

ers (NeoCD1.0, Fountek) that were also covered with plain

acoustic foam except for the speaker’s membrane (0.863.8 cm).

The array was subdivided into right and left hemisphere (90u)
consisting of 17 speakers, each (Fig. 1A). The angular distance

between adjacent speakers was 5.6u. Each speaker was calibrated

against a 1/8 inch reference ultrasonic microphone (Type 4138,

Brüel & Kjær, protective grid removed) at the bat starting perch,

perpendicularly oriented towards the speaker axes. To create a

compensatory impulse response (IR), the complex spectrum of an

ideal bandpass filter (47th-order, finite impulse response, cutoff

frequencies: 15 and 94 kHz) was divided by the complex spectrum

of the measured IR of each speaker .The real part of the inverse

Fourier transform is the compensatory IR. During the experi-

ments, every echo presented over a speaker was first convolved in

real time with this speaker’s compensatory IR. The convolution

with the compensatory IRs ensured that all speakers provided a

linear frequency response (between 15 and 94 kHz) as well as a

linear phase at the bats starting perch. During the experiments, the

bat echolocation calls were picked up by the microphones,

amplified (QuadMic, RME) and digitized (HD192, MOTU; two

devices with 12 analog-to-digital (AD) and digital-to-analog (DA)

channels each and a 424 PCI board, MOTU) at a sampling rate of

192 kHz. To prevent bats from eventually using passive acoustic

cues replayed by the speakers (e.g. rustling noises in the high

frequency range caused by movements of the bat on the maze),

playback was triggered when the recorded signal exceeded a

defined threshold. After determining the required echo level (Fig. 2)

the echolocation calls were convolved with the compensatory IR of

the respective speaker, DA converted, and amplified (AVR 347,

Harman Kardon; four devices with seven channels each) before

being sent to the speaker. The mismatch between the number of

speakers and the AD/DA channels provided by the hardware

listed above resulted from the fact that in the experiments not all

34 channels were needed (Fig. 1B and C).

The input-output (I/O) delay of the system (4.3 ms), together

with the physical propagation delay from the bat to the

microphones (0.9 ms) and from the speakers to the bat (2 ms),

added up to 7.2 ms, corresponding to a minimal virtual object

(VO) distance of circa 120 cm. In order to prevent masking effects,

VOs were presented well beyond the range of physical echoes (e.g.

Figure 1. Experimental setup and stimulus presentation. A: The
experimental setup is depicted from the front, with a bat sitting on the
focal point of the y-maze placed in a semicircular wire mesh cage.
Indicated are the feeders (Fd), the ultrasonic microphones (Mic), and the
34 ultrasound loudspeakers for virtual-object presentation in the
azimuth (open circles). The bar in the center of the loudspeaker array
indicates the division into right and left hemisphere. B: Presentation of
the two different sonar apertures in the Constancy experiment. Left
hemisphere: The aperture of the rewarded object (23u) in the trained
standard condition is represented by 5 adjacent active speakers (grey).
On the right hemisphere the aperture of the corresponding unreward-
ed object (34u) is represented by 7 adjacent active speakers. C: Active
speakers of the control experiment on distance discrimination (grey).
Here, only one speaker was active in each hemisphere, but echo delay
and target strength co-varied.
doi:10.1371/journal.pone.0061577.g001
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Figure 2. Stimulus presentation in the Constancy experiment. Depicted are the five different experimental conditions of the Constancy
experiment (standard condition and test conditions 1–4) in the left column. The power spectra of the virtual objects (VOs) generated by the sum of
the active speakers in each hemisphere are plotted on the right. Left column: The bat is indicated as a black dot on the focal point of the maze. The
speaker array is indicated by the semicircular line. All VOs depicted in the left hemisphere have an aperture of 23u (light grey); those in the right
hemisphere have an aperture of 34u (dark grey). In the standard condition, both VOs are presented at the same distance (d) of 204 cm. The VO with
the 23u aperture also provides the smaller object width (w). In the test conditions 1–4, the object with the smaller aperture is presented progressively
further away and the object with the larger aperture is presented progressively closer to the bat. As a result, the angular information provided by the
aperture does no longer unambiguously code for object width: in the test conditions 2, 3, and 4, the smaller aperture of 23u represents the larger
object width. The right column shows the power spectra of the VOs. The solid line shows the change of target strength (dB) with frequency of the VO
with the aperture of 34u whereas the dotted line shows that of the VO providing the smaller aperture of 23u. At high frequencies target-strength
difference increases even more due to the geometric and atmospheric attenuations that co-vary with distance.
doi:10.1371/journal.pone.0061577.g002
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from the cage or the speakers). The experiments were monitored

