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Abstract

The extent and the nature of the constraints to evolutionary trajectories are central issues in biology. Constraints can be the
result of systems dynamics causing a non-linear mapping between genotype and phenotype. How prevalent are these
developmental constraints and what is their mechanistic basis? Although this has been extensively explored at the level of
epistatic interactions between nucleotides within a gene, or amino acids within a protein, selection acts at the level of the
whole organism, and therefore epistasis between disparate genes in the genome is expected due to their functional
interactions within gene regulatory networks (GRNs) which are responsible for many aspects of organismal phenotype. Here
we explore epistasis within GRNs capable of performing a common developmental function – converting a continuous
morphogen input into discrete spatial domains. By exploring the full complement of GRN wiring designs that are able to
perform this function, we analyzed all possible mutational routes between functional GRNs. Through this study we
demonstrate that mechanistic constraints are common for GRNs that perform even a simple function. We demonstrate
a common mechanistic cause for such a constraint involving complementation between counter-balanced gene-gene
interactions. Furthermore we show how such constraints can be bypassed by means of ‘‘permissive’’ mutations that buffer
changes in a direct route between two GRN topologies that would normally be unviable. We show that such bypasses are
common and thus we suggest that unlike what was observed in protein sequence-function relationships, the ‘‘tape of life’’ is
less reproducible when one considers higher levels of biological organization.
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Introduction

It remains unclear how restricted evolving populations are to

move through any route in genotype space. This is due to our lack

of understanding of how genotype maps to phenotype, since

mutations occur at the level of genotype yet selection acts at the

level of phenotype. In particular it has been suggested that certain

combinations of genetic interaction are not viable or less fit,

meaning that evolution cannot tinker through any form; there are

restrictions on trajectories. Evolutionary trajectories can be viewed

through the guise of a neutral network which derives from

Maynard-Smith’s original concept of protein space [1]. A neutral

network assumes that genotypes fall into two classes; those that are

viable and those that are non-viable. Only those that are viable are

included in the neutral network, and structurally similar genotypes

are connected based on particular criteria. The shape of a neutral

network can lie between two extremes: from regular and smooth to

irregular with concavities. Only on irregular neutral networks are

evolutionary trajectories restricted since the path to another viable

genotype may involve a step to a non-viable genotype. Indeed

neutral networks were first utilized to explore evolutionary routes

in RNA sequence-shape space [2–4].

Irregular neutral networks are caused by the phenomenon of

epistasis (Figure 1a and b). Epistasis essentially means that the

fitness of certain genetic combinations does not have a simple

linear relationship to the component parts [5–8]. A particular form

of epistasis, reciprocal sign epistasis (RSE), describes a 2-loci situation

where a wildtype and a double mutant are viable or fit yet the

corresponding single mutants are unviable or significantly less fit.

In particular this type of epistasis captures the basic idea of

restricted evolutionary paths since no direct route is possible

between the two viable/fit genotypes. The study of reciprocal sign

epistasis is thus important to understand how evolution is

constrained. Important questions include: How prevalent is RSE

in nature? What is the underlying mechanistic basis? And can it be

bypassed?

Previous studies exploring how epistasis affects evolutionary

trajectories have mainly focused on sequence-function relation-

ships in enzymes [9–16]. However since selection generally acts at

the level of whole organisms, and multicellular phenotypes are

largely controlled by gene regulatory networks (GRNs) it therefore

remains an important challenge to go beyond interactions within

single genes/proteins, and to consider possible epistasis within the

context of dynamical GRNs. We therefore chose a biologically-

validated model of how GRNs can create multicellular spatial

patterns as a new paradigm within which to explore the extent and

the mechanistic basis of RSE in developmental processes. We

previously employed such a biologically-validated model of gene

regulation to explore how cells can arrange themselves into

organized domains of expression state, by interpreting a morpho-

gen gradient to generate a stripe of gene expression (File S1 and
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Figure S1) [17]. We chose the most basic functional measure;

simply whether the GRN (genotype) produces a stripe of gene

expression or not giving a simple binary fitness score of 0 or one

for each genotype which defines whether it is included in the

neutral network or not. Because of the continuous model of gene

regulation used here, the resulting stripes of gene expression can

have different sizes and shapes (and still be considered functional;

See Methods). As such the functional genotypes are ‘‘nearly’’

neutral though we will refer to them as neutral throughout this

manuscript for purposes of clarity.

Gene regulatory network (genotype) space is not naturally

discrete like protein or RNA space. Protein or RNAs have discrete

amino acids or bases at each sequence position unlike gene

regulatory networks that have a continuous parameter range at

each gene-gene interaction position. One way to make genotype

space discrete is to use a representation known as topology space,

which is based on the gene network structure or wiring design (See

File S1 and Figure S2). A Step within topology space then is

a discrete addition/removal of a single gene-gene interaction. All

genotypes with a given topology, regardless of their underlying

parameter values map to that point in the corresponding topology

space. We devised a ‘‘topology atlas’’ – a metagraph (a graph of

graphs) which represents all possible topologies, and directly links

together those which have just a single topological difference. Such

metagraphs have been shown to be useful for exploring the

relationship between innovation and robustness in GRNs [18,19].

A topology represents a population of individual GRNs with

a particular wiring structure. If one samples a number of random

parameter sets for each topology (each parameter set is an

individual genotype) and sums the resulting binary fitness scores

then an average functional neutrality score is generated for that

region of genotype space (which is also a measure of robustness

with respect to parameter sets for the corresponding topology).

