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Abstract

Background: Cancer cells typically exhibit large-scale aberrant methylation of gene promoters. Some of the genes with
promoter methylation alterations play ‘‘driver’’ roles in tumorigenesis, whereas others are only ‘‘passengers’’.

Results: Based on the assumption that promoter methylation alteration of a driver gene may lead to expression alternation
of a set of genes associated with cancer pathways, we developed a computational framework for integrating promoter
methylation and gene expression data to identify driver methylation aberrations of cancer. Applying this approach to breast
cancer data, we identified many novel cancer driver genes and found that some of the identified driver genes were subtype-
specific for basal-like, luminal-A and HER2+ subtypes of breast cancer.

Conclusion: The proposed framework proved effective in identifying cancer driver genes from genome-wide gene
methylation and expression data of cancer. These results may provide new molecular targets for potential targeted and
selective epigenetic therapy.
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Introduction

Abnormality in DNA methylation plays an important role in

cancer initiation and progression. For example, it has been found

that promoter hypermethylation of the APC (adenomatous polyposis

coli) gene could increase b-catenin levels and lead to the activation of

growth-promoting genes in colon and gastrointestinal cancer [1]

and promoter hypomethylation of Wnt5a could increase this gene’s

transcriptional level to promote the aggressiveness of prostate

cancer [2]. With the development of methylation microarray

technology, thousands of gene promoters have been found to be

either hyper- or hypomethylated in cancer genomes [3,4]. However,

only a small portion of these genes play ‘‘driver’’ roles in cancer

initiation and progression, while the others are only ‘‘passengers’’ in

the tumorigenic process [5,6]. It is difficult to discriminate the

drivers from the passengers [6] in a large number of genes

differentially methylated in human cancer genomes [4], and the

identification of driver genes with methylation alterations is a

fundamental step towards molecular characterization of cancer.

Recently, using genome-wide methylation data, De Carvalho

developed an approach to identify a specific type of driver genes for

the survival of cancer cells [5]. However, a major limitation of this

approach is that it can only capture driver genes with promoter

hypermethylation. There are evidences that promoter hypomethy-

lation of some genes may also be associated with the initiation and

progression of cancer by regulating the activity of the genes [7–9].

Similar to copy number alteration, methylation alteration at

gene promoters typically does not alter the coding sequences of

genes, but contributes to cancer by influencing gene expression

[10]. Previous research has defined driver copy number alterations

based on the assumption that a driver gene is expected to influence

the expression of this gene and a group of downstream genes

which affect particular cancer phenotypes [11,12]. This assump-

tion could also be applied to identify driver genes from

methylation data. Considering the diversity of cancer phenotypes,

we could modify the assumption to be that the downstream genes

of a driver gene can affect cancer-associated pathways to induce

corresponding cancer phenotypes [13].

Based on above assumption, we propose an approach to identify

cancer driver genes using gene methylation and expression data of

cancer. We applied this approach to analyze data for breast cancer

to derive driver genes. Then, we provide evidence to validate these

findings based on their links with known cancer genes on the

protein-protein network. Finally, we further explore the subtype

specificity of the identified driver genes of breast cancer.

Materials and Methods

DNA methylation and gene expression data
Three breast datasets with both methylation and expression

data from Gene Expression Omnibus (GEO) [14] and The Cancer

Genome Atlas (TCGA) (http://tcga-data.nci.nih.gov/tcga) were
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collected (Table 1). The gene promoter methylation data of

Bre100 and Bre95 were collected with the Illumina Human-

Methylation27 platform, which detected the methylation level of

27,578 CpG loci located within the proximal promoter regions of

transcription start sites of 14,495 genes. The methylation data of

Bre60 were collected with Illumina HumanMethylation450

platform, which detected the methylation level of over 450,000

CpG loci covering all gene regions, including the promoter and

gene body. For Bre60, we extracted the loci at the promoter which

overlapped that in the HumanMethylation27 for analysis. Using

methylated signal intensity (M) and unmethylated signal intensity

(U), the methylation level (beta-value) for each CpG locus was

calculated by max (M, 0)/(|U|+|M|+100) [15]. We removed

unreliable probes whose proportion of detection P-value.0.05

across all the samples was more than 10%. The 1,092 CpG loci

within promoters of 605 sex chromosome genes were excluded

from the analysis to eliminate gender-specific bias.