visually (via an infrared observation camera) and acoustically (via

heterodyning the microphone signal with a 45 kHz pure tone,

playing out the resulting difference frequency across two additional

DA converter channels of the HD192 and a headphone amplifier

(Terratec Phase 24) into AKG K240 headphones). Experiments

were controlled via a graphical user interface from an experi-

menter seated outside the chamber. Experimental control, data

acquisition, and analysis were implemented in MATLAB 7.5

(MathWorks). For the control of the MOTU system, SoundMex-

Pro software (HörTech) was applied.

Stimuli
Each microphone recorded the animal’s ultrasonic calls emitted

towards its corresponding hemisphere. The VOs presented on

both hemispheres were implemented as simple equidistantly

arranged reflectors that could be manipulated along three different

parameters: sonar aperture, distance in terms of echo delay, and,

physically correct covarying with the particular spatio-temporal

parameter, target strength. Sonar aperture was manipulated by

changing the number of adjacent speakers presenting an echo.

The number of adjacent speakers was always increased symmet-

rically around the center speaker of each hemisphere. For realistic

simulation of object width every single speaker of a VO provided

the same sound level so that target strength co-varied with the

sonar aperture. Complex spatial interference patterns that could

emerge using distant reflectors are discussed in detail elsewhere

[13].

The simulated object distance was changed by manipulating the

echo delay of the replayed echolocation calls. When object

distance was manipulated, the target strength was changed

proportionally by taking the atmospheric and geometric spreading

losses into account. For the calculation of the atmospheric

attenuation an algorithm by Stilz, 2004 [30] was used. The

attenuation covered the frequency range between 10 and 96 kHz

and was calculated for a relative humidity of 60% and at a

temperature of 25uC. For the frequency independent, geometric

attenuation the target strength was reduced by 6 dB for each

doubling of distance.

General Procedure
The experimental animals participated on the main experiment

(‘Constancy experiment’) and after successful data acquisition on

its control experiment (‘Distance discrimination’). Both experi-

ments followed a two-alternative, forced-choice paradigm (2-AFC)

with food reward. Before data acquisition, bats were trained to

discriminate a rewarded virtual object (RO) from an unrewarded

virtual object (UO). The hemisphere for the presentation of the

RO was selected pseudorandomly [32]. A decision was indicated

by crawling towards one of the two feeders. The test animals were

only rewarded when choosing the correct VO. Data acquisition

started when a bat’s performance reached $80% correct choices

on five consecutive training days.

Constancy experiment
For the Constancy experiment, bats were trained to discrimi-

nate between two VOs with an aperture of 23u (RO) and 34u (UO)

(Figs. 1B and 2A). Both were presented at the same distance

(204 cm).

Once the animals had learned this task, test trials were

randomly interspersed with a probability of 25%. In these test

trials, one of the four test conditions was presented and the

animal’s spontaneous classification of the test condition was

assessed. Note that test trials were always rewarded, independent

of the bat’s choice. Thus, the spontaneous classification was

assessed and learning was deliberately excluded. The four test

conditions are illustrated in Fig. 2B–E. In the test conditions, the

difference in sonar aperture remained the same, but the object

distance was varied such that when the distance of the VO with

the smaller aperture exceeded the distance of the VO with the

larger aperture (Fig. 2B and Fig. 2C) the VO with the smaller

aperture had the larger physical width. Test condition 4 provided

the largest difference in object distance between both VOs: here

the VO with the smaller aperture had a width that was almost

twice that of the VO with the larger aperture (Fig. 2E).

We predicted that if the bats combined distance- and aperture

information to get an estimate of absolute object width, they

should classify the VOs with the larger aperture of 34u presented

in the test conditions 2–4 as the smaller object (Fig. 3A). On the

other hand, if the bats evaluated only the aperture information

and did not combine it with the distance information, they should

classify the VOs with the smaller aperture of 23u as the smaller

VO, independent of object distance (Fig. 3B).