These average functional neutrality landscapes are thus a form of

abstract neutral network that contain information about the

number of functional individuals within that region of genotype

space. We postulated that this average functional neutrality should

correlate with the number of functional paths through that region

of genotype space represented by the corresponding topology.

Hence we used the average functional neutrality landscape of

discrete topologies as a tool to measure the frequency of RSE and

restricted evolutionary paths within the underlying neutral

network of continuous genotypes.

Results

To measure the prevalence of RSE in this system, we first

simulated every topology from the topology atlas with 30,000

random parameter sets. Functional topologies are those that could

produce a stripe of gene expression for at least one tested

parameter set (See Methods for the definition of functionality). In

the previous study we found that the vast majority of topologies

were working by one of 6 different dynamical mechanisms. We

split the functional topologies into the different mechanism groups

and analyzed each group separately (See Methods and Supple-

mentary Methods). This was required since the different mechan-

isms are using distinctly different regions of parameter space [17].

As such it is not appropriate to analyze RSE with all topologies

included in one set since it is probably not possible to mutate

between genotypes of differing mechanism and maintain function

at the level of genotype (topology with a specific parameter set). In

other words the different mechanisms probably represent discon-

nected neutral networks at the level of genotype and thus it is

appropriate to analyze them separately.

We then defined the average functional neutrality of a topology

as the fraction of parameter space that is functional (that can

produce a stripe of gene expression). We systematically searched

through the list of successful GRNs for pairs (reference topologies)

that are 2 steps apart in the atlas, but whose 2 direct intermediate

topologies both display significantly lower average functional

neutrality (i.e. we searched for groups of 4 connected topologies

whose surface in the average functional neutrality landscape

displays the V-shaped fitness geometry typical of RSE in

Figure 1a). Statistically significant lower average functional

neutrality was defined as a threshold of one standard deviation

of the average functional neutrality of the reference topologies

assuming a bootstrapped binomial distribution (see Methods). This

analysis revealed that RSE is widely-distributed across average

functional neutrality landscapes for all 6 mechanisms (see Figure 1c

for 3 examples) however its prevalence appears to vary between

the different mechanisms (Figure 1d). This variation is not simply

the result of different sized landscape – indeed the proportion of

topologies involved in RSE changes between the different

mechanisms. This suggests that to achieve the same biological

function a choice exists between different dynamical mechanisms,

which may possess average functional neutrality landscapes with

intrinsically smoother or more irregular distributions.

What then is the mechanistic cause of RSE within our spatial

patterning GRNs? To address this question, we studied in detail

a local region of the average functional neutrality landscape

responsible for the Bi-stable mechanism (Figure 2a). This local

region displays the V-shaped viability/fitness valley due to RSE –

the direct routes between two functional GRN topologies show

extremely low average functional neutrality (Figure 2b). All

versions of this mechanism display a common underlying core

topology (black regulatory interactions in Figure 2b). One of the

two viable versions of the topology (topology 1) contains only this

core design, while the other viable version (topology 4) contains

two extra regulatory links (green arrows). Importantly these two

extra regulatory links are counter-balanced; that is they are

opposite in sign and affect the same gene. By analyzing the

pattern-forming dynamics of the networks, we discovered that

these counter-balanced regulatory inputs explain the observed

Figure 1. Epistasis and neutral networks. a) Illustrating reciprocal sign epistasis. When there is no epistasis the combined effects of two
mutations are the result of the addition of the fitness effect of each individual mutation. There is reciprocal sign epistasis when the two individual
mutations negatively affect fitness yet the double mutant is fitter than the combination of individual mutations. Figure adapted from [15]) b)
Illustrating how reciprocal sign epistasis causes the irregularity in the shape of a neutral network. Dots are viable genotypes and edges connect
genotypes equal except for one mutation. We assume the two unfit genotypes in an RSE geometry are unviable (dashed dots) and the two fit
genotypes are viable. Therefore RSE will be responsible for the gaps in neutral networks that lead to the irregular shape (loss of the dashed edges and
dots in the neutral network shown). c) Examples of average functional neutrality landscapes for 3 gene regulatory network mechanisms capable of
interpreting a morphogen gradient. Topologies are vertices and single mutant neighbors are connected via edges (as illustrated by the two
topologies in the Frozen Oscillator average functional neutrality landscape). Topologies are spaced in the y-axis according to their average functional
neutrality (fraction of viable parameter space capable of performing the morphogen interpretation function) and in the x-axis to reduce edge-
crossing. Mutant neighborhoods where statistically significant RSE exists are colored blue. d) The number of topologies and the incidence of RSE for
each of the different mechanisms. The amount of RSE normalized to the number of topologies in the landscape can be found on the bottom row.
doi:10.1371/journal.pone.0061178.g001
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RSE. With only the activating input (topology 2), or only the

repressive input (topology 3), the mechanism is unbalanced and is

unable to correctly interpret the morphogen gradient (Figure 2c).

However, when both regulatory inputs are present, the system is

balanced, and able to form a stable stripe of expression.

Are counter-balanced regulatory inputs a general cause of RSE

in dynamical networks, or is our example a specific one-off? To

address this question, we explored how many of the RSE examples

found for our 6 mechanisms were explained in the same way. For

each case of RSE described earlier, we analyzed what mutational

changes there are in the two intermediates. If one of those

mutational changes is the addition of a positive interaction feeding

into a particular gene, and the other is a repression feeding into the

same gene, then we classified this as an example of counter-

balanced regulatory inputs. We find that counter-balanced

regulatory inputs underlie RSE in most of the 6 mechanisms

studied. Interestingly however, it is mechanism dependent, for

example it was never observed for the Classical mechanism, but

explains 36% of RSE in the Bi-stable average functional neutrality

landscape (when the topologies of the Bi-stable average functional

neutrality landscape are re-sampled with a million parameter sets).