For the samples of Bre100, gene expression was available

simultaneously using Affymetrix Human Genome U133 Plus 2.0

Array. The raw gene expression profiles were normalized using the

robust multi-array analysis (RMA) algorithm [16]. The probe IDs

were mapped to Gene IDs with the annotation table for each

platform. The expression data of Bre95 and Bre60 were collected

with the normalized data of Agilent4502A platform. Using a T-

test, genes with adjusted P values less than 0.05 were defined as

differentially expressed (DE) genes [17].

The subtyping of cancer samples in Bre100 was determined

according to the expression of estrogen receptor (ER) and human

epidermal growth factor receptor 2 (Her2) by immunohistochem-

istry (IHC) [18].

Cancer genes and protein-protein interaction (PPI) data
We extracted 2104 cancer genes from the Cancer Gene F-

Census [19] which is a collection of cancer genes from various data

sources such as the Cancer Gene Census database [20] and the

Tumor Suppressor Gene database [21].

The human PPI data was downloaded from MINT [22], BIND

[23], IntAct [24], HPRD [25], MIPS [26], DIP [27], KEGG

(Kyoto Encyclopedia of Genes and Genomes) (PPrel for PPI and

ECrel for enzymes involved in neighboring steps) [28] and

Reactome protein pairs involved in a complex and neighboring

reaction [29]. The types of pair-wise relationships between

proteins include ‘‘interact with’’, ‘‘metabolic catalysis’’, ‘‘compo-

nent of’’, ‘‘co-control’’ and ‘‘sequential catalysis’’. For simplicity,

we used the term ‘‘interaction’’ to represent various relationships

between proteins and designated this network as the protein

interaction network. We pooled together the eight PPI datasets

[30] and compiled an integrated PPI network of 142,583 distinct

interactions involving 13,693 human proteins.

Discretization of methylation profiles for individual
cancer samples

Data discretization was used to identify the state of differential

methylation for a locus in a sample. We identified a locus that was

hyper- or hypomethylated in each cancer sample by comparing

the methylation value with those of the normal samples (Figure 1).

Specifically, we normalized the methylation values of the locus in

cancer samples as a Z-score, utilizing mean and standard deviation

of methylation values of the locus in the normal samples [12]. A

locus was considered differentially methylated if the normalized

methylation value of the locus had an adjusted P-value,0.05 using

a Z-test. Based on the sign symbol of Z-scores, the differentially

methylated loci were classified into hypermethylated and hypo-

methylated ones. At last, the methylation profile of the cancer

samples were translated into a matrix comprising of 1 (hyper-

methylation), 0 (no differential methylation) and 21 (hypomethy-

lation).

Identifying driver genes
According to the assumption mentioned in the Introduction, a

locus with methylation alteration was identified as a driver, if it

met the following three requirements.

Firstly, for each locus, we required that its gene expression was

significantly down- or up-regulated in hyper- or hypomethylated

cancer samples comparing with the cancer samples which had no

differential methylation at this locus (T-test, false discovery rate

(FDR),0.05) [17] (Figure 1).

Secondly, a driver methylation alteration should influence the

expression of downstream genes. The downstream genes were

defined as the DE genes between tumor samples with this

methylation alteration (hypermethylation of hypomethylation) and

tumor samples with no differential methylation alteration.

Random experiments were performed to see whether the number

of downstream genes of the driver alteration was significantly more

than expected by chance (FDR,1.00E-04). Specifically, we

randomly extracted the same number of tumor samples as those

with the methylation alteration and with no differential methyl-

ation, and subsequently performing the identification of DE genes

for 100,000 times. The P-value of the observed number of DE

genes was calculated as the percentage of the random numbers

exceeding the observed number (Figure 1).

Thirdly, downstream genes of a driver methylation alteration

should disturb at least one of the cancer-associated pathways

(Figure 1). In relation to the disturbed cancer pathways, we

selected 36 cancer-associated pathways (Table S1), by referring to

the pathways annotated in ‘‘pathway in cancer’’ in KEGG [28]

and the ten hallmarks of cancer [31]. The mapping of the

pathways to cancer hallmarks was collected from previous reports

[31–33].

