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Abstract

Pediatric high-grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPG), are the leading cause of cancer-
related death in children. While it is clear that surgery (if possible), and radiotherapy are beneficial for treatment, the role of
chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells,
including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of
insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and
BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined
the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor
tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the
glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy.
Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that
constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we
suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma
patients, and DIPG in particular.
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Introduction

Pediatric high grade glioma (pHGG) constitutes 15–20% of

pediatric central nervous system tumors [1]. These aggressive

tumors are difficult to treat, and are associated with an extremely

poor prognosis. The extent of surgical resection is the most

important clinical prognostic factor in these patients [2]. Together

with radiotherapy, which is a standard component of postoper-

ative management, a 2-year-survival rate of 10–30% for supra-

tentorial HGG has been established [1]. Diffuse intrinsic pontine

glioma (DIPG), an infiltrative tumor typically originating in the

pons, does not qualify for surgical resection due to its delicate

location. In DIPG radiotherapy prolongs progression free survival

(PFS) and improves quality of life, yet, the median overall survival

(OS) in these children is still only nine months [3]. Unfortunately,

no chemotherapeutical regimens or alternative radiation options

have successfully improved OS or PFS in children with HGG and

DIPG [4,5]. These disappointing results emphasize the need to

identify effective drugs. Therefore, we screened a heterogeneous

group of primary pHGG cell cultures, including three DIPG

cultures, for their sensitivity in vitro to different drugs.

To clarify whether a lack of clinical response results from tumor

cell resistance or from poor drug delivery to the tumor cells, we

also explored the mode of drug resistance in these tumors. In

particular, we focused on one of the main mechanisms of drug

resistance in the brain mediated by overexpression of ATP-binding

cassette (ABC) transporters. Drug delivery to the brain is

hampered by the presence of P-glycoprotein (P-gp, ABCB1),

breast-cancer-resistance protein (BCRP, ABCG2), and multidrug-

resistance-associated proteins (MRPs, ABCC1) [6]. Presence of

these transporters on tumor cells or (peri)tumoral vasculature

results in active efflux of chemotherapeutics by transmembrane

transport, leading to a decrease in intracellular drug levels and

subsequently a decrease in their cytotoxic activity [7–9].

Here we show that several classic chemotherapeutic drugs

display a high cytotoxicity in primary pediatric glioma cell cultures

in vitro, in physiologically relevant doses. Immunohistochemical

staining on the corresponding tumor tissue indicates the presence

of P-gp, MRP1, and BCRP1 on the tumor vasculature, while only
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MRP1 is also expressed in glioma cells. These findings suggest that

the presence of all three major drug efflux pumps in the blood-

brain-barrier (BBB) may form a first line of resistance of pHGG to

treatment with classic chemotherapeutic drugs which by them-

selves are capable of inducing cytotoxicity in pediatric glioma cells.

The drug transporters at the BBB impede drug delivery to the

tumor site, while the presence of MRP1 protein in glioma cells

themselves, may further protect the tumor cells from chemother-

apy.

Results

Tumor and Patient Characteristics
Primary cell cultures were established from tumor material from

nine children, aged one week to 11 years, diagnosed with high

grade glioma (Table 1). In six patients, the tumor was located

supratentorially, among these were five glioblastoma multiforme

(GBMs), one anaplastic astrocytoma (AA), and one anaplastic

oligodendroglioma. Among the GBMs was one rare case of giant

cell GBM. Also, three DIPGs were obtained with different

histological grading, including a GBM, an AA WHO grade III,

and one diffuse fibrillary astrocytoma. In most cases resections

were performed before initiation of therapy, except for one DIPG

patient, from whom autopsy material was retrieved approximately

two hours after death (VUMC-DIPG-01). Malignancy of the

established cell lines was confirmed by determining the chromo-

somal aberrations, either by array CGH or by classical karyotyp-

ing. Apart from VUMC-HGG-06 and VUMC-HGG-07, all cell

cultures showed abnormalities, varying from small deletions in

VUMC-HGG-02 and -03, to extensive chromosomal changes in

VUMC-DIPG-A. Within the VUMC-DIPG-A culture, diverse

chromosomal aberrations were identified.