Data analysis
For analyzing the spontaneous classification performance of the

bats in the Constancy experiment, a baseline analysis was applied

to verify a reliable classification performance in the standard

condition. This was needed because, while all individuals

previously reached a stable performance in the standard condition,

the performance in the standard condition was not always stable

during data-acquisition periods where test conditions were

interspersed. To this end, a sliding integration window spanning

30 consecutive trials was applied. The trials of the standard

condition lying within this window were analyzed with a binomial

cumulative distribution function. The significance threshold was

set to p,0.01. When the bat’s performance in the standard

condition was better than threshold, the test trials within this

window were accepted for the further analyses. The analysis

window was shifted in one-trial steps. Duplicate test trials were

excluded from performance analysis.

The last 50 test trials for each test condition, which met the

above criteria, were recruited. Performance was calculated as the

decisions for the smaller sonar aperture of 23u in percent. Levels of

significance were based on a two-sided binomial distribution

(p,0.001, 72%, p,0.01, 68%; p,0.05, 64%).

Control experiment ‘Distance discrimination’
Echo-acoustic information about object features can only be

processed when the acoustic parameters encoding that information

are readily perceived. Consequently, the presented acoustic

parameters must lie in the perceptual range of the test animals.

To rule out the possibility that the bats cannot extract distance

information of the presented VOs with sufficient fidelity, a control

experiment was performed. To do so, the aperture of the two VOs

was equalized and only the bat’s sensitivity for differences in VO

distance was tested. All three bats that successfully completed data

recording in the Constancy experiment participated on the control

experiment.

Initially, bats were trained to discriminate a distance difference

of 17 cm centered on a reference distance of 204 cm. This

corresponds to a difference in echo delay of 1 ms. The RO was

always the VO presented at the shorter distance (and thus with the

shorter delay). During data acquisition, the distance differences

were systematically reduced (Fig. 4). Trials were presented

according to a staircase procedure starting with a block of three

to five trials with easily discriminable VOs. For each subsequent

block, the task difficulty was increased until the bat’s performance

Size Constancy in Bat Biosonar?
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approached chance level. The distance differences ranged from

17 cm to 1.2 cm (corresponding to echo-delay differences between

1.0 and 0.07 ms).

Experimental animals
The species used in this study was the Pale Spear-nosed Bat;

Phyllostomus discolor (Wagner, 1843). This omnivorous phyllostomid

bat is found in the rainforests of South-and Central America where

it forages on nectar, pollen, fruits, and insects [33]. It emits short

(.3 ms), broadband, downward frequency-modulated, multi-

harmonic echolocation calls covering the frequency range between

45 and 100 kHz [34,35]. The individuals came from a breeding

colony in the Department of Biology II of the Ludwig-

Maximilians-University Munich where they were kept under

inverted light/dark conditions. Five adult male P. discolor with a

bodyweight between 32 and 45 g participated in the experiments.

On training days the individuals were kept in a cage

(80660680 cm). After training sessions the test subjects could fly

freely in a room of 12 m2 until the next morning. All bats had

access to water ad libitum. The training was realized in daily

sessions that lasted between 15–20 minutes. Five training days

were followed by a two day break. The bats were fed with a fruit

pulp as reward, consisting of mashed banana, melon, honey,

puppy-milk powder, and safflower oil. On days without training,

the bats had had access to water, fruit, and mealworms (larvae of

Tenebrio molitor) ad libitum.

Figure 3. Results of the Constancy experiment. Plotted are the decisions in percent for the virtual object (VO) with the smaller sonar aperture of
23u in the four test conditions. Predictions and recordings of the bat’s performance in the Constancy experiment are shown in the left and right
column, respectively. If the bats would spontaneously show size constancy with the current paradigm, their classification of the test conditions
should look as depicted in A. If the bats would spontaneously evaluate the aperture information independent of the accompanying distance
information, their classification of the test conditions should look as depicted in B. Data in the right column were obtained from three bats.
Classification performance is based on 50 trials per test condition. The 50 percent chance level is indicated by the solid line. The dashed line shows
the bat’s performance in the trained standard condition. The data show that the bats reliably chose the VO providing the smaller aperture
independent of the accompanying variation in VO distance.
doi:10.1371/journal.pone.0061577.g003
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Results

