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Abstract

Identifying sources of sampling variation and quantifying their magnitude is critical to the interpretation of ecological field
data. Yet, most monitoring programs of reef fish populations based on underwater visual censuses (UVC) consider only a
few of the factors that may influence fish counts, such as the diver or census methodology. Recent studies, however, have
drawn attention to a broader range of processes that introduce variability at different temporal scales. This study analyzes
the magnitude of different sources of variation in UVCs of temperate reef fishes off Patagonia (Argentina). The variability
associated with time-of-day, tidal state, and time elapsed between censuses (minutes, days, weeks and months) was
quantified for censuses conducted on the five most conspicuous and common species: Pinguipes brasilianus, Pseudopercis
semifasciata, Sebastes oculatus, Acanthistius patachonicus and Nemadactylus bergi. Variance components corresponding to
spatial heterogeneity and to the different temporal scales were estimated using nested random models. The levels of
variability estimated for the different species were related to their life history attributes and behavior. Neither time-of-day
nor tidal state had a significant effect on counts, except for the influence of tide on P. brasilianus. Spatial heterogeneity was
the dominant source of variance in all but one species. Among the temporal scales, the intra-annual variation was the
highest component for most species due to marked seasonal fluctuations in abundance, followed by the weekly and the
instantaneous variation; the daily component was not significant. The variability between censuses conducted at different
tidal levels and time-of-day was similar in magnitude to the instantaneous variation, reinforcing the conclusion that
stochastic variation at very short time scales is non-negligible and should be taken into account in the design of monitoring
programs and experiments. The present study provides baseline information to design and interpret results from visual
census programs in temperate reefs.
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Introduction

Accounting for or minimizing ‘‘unexplained’’ sampling vari-

ability represents a challenge in all fields of ecology, given its

importance for correctly interpreting field data [1–5]. Most

monitoring programs of reef fish populations aim to assess spatial

and/or temporal changes in their abundance; for example, to

assess the effects of fishing by comparing protected to unprotected

areas. Indices of abundance of reef fishes collected through such

programs are affected by multiple sources of variability, whose

magnitude depends on the characteristics of the habitats and

species monitored. Despite the importance of understanding the

sources of variability for experimental design and data analysis,

surprisingly few studies have quantified the variability associated

with different temporal scales and processes, which may introduce

‘‘noise’’ in the data and potentially confound the results.

Different methods are used to collect field data for estimating

reef-fish abundance (e.g., gillnets, trapping, video recording and

visual censuses, see [6–13]). Among them, underwater visual

census (UVC) is the most commonly used in shallow waters

because it offers several advantages: censuses are non-destructive

sampling techniques, therefore suitable for use in marine protected

areas (MPAs) and on long-lived rare species; they work for a wide

range of fish sizes and behaviors; and they are cost-effective in

terms of money, time and logistics, compared to video recording.

In addition, divers may register several variables and gather direct

observations while they count fish (e.g., Reef Life Survey Program,

URL: http:\\www.reeflifesurvey.com). Drawbacks of UVC tech-

niques, however, are biases in the estimates of abundance of

cryptic species and small fishes, problems with recounting mobile

individuals, lack of a permanent record, and diver avoidance of

some species [10,11,14–17].

Sources of variation in visual census datasets were classified by

Thompson & Mapstone [4] in three general categories: (1) real

changes in abundances due to recruitment and/or loss of

individuals to populations; (2) temporary local shifts in the

distribution of individuals, without net change in population size;

and (3) sampling error. Sampling error is composed of systematic

error (due to low detectability of some species or fishes) and

random factors (e.g., counting errors), both influenced by the diver

and directly related to his/her experience [14–16]. Detectability is

defined as the probability of observing a particular species during a

given sampling occasion conditional on its presence at that

location [18]. UVC-based studies routinely assume that
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detectability equals one for all species, although in reality it may