Chemosensitivity of Primary Pediatric High Grade Glioma
Cultures

In order to determine the sensitivity of primary pHGG cultures

to a series of drugs, a small chemical screen was designed, which

included conventional chemotherapeutic drugs of a variety of

classes, (anthracyclins, alkylating agents, topoisomerase I/II

inhibitors, nitrosureas, mitotic inhibitors, anti-metabolites), and

small molecule inhibitors targeting specific proteins that are often

upregulated in pHGG or DIPG (Figure S1, Material and Methods

S1). Drug concentrations used were based on IC50 values reported

for adult malignant glioma cell lines (Table 2 and 3). The effect of

the compounds on cell survival was tested at least four times for

each primary culture. Robustness of the assay was assessed by

calculating the coëfficient of variation (CV = 9.463.7) and the Z’

factor for each cell line. Except for VUMC-DIPG-01, all Z’ factors

indicated a powerful assay (Z’ = 0.660.09). In addition, drug

sensitivity of primary human astrocytes was measured, to

determine the therapeutic window for the various drugs. As

shown in Figure 1a, cell cultures VUMC-HGG-01, and VUMC-

DIPG-A were relatively sensitive, with ,50% cell survival in

response to more than half of the chemotherapeutics. In contrast,

VUMC-HGG-05 was the most resistant cell line of the panel,

remaining unaffected by the majority of compounds. BrdU

incorporation studies showed that this resistance or sensitivity

was not correlated to proliferation index (Figure S2, Material and

Methods S1). The only drug capable of inducing significant

toxicity in VUMC-HGG-05 was melphalan. In general, melpha-

lan, the anthracyclines doxorubicine and mitoxantrone, and

BCNU most effectively affected cell survival, followed by

etoposide, thiotepa, and carboplatin. Among the novel drugs,

bortezomib had a significant anti-glioma effect; in six out of nine

cultures, exposure to 100 nM bortezomib resulted in .50%

reduction in cell survival. Bosutinib, dasatinib, sorafenib, and

olaparib (either as monotherapy or in combination with irradia-

tion), had an effect in approximately 4–5 cell cultures. In VUMC-

HGG-05, VUMC-HGG-06, and VUMC-HGG-07 the effect of

olaparib increased when combined with irradiation. Although the

drug dose ranges in our study overlapped with published IC50

values in cancer cell lines, no or little effect was observed with

erlotinib, everolimus, panobinostat, and SB431542 (Figure 1b).

Expression of Drug Efflux Transporters in pHGG
In order to determine whether ABC transporters play a role in

the responses of our cell cultures, we assessed the presence of the

main ABC transporter proteins P-gp (ABCB1), MRP1 (ABCC1)

and BCRP1 (ABCG2). Therefore, Western blotting experiments

were performed on the pHGG cell cultures (Figure 2). MRP1 was

detected in seven out of nine primary glioma cultures, with a

variable intensity (2 low, 5 high expression). High MRP1-

expression was detected in VUMC-HGG-01, VUMC-HGG-07,

VUMC-DIPG-A, and VUMC-DIPG-B. All cultures were nega-

tive for P-gp, and in all except VUMC-HGG-01, BCRP1 was also

absent. The MCF7/P-gp and MCF/BCRP1 cell lines were used

as a positive control for P-gp, and BCRP1 [10,11], and the 2008/

MRP1 cell line for MRP1 [12]. Several bands on the BCRP1 blot

appeared at a molecular weight which was higher than expected

(220 kD instead of 72 kD) (data not shown). These bands were

present in the cell lysates of all glioma cultures, and were of

pronounced intensity in the six supratentorial pHGG cultures.

To further explore the role of the various ABC transporters in

pHGG, and to assess their presence in the (peri)tumoral

vasculature, immunohistochemistry was performed on tumor

tissue sections of the patients corresponding to the cell cultures

(Figure 3). A semi-quantitative analysis of the sections was

performed to distinguish between tumor cells and endothelial

cells of the BBB (Table 4). P-gp was absent in the glioma cell

membranes in most tumor sections, but showed a moderate

expression in the tumor vasculature in half of the patients. MRP1

was expressed in both the glioma cells, and the tumor vasculature

in most sections. Staining of BCRP1 in glioma cells was mostly

negative or weak, while the microvasculature showed intense

staining in the majority of the sections. Representative pictures are

given in Figure 3.