Constancy experiment
In the Constancy experiment, five bats were successfully trained

to discriminate the VO with a sonar aperture of 23u from the VO

with an aperture of 34u, both presented at the same distance of

204 cm. Data acquisition, where bats had to classify VOs

presented at different distances was successfully completed by

three bats. Behavioral results of the Constancy experiment are

based on a total of 5762 trials (Bat 1: 1645, Bat 2: 1490, and Bat 3:

2627). The classification performance for the four experimental

test conditions is depicted in Figure 3C–E. Here, the decisions for

the VO with the smaller aperture in percent are plotted as a

function of test conditions 1–4. Each data point is based on the last

50 trials for each test condition (see data analysis section of

methods). The solid line indicates chance level for a 2-AFC

paradigm, whereas the dashed line indicates the performance level

per bat, reached in the standard trials. Except for the classification

performance of Bat 3 in test condition 4, the classification

performances of the three individuals for all classification tasks

were significantly above chance level. When comparing the actual

behavioral classification performances of the three test bats to the

predicted performances (Fig. 3A and B), it is obvious that none of

the three animals showed a switch of the classification perfor-

mance as would be expected if the animals spontaneously

combined aperture- and distance-information to estimate absolute

object width.

Instead, the animals’ classification is consistent with the

hypothesis illustrated in Figure 3B, i.e., the animals evaluated

the aperture information of the VOs independent of the distance

information.

Results of the Distance control experiment
All three bats were successfully trained to discriminate a

distance difference of 17 cm between two VOs centered at a

reference distance of 204 cm.

Individual psychometric functions for the Distance control

experiment are plotted in Fig. 5. The upper x-axis shows the

presented distance differences (1.2–17 cm) whereas the lower x-

axis shows the corresponding echo-delay differences (0.07–1 ms).

Performance is plotted as the choices for the VO simulated at

shorter distance as percent correct, based on the last 30 trials per

presented distance difference. The solid line indicates chance level

at 50% for a 2-AFC paradigm. Level of significance was set to

70% (p,0.01) based on a one sided binomial distribution. The

psychophysical perception threshold that derived from a sigmoidal

fit function was 3.2 cm for Bat 1, 3.9 cm for Bat 2, and 5.4 cm for

Bat 3, corresponding to echo-delay differences of 0.188 ms,

0.223 ms, and 0.318 ms for Bats 1–3, respectively. The mean

performance of the three bats was 4.16 cm (,0.247 ms).

The results show that in an active-acoustic virtual-object

discrimination task, the sensitivity for differences in object distance

of all bats was much better than the object-distance differences as

presented in the test conditions 1–4 of the Constancy experiment.

General Discussion

The bat sonar system theoretically provides the explicit

information for the unambiguous encoding of an objects’ physical

size even when presented at different distances. Therefore, this

hypothesis was tested in the Constancy experiment whether

echolocating bats of the species P. discolor spontaneously assigned

absolute width information to VOs by combining distance- and

aperture information. To do so, a VO setup was used that allowed

for a tight control of all relevant echo parameters, delay, target

strength and aperture. The stimulus pairs in the test conditions 1–

4 of the Constancy experiment were chosen to create the

physically and geometrically correct presentation of VOs allowing

the investigation of size constancy.

The results from the Constancy experiment show that the bats

significantly chose the VOs providing the smaller sonar aperture of

23u independent of the distance of the VO. This means that no

spontaneous assignment of absolute object width could be

Figure 4. Illustration of real and virtual objects in the Distance-
discrimination control experiment. Virtual objects were generated
by delaying and attenuating the sounds picked up by the microphone
and playing these from the speaker. Thus, the virtual object appears
behind the speaker-microphone combination at a distance of 204 cm.
The bats were trained to discriminate a distance difference of 17 cm, as
indicated by the vertical bars (RO: 28.5 cm; UO: +8.5 cm). Upon
successful training, the distance difference was progressively decreased
until a threshold could be extracted.
doi:10.1371/journal.pone.0061577.g004

Figure 5. Psychometric functions for distance discrimination.
Distance discrimination as a function of distance difference is shown for
three bats, marked by different symbols. Data are based on 30 trials per
presented distance difference. The upper x-axis shows the distance
difference (in cm); the lower x-axis shows the corresponding echo-delay
difference (in ms). All bats reliably discriminated distance differences
. = 6 cm around a reference distance of 204 cm. Thresholds derived
from a sigmoidal fit to the individual psychometric functions and are
given in the inset. Chance level (50%) is indicated by the solid line. Level
of significance (dashed line) is based on a binomial distribution function
(p,0.01).
doi:10.1371/journal.pone.0061577.g005
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observed as would be predicted by size constancy (Fig. 3A and C–

E).