We have thus uncovered a likely common cause of RSE

underlying biological systems, but which is influenced by the

specific dynamical design of the GRN.

The widespread appearance of RSE suggests that the un-

derlying neutral networks at the level of continuous genotype space

are irregular and that evolutionary paths will be restricted.

Irregular neutral networks can be considered an abstract version of

rugged fitness landscapes. However it has been suggested in that

the appearance of rugged fitness landscapes is simply the result of

not taking into account all of the appropriate genetic loci that

describe a particular biological system [20]. When the appropriate

number of genetic loci are taken into account so that there are

more than 3 dimensions required to describe a fitness landscape,

fitness ridges exist between peaks in the higher dimensions.

Gavrilets (2004) has described those paths through unaccounted

for dimensions that connect fitness peaks as ‘‘extra-dimensional

bypasses’’. Such bypasses have been shown to exist in the contexts

of inflorescence architectures, flower color and enzyme sequence-

function relationships [14,21,22]. Ortlund et al., 2007 in the

context of enzyme sequence-function relationships have demon-

strated how a ‘‘permissive’’ mutation allowed an unfavorable

mutation to occur without loss of function. The presence or

absence of the permissive interaction can be thought of as an extra

dimension in genotype space [16,20]. Returning to our example of

RSE from the Bi-stable mechanism, we too see that a permissive

mutation is possible: Adding a repressive interaction to the

network (red link in Figure 3a) ‘‘buffers’’ the system, allowing one

of the mutations that previously resulted in a low average

functional neutrality to be incorporated (green repressive link).

From this design, the second of the epistatic mutations is also

viable, and from the resulting topology (7) the buffering link can be

removed. Hence higher-dimensional fitness ridges exist in both

enzyme sequence-function relationships and GRNs responsible for

pattern formation. The underlying similarity of the landscape

structure can be seen by comparing Figures 3a and 3b.

We next investigated exactly how the permissive interaction

maintains the functionality of topology 1 when the direct

interactions are added. The key to understand how the permissive

mutation allows for a bypass is to consider how the stripe of gene

expression moves in the spatial domain when the two inhibitory

mutations are added from topology 1 to topology 3 and 5. To test

the affect on stripe position of the topology 1.3 and 1.5

transitions we mutated all functional parameter sets of topology 1

into topology 3 and 5 by giving them the appropriate interaction.

We gave all parameter sets a small strength interaction (0.1) so that

we could see the typical movement of the position of the stripe

without losing function. We simulated the un-mutated and

mutated parameter sets and asked how much the peak (highest

value) of the stripe moves. The results are striking and show that

on average mutating to topology 5 moves the peak 1.1 cells to the

right, whereas mutating to topology 3 on average moves the peak

8.3 cells to the left for an inhibitory interaction of 0.1. This means

that typically a mutation to topology 3 will destroy the function

since most mutations involve a change far greater than 0.1 which

will shift the stripe out of the spatial configuration of the model (off

the left hand boundary as depicted in Figure 3c second panel).

However a mutation to topology 5 will shift the stripe several cells

to the right and most probably maintain functionality (Figure 3c

third panel). That means that typically parameter sets from

topology 5 will have their stripes further to the right of the spatial

domain. Such a configuration gives much more scope for

functionality when one adds the inhibition of topology 3 to

generate topology 6 as depicted in Figure 3c (bottom panel). There

is now more space to shift the stripe of expression and maintain

functionality. Hence the permissive mutation functions by having

a small counteracting affect to the detrimental mutation thus

improving the likelihood that the system will stay within the spatial

configuration of the model when the permissive mutation occurs

before the detrimental mutation.

The observation of higher dimensional fitness ridges in multiple

contexts suggests that the concept of 2-loci epistasis may not be

appropriate for the study of many biological systems. This point

depends on whether these extra-dimensional bypasses are a com-

mon feature of the neutral networks that underlie biological

systems? To explore how common extra dimensional bypasses are

in these situations where there is RSE, we analyzed the extent of

bypasses between the RSE topologies of the Bi-stable mechanism.

A bypass must only contain topologies with significant average

functional neutrality (using the same significance measure de-

Figure 2. Counter-balanced gene regulatory inputs as a cause of RSE. a) A description of the bi-stable mechanism. (Top) The core topology.
The genes are named based on their role in the mechanism. The mechanism involves a ‘‘general repressor’’ which regulates the activity of a bi-stable
module. The bi-stable module consists of an auto-activating gene that activates a gene that represses itself. (Bottom) The space time behavior of the
core topology with a typical parameter set. The x-dimension represents space and the y-dimension represents the gene product concentration. The
color corresponds to the gene in the topology above. T indicates the representative stage of the mechanism. The morphogen feeds into the general
repressor that correspondingly forms a similar gradient. The ‘‘module activator’’ starts to be expressed everywhere due to positive auto-regulation.
The ‘‘module repressor’’ starts to be expressed on the right hand side due to activation everywhere by the module activator and repression on the
left hand side by the general repressor. Middle (T = 2): At the very right hand side, the module repressor reaches a high enough concentration to start
to force the activator off. Late (T = 3): The module repressor concentration also starts to drop due to lack of activation from the module activator. Final
(T = 4). The result is a stripe of expression of the module repressor gene. b) An example of where counter-balanced gene-gene regulatory inputs
cause RSE. The core topology of the Bi-stable mechanism (black gene-gene interactions) is viable/fit (1) along with the core topology with two
additional interactions of opposing sign (green gene-gene interactions) that feed into the same gene (4). However either of the individual mutations
alone has significantly less average functional neutrality (2 and 3). c) An illustration of the general concept of counter-balanced gene regulatory
inputs causing RSE. The inputs must feed into the same gene though the interaction could come from the same gene or another gene.
doi:10.1371/journal.pone.0061178.g002
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scribed earlier) and can be of any length. The results are shown as