If a methylation alteration meets the above three requirements,

it was defined as a driver methylation alteration. A gene with at

least one driver alteration locus was defined as a driver gene.

Results

Identification of driver genes for breast cancer
Different from mutation and copy number profiles, methylation

profile is consisted of continuous methylation values, and it is hard

to identify the differential methylation state of a CpG locus in each

cancer sample. Thus, we preformed data discretization for

methylation profiles of Bre100 at first. After data discretization,

we restricted our analysis to 9029 methylation altered loci which

were hyper- or hypomethylated in at least 10% of all cancer

samples. If a gene was found both hyper- and hypomethylated in

Table 1. The methylation data analyzed in this study.

Data
Sample size
(cancer vs. normal) Data source

Bre100 88:12 GSE:20713 [18]

Bre95 88:7 TCGA batch 85

Bre60 46:14 TCGA batch 61

doi:10.1371/journal.pone.0061214.t001

Driver Genes in Breast Cancer
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at least 10% cancer samples, it was excluded from follow analysis.

Using the T-test with FDR,0.05, we identified 888 loci

hypermethylated or hypomethylated within the promoters of 753

genes which were significantly down- or up-regulated in the cancer

samples. From these 888 loci, we found 350 loci from 311 genes

which influenced the expression alterations of significantly more

downstream genes than expected by random chance according to

the random experiments described in the Methods. Finally, from

these 350 loci, we identified 249 loci of 222 genes whose

downstream genes were significantly enriched in at least one of

the cancer-associated pathways defined in Table-S1 (hypergeo-

metric test, FDR,1.00E-04). (Table S2).

By the same procedure, we identified 189 and 58 driver genes in

the Bre95 and Bre60 datasets, respectively (Table S2). The

percentage of overlapping genes (POGs) between the list of driver

genes extracted from Bre100 and the two lists of driver genes

extracted from Bre95 and Bre60 were 12.25% and 26.10%,

respectively, which were both significantly higher than that

expected by random chance (hypergeometric test, P,1.11E-16).

It should be recognized that each of the driver gene lists could only

capture a portion of the effective biology signals associated with

the tumorigenesis due to the lack of statistical power in most small-

scale experiments [34,35]. Thus, the three lists of the driver genes

extracted from the three datasets were integrated for the following

validation analysis.

Validation of the identified driver genes
Pooling together the driver genes extracted from all three breast

cancer datasets, we got 411 driver genes. Evidences supported that

these driver genes are likely to play driver roles in tumorigenesis.

Firstly, 82 (19.95%) of the identified 411 driver genes were known

cancer genes collected in the F-census database [19], which was

significantly more than expected by random chance (P = 1.07E-04)

(Table 2). Specifically, the percentage of known cancer genes in

the hypomethylated driver genes (19.66%) was also significantly

higher than that expected by random chance (P = 1.18E-02),

suggesting that these hypomethylated genes also played a driver

role in tumorigenesis (Table 2). Secondly, in addition to the known

cancer genes collected in the F-census database, many other driver

genes have been suggested to be cancer genes in previous studies

[36–38]. For instance, PCDH8 has been identified as a driver gene

with promoter hypermethylation, in accordance with a previous

report that this gene might be a candidate tumor suppressor gene

for breast cancer [37].

After removing the 82 known cancer genes from the 411

identified driver genes, we found that the remaining 329 driver

genes were significantly enriched in the direct interaction

neighbors of known cancer genes collected in F-census (hypergeo-

metric test, P = 6.01E-04). This result implied that many of the

newly predicted driver genes worked closely with the known

cancer genes and might perform similar functions as their

neighboring cancer genes in tumorigenesis. For instance, it has

been reported that cancer gene TSG101 could perturb the cell

cycle pathway in breast cancer [39]. In our analysis, its

neighbouring gene RRM2 was identified as a hypomethylated

driver gene with its downstream genes disturbing cell cycle

pathway, which also corresponded with previous finding that

RRM2 could disturb cell cycle and contributed to tumorigenesis

[40]. Specifically, we observed that the direct interaction

neighbors of known cancer genes were also significantly enriched

with the hypomethylated driver genes (P = 6.50E-03), which at

present were not known as cancer genes.