Discussion

Here we show that primary cultures derived from pediatric

glioma patients, are sensitive to a number of traditional

chemotherapeutics as well as to novel, targeted therapeutics.

Moreover, - to our knowledge - we provide the first data on drug

sensitivity screening of primary DIPG cultures, suggesting that

DIPG per se is not necessarily resistant to chemotherapy.

Although there is a substantial heterogeneity in tumor origin

and genetic aberrations, a number of drugs show high cytotoxicity

in most cell cultures. Generally, the classical, active chemother-

apeutics can be divided into two classes: topoisomerase II

inhibitors (mitoxantrone, doxorubicin, and etoposide), and alkyl-

ating agents (melphalan, BCNU, carboplatin, and thiotepa). We

found that melphalan was the only drug to induce significant cell

death in all primary cultures, even in the most resistant glioma

culture, which was a giant cell glioblastoma. However, the efficacy

of melphalan in pediatric gliomas has not been assessed so it is

unknown whether sufficient drug levels can be reached locally in

these children. Testing in in vivo glioma models will show whether

melphalan has the potential to produce toxicity at levels that can
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be attained in situ. BCNU, another alkylating agent, also

demonstrated high cytotoxicity in most of our pediatric glioma

cultures. However, like melphalan, BCNU is considered ineffective

in brain tumors, due to its inability to pass the blood-brain barrier.

There is some evidence that BCNU-impregnated wafers result in

improved survival in adults [13,14]and a case of successful

glioblastoma treatment using BCNU wafers in a child has been

described [15], suggesting that this might be a potential drug in the

treatment of pHGG when delivered locally. For the treatment of

DIPG the use of local delivery, e.g. by convection-enhanced-

delivery (CED), with BCNU may be an option.

In contrast to the classical chemotherapeutic agents, the

targeted drugs did not prove very effective in our experiments,

although the tyrosine kinase inhibitors bosutinib (Src kinase),

dasatinib (BCR/ABL, Src kinase) and sorafenib (VEGFR,

PDGFR, Raf kinase) showed efficacy in some of our glioma

cultures. However, we have to keep in mind that the choice of

these compounds for our small molecule screen was based on

mRNA expression levels reported previously for pHGG and

DIPG, but we did not analyze the expression of the targeted

proteins in our cells in detail [16]. Thus, these drugs may prove

more effective when targeted agents are chosen based on

individualized tissue analysis and mutated targets, as also shown

in a clinical setting [17]. Besides, as it appears that multiple

aberrant signaling pathways are involved in gliomas, an effective

approach presumably requires combined targeted regimens [18].

Since bortezomib induced cell death in most of our cultures in

physiologically relevant doses, therapeutic efficacy may increase by

including such proteasome inhibitors in a multi-targeted approach.

[19]. Indeed, a recent phase-1 clinical trial in adults with recurrent

malignant glioma reported some clinical activity of bortezomib

[20]. Importantly however, pediatric and adult HGGs are two

distinct diseases at the molecular level[21–23], which may explain

the difference in responses to cytotoxic drugs, of which

temozolomide (TMZ) is an illustrative example. TMZ is one of

the most commonly used therapeutics for adults with proven

efficacy in newly diagnosed and recurrent or progressive gliomas

[24], but has not resulted in a better outcome in children with

HGG [25], nor DIPG [26]. In fact, also in our primary glioma

cultures, temozolomide treatment was ineffective, even when

combined with irradiation.