a histogram in Figure 3d. In 71% (40 out of 56) of the cases of RSE

a high fitness ridge exists. Hence extra dimensional bypasses are

almost as common as RSE since in most cases where we observe

RSE there is also a route between the two topologies that does not

involve a significant average functional neutrality decrease. Those

situations of RSE where there is a bypass of length 4 have a direct

permissive mutation between them. In other words like the

example in Figure 3a, the two direct routes result in loss of fitness

but the addition and removal of a single gene-gene interaction

buffers these changes allowing a transition without loss of average

functional neutrality. The longer (.4) bypasses between the two

RSE topologies involve more complex buffering than simple single

permissive mutations such as multiple subtle effects of individual

mutations.

Figure 3. Permissive mutations allow RSE to be bypassed. a) The same example of RSE from figure 2 with an extra-dimensional bypass. The
addition of a permissive mutation (red interaction in topology 5) before the original individual mutations are added (green interactions in topologies
6 and 7) allows the topology to retain a high average functional neutrality. The permissive mutation can then be removed (7 to 4) resulting in a bypass
of the RSE. b) A scheme adapted from Ortlund et al., (2007) highlighting the similarity of permissive mutations in gene regulatory networks and in
enzyme sequence-function relationships [14]. Topologies are shown in the circles. Large numbers in the circles represent the topology number and
the number in the bracket is the number of functional parameter sets for that topology (i.e. the average functional neutrality; note that this was
measured after the 7 topologies were re-simulated with a million parameter sets). The numbers on the edges represent the probability of a mutation
of one of the successful parameter sets being functional when changed to the next topology when stepping through parameter space (in the
direction of the arrows; see Methods). Non-viable steps are shown as red blocks (defined by a chance of less that 1%) and viable steps are shown by
double headed arrows. c) The permissive interaction is caused by opposing effectors of differing strength. A typical mutation from a genotype with
topology 1 to a genotype with topology 3 will significantly shift the stripe of gene expression to the left (second panel). The majority of these
mutations leave the stripe outside the spatial field as defined by the morphogen gradient and therefore they are not functional. The mutation of
a genotype with topology 1 to a genotype with topology 5 on the other hand typically shifts the stripe to the right and by a much smaller amount
than the 1.3 shift (see main text). Therefore many more of the 1.5 transitions are viable. Because many more of the genotypes that correspond to
topology 5 have their stripes at the extreme of the spatial domain, there is now more scope to introduce the green inhibition of topology 3. There is
more space to shift the stripe by introducing this interaction and still result in a functional stripe. d) A histogram of the extra-dimensional bypass
lengths between pairs of topologies in RSE. e) An illustration of how an average functional neutrality landscape can be envisaged as a density map of
functionally neutral genotypes and how our measure of RSE and bypasses using topology is an underestimate. The Axes are genotype parameters. In
reality there are 3 dimensions for the 3 interactions added between topology 1 and 7 but here we have reduced to 2 for simplicity. Black dots
represent functional genotypes (topology with specific parameter set) and dashed dots represent non-functional genotypes. Large dashed circles
represent the topologies (numbers) to which those genotypes map. Multiple different RSE and extra dimensional bypasses between topology 1 and 4
are shown by the light blue RSE geometry and the paths of solid black arrows respectively.
doi:10.1371/journal.pone.0061178.g003
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As mentioned in the introduction we postulated that the average

functional neutrality of a topology should correlate with the

number of functional paths through that underlying region of

genotype space. To directly test this postulation we attempted to

mutate each functional genotype (topology with specific parameter

set) belonging to one topology class directly into the neighboring

functional topology class by the addition or removal of a single

gene-gene interaction with the rest of the parameter set equal. For

each functional parameter set of each topology we added/

removed the appropriate interaction which was given a random

strength (See Methods). The resulting parameter set was simulated

after each mutation and the stripe criterion was used to ask

whether the mutant genotype was functional. We performed 100

mutations for each functional genotype and scored the fraction of

mutations that were functional for each topology (labeled on the

edges of Figure 3b). The result demonstrates that it is far more

probable (approximately 10 fold comparing transition 1.5 versus

1.2 or 1.3) to generate successful mutants moving through the

bypass than through the direct routes. This result shows that there

is a larger fraction of functional paths through the topologies that

have larger average functional neutrality. The probability that

a mutation is functional and the fraction of functional parameter

space of the resulting topology have a Pearson’s correlation

coefficient of 0.74 (one-tailed probability of 0.046). Furthermore

we can perform walks in parameter space that change topology 1

to 4 all the way through the bypass that maintain functionality yet

none of an equal number of walks through the direct routes

maintain functionality (See File S1 and Figure S3). Together these

results validate our postulation and the use of topology space as

a meaningful way of measuring RSE and restricted evolutionary

paths in GRNs.