Sonar aperture information
For the evaluation of sonar aperture it was already psycho-

physically and electrophysiological indicated that bats use direc-

tional characteristics of their outer ears to evaluate the aperture of

ensonified objects [13]. The resulting information can be either

monaural spectral cues or binaural-echo disparities [36]. The

employment of these parameters for size perception caused by

sonar aperture was also supported by the behavioral results of a

field study [37].

In Heinrich et al. 2011 [13] it was argued that differences in the

sonar aperture of two ensonified objects can be monaurally

encoded in terms of a difference between the excitation patterns

along the tonotopic axis [38]. When variations in echo delay and

the accompanying variations in target strength were introduced in

the test conditions of the Constancy experiment, this difference

between the excitation patterns persisted. For example, if an object

with the same aperture at a larger distance was presented, only the

delay of the excitation increased and magnitude decreased, but the

spectral profile of the excitation pattern would remain unchanged.

Thus, if the animals memorized only the excitation-pattern

difference, independent of overall excitation and temporal delay,

this could explain the animals’ classification of the virtual objects

in the test conditions.

Target strength differences
Absolute object width was simulated by combining object

distance and aperture. In the current setup, sonar aperture was

encoded through the number of speakers coherently radiating the

echoes of the bat’s emissions. Thus, the target strength of a point

receiver at the bat position would increase by 6 dB per doubling of

the aperture (i.e., number of radiating speakers). Therefore, the

bats could base their discrimination in the standard condition and

classifications in the test conditions on target-strength differences,

rather than aperture or distance differences.

In the standard condition, both VOs were presented at the same

distance to the bats. Consequently the geometric and atmospheric

attenuation was identical for both stimuli, and only the aperture

differences created target-strength differences. This difference was

3 dB (Fig. 2A, right column) which is lower than perceptual

threshold for target-strength discrimination (‘echo intensity’) of

5 dB [13].

The target-strength differences introduced in the test conditions

1–4 were much larger due to the dependence of geometric and

atmospheric attenuation on object distance (Fig. 2 B–E). Already

in the first test condition (Fig. 2B) the VO with the smaller

aperture had also perceivably lower target strength because of the

distance difference. But given that the bats based their classifica-

tions in the test conditions on the perceptual cues used to

discriminate between the VOs in the standard condition, it is

unlikely that the bats spontaneously changed its perceptual cue

from aperture to target strength. Note that in the test conditions,

the bats were rewarded independent of their decision, and, thus,

there is no advantage for the bats to switch perceptual cues.

Consequently, the bats’ classifications are consistent with the

hypothesis that they relied exclusively on the aperture cue, and

were unaffected by the target strength cues co-varying with the

distance cues in the test conditions. We assume this to be true

although the target-strength differences were above the perceptual

threshold. Interestingly, the human auditory system also relies on

perceptual cues other than target strength to evaluate the distance

to an external sound source [39]. In that study, it was shown that

the direct-to-reverberant ratio of the external sound contributed

strongly to its perceived distance. Other potential cues are

provided by the (frequency dependent) atmospheric attenuation

(Fig. 2) in that more distant sound source or sound reflectors have

a stronger low-pass characteristic.

Distance-discrimination thresholds
The results from the control experiment show on the one hand,

that the distance differences as introduced in the Constancy

experiment are well above the animals’ distance-discrimination

thresholds. On the other hand, these thresholds between 3.2 cm

and 5.4 cm are slightly higher than those for other bat species

(reviews [8,20]). The distance-discrimination threshold of the

closely related bat Phyllostomus hastatus [40], for example, was

1.2 cm for real objects presented at a reference distance of either

60 or 120 cm [18,19]. Data from other bat species also show that

thresholds were no larger than 4.1 cm (Rhinolophus ferrumequinum,

real objects presented at a reference distance of 100 cm) [20,41].