In order to elucidate the differences in effect of drug

treatment observed in glioma cultures in vitro, and the clinical

responses reported in literature, we investigated the role of drug

efflux transporters that belong to the ATP-binding cassette

(ABC) superfamily. More precisely, we determined the expres-

sion of three major drug efflux transporters present in brain: P-

glycoprotein/MDR1 (P-gp), Multidrug Resistant Protein 1

(MRP1), and Breast Cancer Resistance Protein 1 (BCRP1), on

both the glioma cells and surrounding tissue. P-gp, encoded by

the ABCB1 gene, reduces intracellular drug accumulation by

acting as an active ATP-driven transmembrane drug transporter

[27], and is thought to prevent toxic substances from entering

the blood brain barrier (BBB) by its expression in endothelial

cells [28]. Using immunohistochemical staining, we show that P-

gp is expressed on a large number of endothelial cells of the

tumor vasculature in half of the pHGG cultures tested,

comparable to the expression in normal brain [29]. No

expression of P-gp was detected in glioma cells. These results

were confirmed by Western blotting, which showed a complete

absence of P-gp protein in primary pHGG cultures. Similar

results have been described for adult HGG, where no P-gp was

detected in primary adult HGG cultures [30]. Interestingly,

however, cell lines derived from human adult glioma generally
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contain P-gp activity, and although ABCB1 gene expression has

been reported in adult HGG [31], this was not always

confirmed by immunohistochemical staining [32]. Together,

these results suggest that the role of P-gp in pediatric glioma

patients is limited to the BBB, and that an anti-tumor effect of

therapeutics that are substrate for P-gp is not ruled out when

these barriers are bypassed by intratumoral administration.

Indeed, a significant effect of doxorubicin, the most important

substrate for P-gp, is observed in our drug screen.

Breast cancer resistance protein 1 (BCRP1), encoded by the

ABCG2 gene, is a relatively recently discovered drug resistance

protein that has been detected in a variety of solid tumors [33].

However, the significance of this protein in human gliomas is

unclear. At the predicted molecular weight, BCRP1 was only

detected in one of our pediatric glioma cultures, although

additional bands of higher molecular weight were detected in

half of the cultures, suggesting the formation of oligomers [34].

As a half-transporter, BCRP1 dimerizes to form a functional

ABC protein, with two ATP-binding domains and two sets of

transmembrane regions. Therefore, these high-order oligomers

are likely to be non-functional. The absence of BCRP1 on

glioma cells that was observed on Western blot, corresponded

with the immunohistochemistry results. In all patient samples

BCRP1 is intensely expressed in the endothelial cells of the

tumor vasculature, as also seen in endothelial cells of normal

brain [29], but hardly on the tumor cells themselves.

Multidrug resistant protein 1 (MRP1), encoded by the ABCC1

gene, is suggested to contribute to the chemoresistance of adult

human gliomas. In contrast to P-gp, MRP1 decreases intracellular

drug accumulation preferentially by unidirectional, ATP-driven

export of toxic agents [35]. Our results indicate that there is also a

significant role for MRP1 in drug resistance in pediatric high

grade glioma. MRP1 protein expression is displayed in most

glioma cultures, independently of the histological type and tumor

grade. Of note, there are some discrepancies in the detection of

MRP1 on Western blot and IHC (most notably in VUMC-HGG-

02) that may be explained by tumor heterogeneity. More

importantly, however, we could not relate the expression of

MRP1 by the cultures to a resistance pattern to substrates of

MRP1 in the drug screen. In order to quantify the role of MRP1

in tumor cell resistance mechanisms, a functional inhibitory assay

should be performed, preferably using MRP1 knockout mice. In

the tumor sections, MRP1 was also visualized in the endothelial

cells in all tumors, suggesting that MRP1 could limit the

permeability of its substrates, not only in tumor cells but also

across tumoral microvessels. Based on these results, it is not likely

that substrates for MRP1 will target pediatric glioma in a satisfying

manner, even when using local delivery, unless MRP1 function is

inhibited.

In conclusion, all three major ABC transporters are active at the

BBB, impeding the delivery of chemotherapeutics to the tumor

site. There are higher levels of P-gp and BCRP1 in the endothelial

cells of the tumor vasculature than in the glioma cells themselves,

which is in line with findings in adult glioma [36,37]. Targeting P-

gp and BCRP1 in the vasculature might therefore enhance the

clinical response to chemotherapeutics by inhibiting barrier

function, but has a risk of conveying more toxicity, as both P-gp

and BCRP are present in comparable levels in normal brain [29].

Since MRP1 is not only present at the BBB, but also seems to be

expressed by glioma cells, this could be an even better clinical

target. However, it should be stated that the field of drug resistance

is very complex, and functional assays and in vivo studies are

required to assess the role of different drug efflux transporters in

relation to glioma drug resistance.