Discussion

In summary, we have taken the analysis of RSE into the realm

of dynamical GRNs. We demonstrate that most mechanisms for

performing even a simple developmental function display some

degree of RSE in their underlying functionality landscapes,

suggesting that this is a common intrinsic property for evolving

networks. This analysis demonstrated that the irregularity of the

neutral network in genotype space is related to the underlying

mechanism. Since the shape of a neutral network has been

suggested to influence evolutionary innovation it is possible that

certain mechanisms are favorable from an evolutionary standpoint

[19]. This analysis also revealed that counter-balanced regulatory

inputs may often be responsible for RSE, and that RSE can be

bypassed by means of permissive mutations which buffer the

changes that occur in the direct route between two GRN

topologies (Figure 3b).

Validity of the Model
A key assumption for the validity of the model used in this study

is that the core networks described do actually control variation in

phenotype in natural systems. Intriguingly both the classical and

the mutual inhibition type networks can be found as sub-networks

of the Drosophila gap gene network [17]. The gap gene network of

the Drosophila blastoderm has been shown to reduce variation in

gene expression from Bicoid to the downstream GAP genes by the

process of canalization [23,24]. Indeed knock out of Kruppel,

Knirps or Tailless increases this variation [25,26]. Hence it can be

demonstrated that for at least 2 core GRNs evaluated in this study

there exists evidence that these networks control variation in gene

expression and the resulting phenotype since the Gap genes

control the segmentation of the embryo. The model is thus valid to

explore evolutionary trajectories in developmental GRNs.

One criticism of the model we have used is that it does not

utilize a typical fitness measure. Typical fitness measures involve

some aspect of the phenotype that can be considered a selectable

trait. For example the sharpness of the stripe of gene expression

would be one such measure that could potentially give a selective

advantage. These features have important influences on the

likelihood that different routes are taken in genotype space.

However the most important contribution to fitness is whether the

genotype can achieve the function or not irrespective of how

‘‘well’’ it performs the function. Our average functional neutrality

is based on the likelihood of a genotype that corresponds to that

topology being functional. We have shown average functional

neutrality of topologies correlates with the fraction of functional

paths through them (Figure 3b). As such it is a valid statistical

measure of the amount of RSE and restriction in evolutionary

paths within a genotype-phenotype structure.

Furthermore this idea can be illustrated when we envisage our

sampling in topology space as a density map of functional

genotypes (topology with specific parameters) in underlying

continuous genotype space (Figure 3e). Here the regions of space

corresponding to the topologies with high average functional

neutrality are dense, while those corresponding to the topologies

with low average functional neutrality are sparse. For one to travel

from a genotype in one dense region to a genotype in the other

dense region directly through topologies 2 and 3, statistically many

of the routes will involve a non functional intermediate as

illustrated by the 2 RSE geometries in figure 3e (this point is

confirmed by our mutational walks through parameter space;

values on the edges in figure 3b). Hence though we have only

scored this topological geometry as a single RSE, in the underlying

continuous genotype space it may represent multiple RSEs. In the

same way, though we have scored just a single extra dimensional

bypass from topology 1 through 5, 6 and 7 to 4, in underlying

continuous genotype space there maybe multiple routes as

illustrated by the bold arrows in figure 3e. Taken together our

measures of RSE and bypass frequency are likely to be under-

estimates of the actual amounts of RSE and bypasses in these

genotype-phenotype maps. This further strengthens our conclu-

sions that RSE and bypasses are frequent in genotype-phenotype

maps for higher levels of biological function.

A General Theory of Permissive Mutations
Our analysis suggests one general theory for permissive

mutations in gene regulatory networks and possibly other

genotype-phenotype systems. There is an order by which

mutations with opposing affect on functionality must occur. A

mutation with a minor affect (the permissive mutation) must occur

before a mutation with an opposite larger effect to maintain the

system in the dynamic range as defined by the system configu-

ration. For example in this work one aspect of the system

configuration is the maximum and the minimum of the

morphogen gradient which defines a dynamic range between 1

and 0.1. The minor permissive mutation shifts the functionality

(stripe of gene expression) to the edge of the configuration limits

(edge of the morphogen gradient or spatial boundary in our case).

The probability of maintaining function with this mutation is

greater than the probability of maintaining function with the large

opposing mutation since the large mutation is likely to shift the

functionality out of the dynamic range of the system (shift the

stripe off the end of the spatial boundary so that the stripe only

occurs between two morphogen thresholds both above 1–

Figure 3c second panel). However once the permissive mutation

Restricted Evolutionary Paths in GRNs
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has occurred, the scope of the dynamic range of the system is now

much larger for the second larger mutation since its affect on

functionality (the stripe) will push the system to the opposite side of

the configuration limits. Hence the larger mutation can be a viable

mutation, but only if the permissive mutation has already

occurred. Note such situations would not arise if the morphogen

gradient would not have configuration limits and could range from

infinity to 0. However such boundaries or limits to the system like

the concept of saturation for example are physically unavoidable

aspects of GRN systems. As such the concept of smaller permissive

mutations followed by larger mutations with opposing effect are

probably a common explanation for extra-dimensional bypasses in

both genotype-phenotype maps of GRNs and other genotype-

phenotype systems.