While most studies have employed real objects for Distance

discrimination; the use of VOs in the recent study should not have

had negative effects on threshold determination. Using VOs

presented at a reference distance of 30 cm, Simmons [19] found

distance-discrimination thresholds of 1.0 cm in Eptesicus fuscus.

These were even slightly better than the 1.2 cm threshold with real

objects.

Simulation of object distance
Compared to other studies using VO setups for distance

discrimination, the recent study differed in that we implemented a

physically correct distance-dependent attenuation. Besides the

echo-delay information, this principally introduced two additional

auditory cues the bats could use for solving the task: the target-

strength differences of both VOs (the closer VO creates the louder

echo) and possible spectral cues. Distance differences and thus

delay differences become very small around perceptual thresholds.

This is also true for the other acoustic parameters: specifically, at

the threshold-distance difference of 4.16 cm, the target-strength

difference was only 0.32 dB, which is well below the perceptual

threshold of 5 dB [13].

Multimodal object perception
Doubtlessly, the bat echolocation system is essential for

orientation and foraging in complete darkness. Nevertheless, it

has limitations and consequently the role of other sensory

modalities in bats was also often addressed. P. discolor is

characterized as mainly nectarivorous or frugivorous, but also

feeds on insects or small vertebrates [34]. In addition to

echolocation, phyllostomid bat species also rely on olfactory,

visual or passive acoustic cues [42,43,44]. The fruit-eating bat

Carollia perspicillata was shown to use primarily olfactory cues for

long-range detection and switched to echolocation only to exactly

localize fruit items [45]. Other studies have shown that especially

frugivorous bats have higher visual acuity [46] as well as better

morphological adaptations for vision at low light levels compared

to strictly insectivorous bat species [42]. P. discolor has relatively

large, well developed eyes, suggesting an important role of vision.

Indeed it was shown that this species employs both vision and

echolocation for object localization and obstacle avoidance

[35,47,48]. In a flight tunnel experiment that was designed to

evaluate the importance the two orientation systems during the

object approach, it was found that P. discolor preferred visual

information at distances larger than 40 cm [47]. This lead to the

conclusion, that the use of vision could be more important for

object perception at far and medium distances in this species than
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previously thought. When multiple cues were present, it was found

that P. discolor chose the sensory orientation system that delivered

the most conspicuous object features [34]. The natural habitats of

bats are very diverse, including complex structures that cause

clutter and can also mask objects of interests. Hence, the more

conspicuous object information for size perception over large

distances could often be delivered by vision.

Taken together, we assume that while the bats in our

experiments were able to evaluate the echo-acoustic aperture-

and distance parameters presented in the current experiments, the

spontaneous combination of these parameters to create size

invariance may lack the ecological relevance.

Independence of size- and distance-perception?
As indicated above, the discussion of how organisms perceive

the physical size of distant objects by vision is still the subject of

debate. Haber and Levin [1] challenge the visual size-distance

invariance hypothesis in general. They argue that distance

perception ‘should develop and be available early in life and in

tandem with maturation of locomotors abilities’. For the

perception of objects, in contrast, ‘familiarity with the object

(acquired from the past) should be the most important variable

determining the accuracy of ‘‘perceiving’’ how big the object

appears to be’. In the training condition of the current experiment,

the bats learned to discriminate between two objects, differing in

sonar aperture. In the test trials where distance cues were varied

together with aperture cues, the bats continued to choose the VO

with the smaller aperture, and appeared to ignore the distance

variations. Following the arguments of Haber and Levin [1],

distance information in bats is used for acoustically guided

locomotion (navigation and orientation) as well as the tracking of

prey during pursuit [20,49,50], and serves basically the same

purpose of distance perception assigned to visually guided

locomotion in humans. It is conceivable that the VOs presented

in the current experiments lack the behavioral significance to

activate ‘object-oriented’ perception [12] (e.g. in terms of e.g.

familiarity). This may be the reason why the bats did not show

spontaneous size constancy.

We conclude that the perception of angular information as

provided by the sonar aperture could be an even more persistent

sonar cue than previously thought. For solving the behavioral

classification task, bats seemed to ignore variations of object

distance (and the covarying amplitude cues) although they were

perceptually well resolved by the bats. This lack of sonar size

constancy may result from the bats relying on different modalities

to extract size information at different distances. An alternative

explanation follows Haber and Levin [1] in that familiarity with a

behaviorally relevant, conspicuous object is required for size

constancy.
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