Most inhibitors of ABC transporter activity developed thus far

have considerable toxic side effects, and therefore have failed to

significantly improve chemotherapeutic efficacy in patients [38].

Interestingly, tyrosine kinase inhibitors (TKIs), which are consid-

ered among the most promising agents for HGGs, were reported

to antagonize ABC-transporter-related drug resistance[39–41].

Therefore, combinations of TKIs, with established chemothera-

peutic agents, could hold promise in overcoming drug resistance,

although single-agent TKIs did not show much anti-tumor activity

in our screen.

Potential limitations of the study are the limited sample size,

and the design of the customized drug screen. The drug

Table 3. Novel drugs used in this study.

Drugs Target
Substrate
for MRP1

Substrate
for P-gp

Substrate
for BCRP Concentrations used in this study

Published in vitro IC50 in
human cancer cell lines

Bortezomib 26S proteasome 2 + 2 10 nM, 100 nM 28.9–48.2 nM (glioma) [63]

Bosutinib c-Abl, Src, HDAC + + 2 1 uM, 10 uM 1.3 (colorecca) [64], 5.7 uM
(melanoma) [65]

Dasatinib BCR/ABL, c-Kit, Src,
Ephrin

+ + + 100 nM, 1 uM 210 nM–1.5 uM (glioma) [66]

Erlotinib EGFR + + + 5 uM, 50 uM 9 uM (glioma) [67]

Everolimus mTOR 2 + 2 100 nM, 1 uM 271 nM (glioma) [68]

Olaparib PARP 2 + + 1 uM, 10 uM 1.42–7.43 uM (glioma) [69]

Panobinostat HDAC 2 + + 50 nM, 500 nM not reported

SB431542 TGFß, Alk 2 + + 1 uM, 10 uM 0.1–10 uM (dose range used in
in vitro studies) [70]

Sorafenib Raf, PDGFR, VEGFR,
c-Kit

2 + + 2.5 uM, 25 uM 5–20 uM (glioma) [71]

Temsirolimus mTOR 2 + 2 1 uM, 10 uM 1.4 uM (variety) [72]

Vandetanib EGFR, VEGFR, Ret 2 2 + 10 uM, 100 uM 10 uM [73]

Drug targets, concentrations, and ABC efflux transporter substrate specificity for novel, targeted drugs.
doi:10.1371/journal.pone.0061512.t003
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concentrations used in the present study were mainly based on

information obtained in adult glioma cell lines, which could bias

our results in both directions. The purpose of our screen was to

identify potential effective anti-glioma therapeutics, rather than

to exclude therapeutics for future protocols. Therefore, it is

important to emphasize that therapeutics that were not

considered effective in this experimental design, should not

necessarily be considered ineffective in pediatric glioma without

further exploration, as higher doses might prove successful.

When aiming for translation to the clinical situation, in vivo

experiments with HGG and DIPG xenograftmodels will be

crucial to further elucidate the role of the drug efflux

transporters in relation to drug resistance.

As some of the drugs that display a high toxicity in cultures

were never found to be beneficial in clinical trials, the

understanding of drug resistance in pHGG is essential for the

development of efficient therapies. Our data suggest that the

presence of drug efflux pumps in the blood-tumor barrier may

constitute an important first line of resistance of pHGG to such

treatment, and the efficacy may be further impaired by

expression of a subset of these, as well as other drug resistance

proteins in the glioma cells themselves. Possible approaches to

overcome these mechanisms of resistances are direct intratu-

moral drug delivery, such as convection enhanced delivery

(CED), and the use of drugs that are not substrate for these

drug transporters.

Materials and Methods

Processing of Tumor Material and Cell Culture
Single cell cultures were established from biopsy samples

derived from pediatric glioblastoma multiforme, anaplastic astro-

cytoma, anaplastic oligodendroglioma and diffuse intrinsic pontine

glioma (DIPG) or from DIPG autopsy samples. Informed consent

was obtained according to institutionally-approved protocols.