vary substantially among reef fishes and habitats in relation to

behavioral and life-history characteristics. For example, estimation

bias may be substantial in the case of cryptic or small species

[17,19,20]. The random portion of the sampling error is composed

of simple counting error plus real variation in local abundance

introduced by random displacements of fish across the boundaries

of the sampling units, at very short time scales (e.g., seconds to

minutes). Both contribute to what McClanahan et al. [14] called

‘‘instantaneous variation’’, which they found to be a large source

of variation for the coral reef fishes they surveyed, often

overlooked in previous works (i.e., which attributed it to larger

temporal scales). Counts of fast swimming and schooling species

are particularly affected by this source of variation. Aside from

diver effects, which can be readily estimated [19], the remaining

sources of instantaneous variability in fish counts are difficult to

discriminate as they all contribute to base sampling error

[14,16,21]. At larger temporal scales, displacements in response

to tidal level or time-of-day (e.g., in response to light) may result in

increased variation at the scale of hours, while seasonal migrations

associated with changes in water temperature or reproductive

cycles would increase variation at the scale of months. The

assessment of actual changes in abundance over longer time

periods (often the scale of interest) resulting from trends in

recruitment and mortality, or from shifts in distribution (e.g., shifts

in latitudinal range associated with climate change), needs to take

into account the magnitude of all sources of variability. However,

most studies based on UVC data typically consider only a few such

sources (e.g., diver effect, time-of-day) [22–24], and methods used

to partition variability amongst the different components, includ-

ing not only temporal but also spatial variation, may be

inappropriate if they fail to account for the different sources.

The investigation of sources of error and variability in UVC is a

rising and fast-developing field due to its relevance for a correct

interpretation of the data and for the design of appropriate

monitoring programs (e.g., [4,14,16,17,21–25]).

The aim of this study was to assess the magnitude of temporal

sources of variation in UVCs conducted on a low-diversity reef-

fish assemblage, typical of temperate shallow reefs in the northern

Atlantic Patagonian coast. Two types of variation were considered:

(1) differences in time-of-day and tidal level, treated as determin-

istic factors, and (2) those associated with different temporal scales,

treated as stochastic factors. A unified statistical framework based

on nested random-effect models was used to analyze the data,

while accounting for spatial heterogeneity between reefs. The

paper presents an original case study from temperate waters,

which provides information relevant for survey design and

interpretation of past UVC data used for monitoring temperate

reef systems.

Materials and Methods

Northern Patagonia rocky reefs and fishes
In the study area, reefs are formed by isolated small rocky

outcrops that extend for a few hundred meters on an otherwise

flat, soft bottom. These reefs are mainly linear structures, typically

breaks or ledges (up to 4 m high and 6 m wide) located along the

edge of submerged abrasion limestone platforms, where cavities

are formed. Crumbled portions of the ledges determine width and

structural complexity of the reefs.

The northern Patagonia reef-fish assemblage has a low species

diversity: it is composed of 29 species belonging to 21 families [26],

but only five of species (four families) are conspicuous and

commonly found in the reefs: Pinguipes brasilianus, Pseudopercis

semifasciata, Sebastes oculatus, Acanthistius patachonicus (see [27] for a

taxonomic update for this species) and Nemadactylus bergi [26]. This

work focuses on these most common non-cryptic species, which

are easily detectable by standard strip transect visual censuses.

While N. bergi is a schooling species, the rest are sedentary

demersal fishes, strongly associated to refuges [26].

Study site
Fish censuses were conducted at 12 shallow rocky reefs near

Punta Pardelas (42.7uS 64.3uW), Nuevo Gulf, from March 2007 to

February 2008. This site was selected because of the large number

of reefs and good visibility (between 5 m and 10 m). Because the

abundance of P. semifasciata in Pardelas was too low to provide

reliable estimates of variability, data from UVCs conducted in San

José Gulf (42.3uS 64.4uW) were used (see [24] for details),

corresponding to three shallow rocky reefs censused between July

2002 and May 2004 (reefs B, C and E in [24]). Those reefs were

similar in shape, topography and depth to the reefs from Pardelas,

and the visual census technique used was comparable (see below).

The reefs selected at Nuevo Gulf were small ledges (24 m to

150 m in length by up to 5 m in width), separated from each other

by 50 m to 1.2 km. Reefs from San José Gulf were much farther

apart (from 3.7 km to 19.6 km), up to 3 m wide, and between

52 m and 315 m in length. Reefs depth ranged between 5 m and

16 m at low tide. The tidal regime is semidiurnal and the mean

tidal amplitude is 3.8 m in Nuevo Gulf and 5.7 in San Jose Gulf,

but spring tides could reach 5.7 m and 8.8 m, respectively.