Figure 1. Schematic overview of the approach. Methylation matrix of continuous beta values is transformed into a discrete profile by
comparing with the methylation profiles of normal samples by discretization (1 denotes hypermethylation, 21 denotes hypomethylation and 0
denotes no differential methylation). Identification of driver alteration required following three conditions. Firstly, for each locus, if its gene expression
was significantly down- or up-regulated in hyper- or hypomethylated cancer samples comparing with the cancer samples which had no differential
methylation at this locus (T-test, FDR,0.05), it is retained for follow analysis. We showed the hypermethylated locus (labeled with yellow) as an
example. Secondly, the methylation alterations which influence the expression of significantly more downstream genes were selected (see Methods).
Thirdly, downstream genes of a driver methylation alteration should be enriched in at least one of the cancer-associated pathways.
doi:10.1371/journal.pone.0061214.g001

Driver Genes in Breast Cancer
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Subtype-specific driver genes of breast cancer
Previous reports suggest that breast cancer has four subtypes

with specific gene expression patterns [41,42]. Therefore, we could

assume that some subtype-specific expression patterns might be

caused by the subtype-specific driver methylation alterations. For

this study, analysis was only performed on the driver genes

extracted from the Bre100 dataset, since available subtype

information was limited to this dataset only. Based on unsuper-

vised hierarchical clustering using the Jaccard correlation distance

and average linkage [43] for the discretized methylation profiles of

the 249 driver methylation alterations loci of the 222 driver genes

in the Bre100 dataset, the 88 cancer samples were divided into

three clusters (Figure 2-A, 2-B). We found that luminal-A samples

were mostly in cluster 3, basal-like samples were mainly in clusters

1 and 2 and all HER2+ samples were in clusters 1 and 3,

indicating that these three subtypes may have subtype-specific

driver methylation alterations.

Using the hypergeometric test, we selected subtype-specific

driver genes whose alterations occurred significantly more

frequently in the samples of a particular subtypes than in samples

of other subtypes. With FDR,0.05, we found 89 basal-like specific

driver genes, 64 luminal-A specific driver genes and 4 HER2+
specific driver genes (Figure 2-C, 2-D, 2-E). For instance, HDAC1

was identified as a basal-like specific driver gene as it displayed a

significantly higher frequency of hypomethylation (63.64%) in

basal-like tumors than in the other subtypes (25.76%) (P = 1.70E-

03).

It has previously been reported that HDAC1 could interact with

ER-a to suppress ER-atranscription activity [44] in accordance

with the feature of the basal-like subtype that it is ER-negative

Table 2. The proportion of known cancer genes in our driver genes.

Gene# Genes in F-census# P_F-census Neighborson PPI# P_PPI

Driver genes 411 82 1.07E-04 183 6.01E-04

Hypomethylated driver genes 178 35 1.18E-02 86 6.50E-03

doi:10.1371/journal.pone.0061214.t002

Figure 2. Hierarchical cluster analysis of the 88 tumor samples using discrete methylation profile of 222 driver genes. (A)
Experimental dendrogram shows the clustering of the tumors into three subgroups: cluster 1(light purple, n = 25); cluster 2 (orange, n = 11); cluster 3
(light green, n = 52). The pie charts show the distribution of sample subtypes within each cluster. (B) Overview of complete cluster diagram. (C) Basal-
like subtype-specific driver genes. (D) Luminal-A subtype-specific driver genes. (E) HER2+ subtype-specific driver genes.
doi:10.1371/journal.pone.0061214.g002

Driver Genes in Breast Cancer
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samples. To further investigate the role of HDAC1 in basal-like

tumors, we mapped the downstream genes of HDAC1 into the

‘‘pathway in cancer’’ of KEGG and found that the changes of

their expressions could block the differentiation of cells, promote

proliferation and evade apoptosis (Figure 3), which corresponds

with a previous report about HDAC1 [45]. Specifically, the

downstream genes E2F-2,3 coordinate with DP-1,2 and their up-

regulation could promote the transcription of S-phase genes

encoding for proteins that amplify the G1 to S-phase switch, which

could speed up DNA replication and cell proliferation. Mean-

while, the up-regulation of E2F-2,3 could also block the

differentiation of cells. Similarly, the up-regulation of the

downstream gene TRAF2 could bind to cellular inhibitors of

apoptosis for tumor necrosis factor (TNF) to efficiently activate NF-

kB and prevent TNF-induced apoptosis [46]. This could explain

why basal-like subtype samples usually have high proliferation and

low differentiation rates [47,48].