Tumor pieces were collected into DMEM (Dulbecco’s Modified

Eagles Medium, PAA Laboratories GmbH, Pasching, Austria) and

washed twice with PBS to remove blood clots. Samples were sliced

into small (3–5 mm3) pieces and either mechanically dissociated by

filtering through a cell strainer (BD Falcon Biosciences, Bedford,

Figure 1. a. Cell survival among primary pHGG cultures exposed to classical chemotherapeutic drugs. b. Cell survival among
primary pHGG cultures exposed to novel drugs.
doi:10.1371/journal.pone.0061512.g001
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USA)), or dissociated by incubation with Accutase (PAA Labora-

tories GmbH, Pasching, Austria). Single cells were seeded in

DMEM-F12, constituted with stable glutamine, 10% fetal bovine

serum (PerBio Science Nederland B.V., Etten-Leur, The Nether-

lands), 1% penicillin/streptomycin (PAA Laboratories GmbH,

Pasching, Austria), and 0,5% sodium pyruvate. For primary

astrocytes 15% fetal bovine serum was used. Cells were grown at

37uC in a 5% CO2 humified atmosphere.

Karyotyping and Comparative Genomic Hybridization
(CGH)

Malignancy of the established cell lines was confirmed by

determining the chromosomal aberrations, either by classical

karyotyping, or by array CGH. For cytogenetic analysis, cells were

harvested according to standard cytogenetic techniques. Briefly,

cells were treated with demecolcine (final concentration 0.4 mg/

ml; Sigma) for 2 hours, trypsinized, treated with a 75 mM KCl

hypotonic solution and finally fixed using methanol:acetic acid

(3:1). Metaphase spreads were prepared by dropping the fixed cells

on glass slides. Karyotyping was performed on GTG banded

metaphase cells. Metaphase spreads were observed using a Zeiss

Axioskop 20 microscope. Images were captured using a Cytovision

imaging system (Leica-microsystems, United Kingdom). For array

CGH, genomic DNA was isolated using the Wizard genomic

DNA purification kit (Promega) and hybridized to NimbleGen

Human CGH 36720 K Whole-Genome Tiling v2.0 Arrays

(Roche Diagnostics) according to the manufacturer’s instructions.

Data analyses were performed using the Nexus 5.0 software.

Drug Screen
The primary pediatric glioma- and astrocyte cultures were

exposed to a customized chemical screen, consisting of 21

chemotherapeutic drugs, at dose ranges that were based on

published in vitro IC50s in malignant glioma (Table 2 and 3).

Fifteen hundred cells were seeded per well in 96-well tissue culture

plates. Cells in each well were treated with a different compound

at two different concentrations. For treatment with temozolomide

and olaparib, treatment was done with paired 96-well plates,

where one plate was exposed to 3 Gray in a GammacellH 220

Research Irradiator (MDS Nordion, Canada) after 24 hours of

incubation, and the other plate was a non-irradiated control. After

96 hours cell survival was assessed using the Acumen eX3 laser

cytometer (TTO Labtech, UK), using 300 mM of 49,6-diamidino-

2-phenylindole dihydrochloride (DAPI) (Sigma-Aldrich) as read-

out. Results were analyzed using Acumen Explorer software,

calculating the survival percentage for each compound tested in

the assay. Each experiment was performed at least four times. A

coëfficient of variation (CV) and Z’ factor were calculated to assess

the reproducibility and robustness of the small molecule screens,

where CV = SD/m and Z’ = 12(3sc++3sc2)/Imc+2mc2I [42].

Figure 2. Western blot for detection of P-gp, MRP1, and BCRP1 in pHGG cultures. MW represents approximate molecular weight of these
proteins, as indicated at the right. The pHGG lanes were loaded with 20 mg of protein, the lanes with positive controls were loaded with 5 mg of
protein.
doi:10.1371/journal.pone.0061512.g002
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Cell Extraction and Western Blotting
Cell cultures were washed twice in PBS, and cell-free extracts