Testable Hypothesis
How then can we experimentally test out hypothesis that

mutually balanced interactions are responsible for RSE and

interactions of opposing action yet differing strength are re-

sponsible for permissive mutations? Testing such hypothesis will

require going beyond the identification of essential genes (for

which data is currently available in multiple species) to a situation

where essential individual gene-gene interactions are identified. A

complementary experiment for validating our hypothesis would

involve constructing our GRNs synthetically. If one could

synthetically construct such networks then one could directly

explore the affects of adding complementary positive and negative

interactions of differing strength. We would predict for example

that adding either alone (of similar strength) would diminish

function, but in combination should have minimal effect. We

would also predict that in general mutations of opposing effect but

of different strength maintain function only if added in a particular

order (minor permissive mutation first). At least 3 of our core

networks have already been built in multiple species and others are

currently being constructed [27–30]. The power of such construc-

tions is that they only contain the basic core interactions needed

for the function rather than other natural networks that have

become baroque in nature (contain a more complicated architec-

ture than seems necessary for the function [31]) probably through

drift. Indeed our observation that extra dimensional bypasses are

common in genotype-phenotype maps for GRNs suggests one

explanation for why GRN networks have a baroque structure in

the first place since there are many possibilities for adding

functionally neutral gene-gene interactions which seemingly are

not important for core function.

Replaying the Tape of Life at Higher Levels of Biological
Organization?
How can the results of this study be compared to those results

exploring similar phenomena in single proteins? A related

phenomenon to permissive interactions with restricted evolution-

ary paths due to RSE has also been observed for specific examples

in protein sequence-function relationships [14]. The existence of

such a phenomenon in these diverse contexts suggests that

permissive routes through higher genotypic dimensions are

a general feature of the evolution of biological systems. However,

one of the key findings of studies of evolutionary constraints in

single proteins was that many intramolecular combinations are

non-viable and therefore the trajectories open to evolution are

limited and often the ‘‘tape of life’’ can be replayed such that that

evolution often takes the same mutational path [13,32,33]. Here

we have studied a higher level of biological organization and

instead find that there are many more routes between functional

genotypes (almost all incidences of 2 topologies linked via RSE

have at least one bypass for example). This discrepancy between

these conclusions could simply result from the fact that we have

used a binary fitness function. Although many routes produce

a functional stripe of gene expression, some routes may result in

the production of a ‘‘better’’ stripe than others such that those

routes are more likely. If a less abstract fitness function was used

then involving some aspect of the quality of the stripe this may

biased the likelihood of some specific paths over others.

Alternatively the discrepancy may result from the fact that when

considering a single protein the ways to increase fitness are greatly

limited due to pleiotropy and conformational epistasis. Protein

sequence space is discrete and any change can have a great effect

on multiple aspects of the protein potentially destroying the

function. Genotype space by contrast is continuous meaning that

changes can be finer allowing for more oblique traverses without

loss of function. The tape of life for the evolution of development

at the level of GRNs then, may not be as predictable as that for

protein function.

Methods

Enumerating All GRN Topologies
A topology can be represented in the form of a matrix wij where

i and j represent the position in those matrices and values 1, 21

and 0 represent activation, repression and no interaction re-

spectively. We generated all possible matrices that correspond to

unlabelled topologies and then removed isometric equivalents by

comparing them in all possible permutations. There are 19,683

gene network matrices before non-isometric topologies have been

removed and this is reduced to 3,284 topologies in the fully

enumerated set.

The morphogen gene is a gene that activates one of the genes of

the GRN but is not affected by the GRN. Each GRN topology is

represented multiple times with the morphogen feeding into the

different genes (exact number depends on the amount of symmetry

in the GRN topology). The morphogen is taken account of in the

topology generation by extending the GRN matrix (i = i+1) to
include the input from the morphogen (which is permutated

independently). When the morphogen is included the number of

isometric topologies increases from 3,284 to 9,710.

Creating an Atlas of GRNs by Including Explicit
Neighbour Definitions
Two GRN topologies are considered neighbours in the atlas if

the two GRN topologies are one Hamming distance apart (a single

gene-gene interaction change). The Hamming distance can be

measured by the following equation where

D(w,w0)~
X

i,j
Dsgn wij

� �
{sgn w0

ij

� �
D: ð1Þ

D is the Hamming distance between the matrices of two GRN

topologies w and w9 whilst i and j represent the position in those

matrices. The matrices are compared in every permutation and

the lowest D of those permutations is taken as the Hamming

distance. Hence two GRN topologies are neighbours if the gain or

removal of any one interaction can transform one of the GRN

topologies into the other.

The Gene Regulation Model
We employed a biologically-verified model of gene regulation

for this problem, and therefore adapted the continuous mathe-

matical model developed over the last 20 years by Reinitz et al

[34] which quantitatively captures the spatio-temporal dynamics
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of gap gene patterning in response to the Bicoid morphogen

gradient during Drosophila embryogenesis. The model is described

by

dgij
dt

~x w
PNg

l~1 W
ligljzM

h ih i
zDi+2gij{lgijzg tð Þgij , ð2Þ

where gij is the concentration of the ith gene in the jth cell, w xð Þ is
a function defining the interaction amongst genes (which can take

the form of a Michaelis-Menten, sigmoid or other non-linear input

function), Wli is a matrix containing the strength of gene-to-gene

regulation parameters, M is the morphogen input described in

more detail in the section ‘‘configuration of the spatial domain’’

below, x xð Þ is the Heaviside function (to prevent negative gene

product production rates), Di is the diffusion constant for the ith

gene which we use to represent local cell-cell signaling, l is the

decay rate (set to 0.05), and g tð Þ is a noise term which adds

uniformly-distributed fluctuations (+/21%) to the concentration

of every gene in every cell at every time step. There is zero auto-

correlation in the noise term. The parameters that could vary in

the model were regulation Wli, and diffusion Di . The input

function describes the relationship between the activation and

inhibition of a gene and its actual expression. The input function

used in this work took the form of a Michaelis-Menten function

which is defined by

O~
I

1zIð Þ , ð3Þ

where I is the total input into the gene and O is the output of the

function.