Discussion

Although a large number of aberrant methylation alterations in

cancer genomes have been found, it is still difficult to identify

driver methylation alterations from them. Identification of the

driver genes with methylation alterations and their downstream

genes is a fundamental step towards the mechanistic character-

ization of cancer. Furthermore, this may provide new targets for

potential targeted and selective epigenetic therapy considering the

reversibility of methylation [49]. In this study, we proposed a

computational approach to identify driver genes by taking into

account not only the association between promoter methylation

and gene expression, but also the association between a candidate

driver and its downstream genes. Additionally, the pathways

represented by the downstream genes can help us gain insight into

how a driver methylation alteration contributes to the malignant

phenotype through altering the cellular pathways. Notably, the

enrichment of hypomethylated driver genes with known cancer

genes provided evidence that hypomethylation of gene promoters

are also closely linked to the initiation and progression of cancer.

Because it is usually believed that global hypomethylation of DNA

in cancer is closely associated with repeated DNA elements,

methods in identifying genes with driver methylation alteration

have usually focused on promoter hypermethylation [5,50], and

cancer-associated promoter hypomethylation receive relatively

little attention [51]. In the present study, we have shown a

procedure that makes it possible to not only capture the genes with

driver hypermethylation, but also the genes with driver hypo-

methylation.

Using this procedure to analyze the data for breast cancer, we

identified many driver genes with evidence that they were closely

linked with known cancer genes on the protein-protein network.

Specifically, the subtype-specific driver methylations suggested

that methylation plays a significant role in differentiating breast

tumor subtypes and might be potential targets for the subtype

diagnosis and therapy. Evidence exists that the knockdown of

HDAC1, which is a basal-like subtype-specific driver gene, could

cause cell cycle arrest, growth inhibition and apoptosis in breast

cancer cells [45]. It has also been shown that the inhibitor of

HDAC1, panobinostat, is overtly toxic to the cells of basal-like

samples, and causes a decrease in tumorigenesis in vivo [52].

An important step of our method is the discretization of

continuous methylation profile for combining information at the

level of individuals. It was shown to provide a way for integration

analysis for the expression and methylation data. However, the

selection of the threshold for identifying the alterations at

individual level might influence the statistical power for determin-

ing the driver genes. Therefore, we have additionally performed

our approach with discrete methylation profiles using another

threshold of FDR,0.01 for identifying the alterations at individual

Figure 3. Downstream genes of hypomethylated HDAC1. The downstream genes with functional consequence in the KEGG ‘‘pathway in
cancer’’ were selected. The purple arrows imply the relationship between driver gene and its downstream genes, and the dark arrows were collected
from ‘‘pathway in cancer’’ of KEGG. The up-regulated genes are labeled with red color and the down-regulated genes are labeled with green color.
doi:10.1371/journal.pone.0061214.g003
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level. This produced similar results that the predicted driver genes

are still significantly enriched with known cancer genes (P = 3.75E-

04). Another potential difficulty in our approach is that there is

currently no official definition of cancer-associated pathways. The

cancer-associated pathways that we selected mostly came from the

cancer hallmark based on published literature [31]. As the

definition of cancer-associated pathways is improved, the perfor-

mance of our procedure would also improve. Notably, the

potential oncogenic roles of the newly predicted driver genes

based on computational analysis need to be confirmed by further

wet bench experiments.

Finally, we note that except for methylation alteration,

mutation, copy number change, microRNA change [53] and

other epigenetic modifications such as histone modification [54]

can also influence the expression of driver genes. Therefore, future

studies are needed to integrate these types of molecular alterations

and improve the method for identifying driver genes of cancer.
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(XLS)
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