were made by resuspension in lysis buffer (50% Tris/HCl pH7.6,

25% MiliQ, 20% glycerol, 4% Protease Inhibitor Cocktail, 0,5%

1 M Dithiotreitol (DTT), 0,5% NP-40) and sonification. The

samples were then centrifuged at 13000 rpm for 10 minutes at

4uC, and the supernatants were subsequently used for Western

blotting. Equal amounts of protein were loaded on a 4–12%

gradient SDS polyacrylamide gel and transferred to PVDF

membranes (Millipore, Amsterdam, The Netherlands). The

membranes were washed, blocked with 5% milk, and incubated

overnight with an 1:50 diluted antibody against P-gp/ABCB1

(MDR1/clone JSB-1 mab4120, Chemicon, Millipore, Temecula,

California), BCRP/ABCG2 (BXP-21 Ab3380, Abcam, Cam-

bridge, United Kingdom), MRP1/ABCC1 (ABCC1 A10

HPA002380, Sigma-Aldrich), or with an 1:15,000 diluted

antibody directed against b-Actin (Millipore, MAB1501R). After

several washes the membranes were incubated with anti-mouse or

anti-rabbit IgG HRP (Dako, Glostrup, Denmark) in a dilution of

1:3,000. Antibody binding was detected using Enhanced Chemi-

luminescence (GE Healthcare, Buckinghamshire, UK).

Immunohistochemistry
Paraffin-embedded tissue was sliced into 5 mm sections,

deparaffinized and rehydrated by washing in xylene and ethanol

series. Endogenous peroxidase activity was blocked with 0.3%

hydrogen peroxidase in methanol for 30 minutes. The sections

were washed and heated in citrate buffer pH6, and gradually

cooled to room temperature. After a PBS wash, the sections that

were stained for P-gp were blocked with 5% normal goat serum

(NGS) in PBS for thirty minutes prior to primary antibody

incubation. Sections were incubated for one hour at room

temperature with an 1:20 diluted antibody against P-gp

(MDR1/clone JSB-1 mab4120, Chemicon, Millipore, Temecula,

California), an 1:40 diluted antibody against BCRP1 (BXP-21

Ab3380, Abcam, Cambridge, United Kingdom), or an 1:75

diluted antibody against MRP1 (ABCC1 A10 HPA002380,

Sigma-Aldrich). For the detection of the primary antibody,

EnVision anti-mouse/anti-rabbit (ImmunoLogic, Duiven, The

Netherlands) was used according the manufacturer’s instructions.

Peroxidase activity was detected using 3,3-diaminobenzidine-

Tetrachloride (DAB) (Sigma, USA) in 0.1% hydrogen peroxide.

All sections were counterstained with haematoxylin. Protein

expression was scored for quantity (percentage of cells, ranging

from 0 = 0, 1 = ,20%, 2 = 20–40%, 3 = 40–60%, 4 = 60–80%, to

5 = 80–100%), and intensity (0 = absent, 1 = low, 2 = moderate,

3 = high). Using these data, an immunohistochemistry score (IHS)

was calculated by multiplying the quantity and staining intensity

scores. IHS: 0 = negative, 1–3 = weak, 4–9 = moderate, 10–

15 = strong. Images were made using a Zeiss Axioskop microscope

(HBO100W/Z), equipped with a Canon digital camera (Canon

PowerShot A460, Canon Inc., Tokyo, Japan); imaging software is

Canon Utilities, ZoomBrowser Ex. 5.7, Canon Inc, Nort Ryde,

Australia.

Figure 3. Immunohistochemical staining of ABC-transporters
in pHGG sections. Expression of P-gp (A) and BCRP1 (C) is located to
the endothelial cells of the tumor vasculature. Whereas MRP1 (B)
expression is visualized mainly in the cytoplasm of tumor cells as well as
in the vasculature.
doi:10.1371/journal.pone.0061512.g003
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Supporting Information

Figure S1 In silico analysis. In silico analysis of mRNA

expression using R2 analysis software on datasets of non-

malignant brain tissue (light blue), versus datasets of pediatric

HGG and DIPG (dark blue).

(TIF)

Figure S2 Cell proliferation assay, as determined by
BrdU incorporation. Immunofluorescence showing the per-

centages of BrdU incorporation (green) as compared to DAPI

staining (blue) in VUMC-HGG-01, VUMC-HGG-05, and

VUMC-DIPG-A.

(TIF)

Material and Methods S1 Supplementary Material and
Methods.
(DOCX)
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