The Discretized Form of the Equations
How the concentration x of a gene i will change in any given cell

j at time t is described by

x
i,j
tz1~x

i,j
t zx w

XNg

l~1
Wlix

l,j
t

h ih i
zDi x

i,j{1
t zx

i,jz1
t {2x

i,j
t

h i
{lx

i,j
t zg tð Þxi,jt :

ð4Þ

Here W is the interaction matrix described earlier and w is the

input function. D is the diffusion coefficient for each gene i and l is
the decay parameter which is the same for every gene. The noise

term g tð Þ selects a random number within a given range.x xð Þ is

the Heaviside function where x xð Þ~x for Vxw0 and x xð Þ
otherwise. Its purpose is to make sure the regulation term can only

take positive values.

Parameter Range Distributions
For each GRN topology 30,000 different parameter sets were

tested (a GRN topology with a specific set of parameters we called

a genotype). There are up to 12 variable parameters for a 3 gene

network; diffusion for each individual gene and then the strengths

of the interaction values between the genes. The parameters are

chosen randomly though biased towards lower numbers through

a logarithmic probability distribution. The logarithmic probability

distribution was implemented in order to take account of the fact

that a small change in a small parameter value will have a greater

effect on a network’s behaviour than a small change in a larger

parameter value. The logarithmic probability distribution is

described by

V~0:9995iR, ð5Þ

Where i is a random number between 0 and 10,000 and R is the

parameter range and V is the resulting parameter value.

Parameter ranges are as follows; regulation 0–10 and diffusion

0–0.05.

Configuration of the Spatial Domain
The simulations take place on a theoretical one dimensional row

of 32 cells. Zero-flux boundary conditions are used throughout this

work. The simulation starts with every gene in every cell set to

have a concentration of 0.1. This was necessary because the noise

term used is a percentage noise term and thus if the concentration

were always 0 at the start of the simulation then the products of

any genes with positive feedbacks without any other input would

remain at 0. The simulation is also initiated by the positive input

from the morphogen gradient that does not change throughout the

simulation.

The morphogen strength was chosen to give an approximate

input range to the receiving gene of 10–50% of the maximal

activation. The morphogen input is defined by

M~Idc, ð6Þ

Where M is the morphogen input, I is the morphogen

concentration in the left-most cell of the field, d is the reduction

of morphogen concentration in each subsequent cell of the

morphogen gradient and c is the cell position. For the 10–50%

input range, I~1 and d~0:93 was used for the Michaelis-Menten

function.

Stripe Forming Functional Definition
For a genotype (GRN topology with a specific parameter set) to

be considered functional it had to reach an equilibrium (described

in Supplementary Methods) and it had to produce a stripe of gene

expression for at least one of the genes. For each gene we

measured an abstraction of its gene expression over the one-

dimensional field where each cell was defined as low or high. We

defined a cell as low if the gene expression was below 10% of the

maximum possible allowed by the model. We defined a cell as high

if the gene expression was above 10% of the maximum gene

expression allowed by the model. A gene was considered to have

a stripe pattern if it had a single region of low for 2 consecutive

cells followed by a single region of high for a maximum of 16

consecutive cells followed by a single region of low for at least 2

consecutive cells. The two low regions must occur at the

extremities of the field. The definition is intentionally loose in

the sense that the single stripe can be of any width up to 16 cells

and be in any position in the spatial domain. This is because we

are interested in the basic design principles of the system, not the

details of how to control a specific width. Functional parameter

sets that can produce the single stripe of gene expression we term

‘‘solutions’’. Hence a single topology has multiple genotypes and

can have multiple solutions. The number of solutions that each

topology has is a measure of its mutational robustness. A GRN

topology must have at least one solution to be considered

functional.
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Splitting the Functional Topologies into Subsets each
Responsible for a Different Mechanism and Creating
Average Functional Neutrality Landscapes
In order to explore whether changes in the mechanism by which

a GRN is functioning is responsible for the prevalence of RSE in

an average functional neutrality landscape, we split the functional

GRN topologies into 6 categories, each corresponding to the 6

different mechanisms we identified in our previous study [17]. If

a GRN topology could perform a mechanism for at least one

parameter set then it was included in that particular subset.

Therefore a GRN topology can be present in multiple subsets.

GRN topologies were assigned to mechanistic classes using the

method for mapping mechanisms to the complexity atlas described

in Supplementary Methods. Each subset is then used to build an

average functional neutrality landscape for each particular

mechanism. The total number of functional GRN topologies

was 471. The number of GRN topologies in each of the average

functional neutrality landscapes was as follows; Incoherent Feed-

Forward type 1 (97), Mutual Inhibition (44), Frozen Oscillator

(27), Overlapping Domains (56), Bi-stable (109) and Classical (39).

Topologies are assigned an average functional neutrality score

based on their parameter robustness (Number of parameter sets

that successfully produced the stripe of gene expression). Topol-

ogies are vertices in the landscapes and they are connected by

edges based on the neighbor definitions of the atlas described

earlier.

Calculating the Extent of RSE
In order to calculate the extent of RSE in the individual average

functional neutrality landscapes we analyzed all pair-wise

combinations of topologies in the average functional neutrality

landscape to see if they conform to the V-shaped viability/fitness

geometry. The V-shaped viability/fitness geometry of RSE is

defined as two GRN topologies (topologies A and B) that are two

hamming distances apart that have exactly two direct intermediate

topologies. These intermediate topologies both must have

significantly lower average functional neutrality than topologies

A and B. Significantly low average functional neutrality is defined

by

F~FA{SA and F~FB{SB: ð7Þ

Where FA is the average functional neutrality of topology A (which

is defined as the number of functional parameter sets for that

topology) and SA is the standard deviation of the average

functional neutrality of topology A, assuming a binomial distribu-

tion. The standard deviation of a binomial distribution is described

by

S~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1{pð Þ

p
: ð8Þ

Where n is the number of trials and p is the probability of

functionality (the true average functional neutrality). Since we do

not know the true average functional neutrality, this measure is

bootstrapped using the measured average functional neutrality FA

as a proportion of the total number of parameter sets tested

(number of trials, n) giving

S~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FA 1{

FA

n

� �s
: ð9Þ

Calculating the Extent of Permissive Mutations/extra-
dimensional Bypasses
In order to calculate the extent of extra-dimensional bypasses

between pairs of GRN topologies that have the RSE V-shaped

viability/fitness geometry we analyzed all mutational routes

between these pairs of topologies. For a route to be considered

an extra-dimensional bypass every GRN topology within the route

must have average functional neutrality within one standard

deviation of topologies A and B as described in equation 7. For

each pair-wise combination of GRN topology showing the RSE

geometry we record the length of each extra-dimensional bypass

(measured by the number of gene-gene interaction changes). The

direct permissive mutations are those with a bypass length of 4

since they involve the 2 original mutations required to change

topology A into B (and vice versa) and the two other mutations

that involve the addition and removal of the permissive mutation.

Performing Mutational Walks between Topologies
We measured the fraction of mutations from a functional

parameter set of one topology to a functional parameter set of

another topology (specifically in the direction of the arrows in

figure 3b). We start with a functional parameter set of our

reference topology and remove or add the appropriate interaction.

If we add an interaction, we give the new interaction the

appropriate sign and with a random value using the criteria that

we describe in parameter range distributions above. If we remove

an interaction the value is simply set to 0. We then re-simulate this

mutated genotype and ask if it is functional using our functional

stripe definition described above. We do this 100 times for every

specific parameter set and calculate the proportion of tests that are

functional. For example we perform 74,400 tests of mutating

topology 1 to topology 5. The proportions of functional tests are

found in brackets on the edges of figure 3b.

Supporting Information

Figure S1 Summarizing the key results of the previous
study [17]. A complexity landscape identifies core mechanisms

responsible for generating a stripe of gene expression. Vertices are

topologies and edges connect topologies one hamming distance

apart (one gene-gene interaction change). Topologies are spaced

manually in the x-axis to reduce edge crossing and in the y-axis by

their complexity (number of gene-gene interactions). Stalactites of

complexity emerge out of the bottom of the landscape converging

to minimal core topologies that represent distinct mechanisms.

Mechanisms were mapped to the complexity landscape by

coloring topologies according to their mechanism class (See

Supplementary Methods). Topologies were colored Light green

(A: Incoherent feed-forward type 1 mechanism), Light Blue (B:

Mutual inhibition mechanism), light red (C: Frozen oscillator

mechanism), Dark green (D: Overlapping domains mechanism),

Dark blue (E: Bi-stable mechanism) or Dark red (F: Classical

mechanism). Topologies were colored yellow if they were capable

of acting via multiple mechanisms depending upon their exact

parameter set. The corresponding core topologies of these

mechanisms (those at the very bottom of the stalactite) are shown

below the complexity landscape. 3 examples space-time behaviors

of each mechanism are also shown. Here the spatial dimensions

represent time and space and the intensity of red, green or blue

based on the expression value of that gene at that time in that cell.
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The final gene expression graphs at equilibrium are shown below

(corresponding to the bottom space time plot).

(TIF)

Figure S2 Topology space is a discrete representation
of an underlying continuous genotype (parameter)
space. The concept of a topology space (adapted from reference

17). (a) A GRN topology where two of the gene-gene interactions

a and b correspond to the parameter space in (b). (b) A parameter

space of the two parameters a and b. Dots are random parameter

sets from this space. (c) A topology space is created if all values of

a and b that are positive are considered gene-gene activations,

those values of a and b that are negative are considered gene-gene

repressions and those values of a and b that are 0 are considered to

generate no gene-gene interaction. Regions of parameter space

corresponding to the different topologies are indicated by the

different colored circles surrounding the topologies and the

different colored dots in (d). Where topologies differ by a single

gene-gene interaction (one Hamming distance) they are linked by

a blue line. Such links connect regions of close parameter space.

(TIF)

Figure S3 Not all topology changes represent viable
steps in an evolutionary walk on a neutral network at the
level of the underlying genotype space. Two examples are

shown. Boxes represent a simplified version of the parameter

spaces of 3 topologies called A, B and C. Black circles represent the

functional parameter volumes. Thick arrows represent viable

mutational steps and dashed arrows represent unviable steps.

(Top) The two topologies (A and B) each work by a single but

different mechanism. Changing A into B or vice versa then leads

to a non-viable region of parameter space. (Bottom) The topology

(B) can generate the gene expression pattern with two mechan-

isms. Two other neighboring topologies (A and C) can function

but using either one of these two mechanisms. Changing from

either A or C to B is viable. However changing from A to B to C or

vice versa is only possible if the change between the viable regions

of topology B involves a change in only a single parameter.

(TIF)

File S1 Consisting of Supplementary Note and Supple-
mentary Methods.

(DOCX)
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