Underwater visual census methods
Censuses of the 12 reefs selected in Nuevo Gulf were all

conducted by the same diver, by swimming along a fixed

25 m65 m strip transect along the reef ledge. A single transect

was randomly positioned in each reef at the beginning of the study,

and delimited by iron pickets driven permanently into the bottom.

Three sequential passes were made of each transect, swimming at

a constant speed (24 m/min), to count individuals of A.

patachonius, S. oculatus and P. brasilianus, in that order, using

standard methodology [4,16,24,28]. To increase the probability of

detection of the schooling species N. bergi, whose counts involved

at most one single school, this species was counted on each pass

and the maximum number encountered recorded.

At San José Gulf, the entire reefs were censused by three divers,

who counted all P. semifasciata observed while swimming along the

ledges. Three replicated censuses were completed on each

sampling occasion, one by each diver in random order, waiting

5–10 minutes between successive censuses. No significant effects of

order of census (i.e., diver disturbance) nor diver identity were

detected when those effects were evaluated as fixed factors using

these data [24].

Because fish are only present on a narrow band (generally less

than 3 m wide) along the reef ledges, and given the good visibility

conditions in the area, divers were able to survey the whole width

of the reefs. Divers swam continuously, only counting fishes larger

than 10 cm of total length in order to avoid possible biases

associated with small size categories (e.g., [4,17]). They also

avoided counting fish that appeared from behind.

Sampling design
The reefs were censused at controlled tidal levels (low vs. high

tide) and times of day (morning vs. afternoon), and at different

time periods (from minutes to months), in order to quantify the

variability in fish counts associated with the different factors and

temporal scales. The censuses conducted in Nuevo Gulf to

evaluate short-term effects were concentrated in the fall, when

Variability in Counts of Temperate Reef Fishes
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water temperature reaches a maximum of ,17uC (minimum

temperature occurs in August and is approximately 9uC).

In order to evaluate the effects of tidal state and time-of-day on

fish counts, sampling dates and times were selected so that each

factor was allowed to vary one at a time while keeping the other

factor constant (for further details see Text S1). These determin-

istic factors were evaluated separately and prior to the onset of the

remaining temporal censuses; this approach was similar to that

used by Thompson & Mapstone [4]. Once the effect of time-of-

day was found to be non-significant for all species (see Results), the

effect of tidal state was evaluated by surveying all transects at low

and high tides during the same day. Tidal amplitude on the

sampling day (5 May 2007) was 4.3 m, whilst it ranged between

3 m and 4.5 m over the study period.

To estimate instantaneous variation, three replicated counts

were made for each species on each of the 12 transects, waiting 5

minutes between successive series (each series consisted of three

sequential passes, one per species as explained earlier). These

censuses were done on 4 April 2007 (transects 1 to 9) and on 4

May 2007 (transects 10 to 12) (Fig. 1). To estimate day-to-day (i.e.,

daily) variation in fish counts, all transects were surveyed once a

day during three consecutive days (between 0900 hrs and

1300 hrs), on 19–21 March 2007. The initial date was selected

opportunistically depending on logistics and weather conditions,

and the initial census was delayed ,45 min per day in order for

the tidal height to remain approximately constant. Variability at

the scale of weeks was assessed based on censuses conducted on

19–21 March 2007, 29 March 2007, and 4 April 2007 (Fig. 1).

Finally, to estimate intra-annual variation, all transects were

surveyed on an approximately monthly basis (n = 9), between

0900 hrs and 1300 hrs, from March 2007 to February 2008,

covering an annual cycle. Sampling dates did not follow a strictly

regular schedule, but were dependent on weather; thus tidal height

varied among censuses.

Censuses of P. semifasciata in San José Gulf were conducted over

a two-year period to investigate the species’ temporal pattern of

reef occupancy [24]; hence that data set only allowed assessment

of instantaneous and intra-annual variability in counts, but not the

effects of tidal height, time-of-day, and daily and weekly variation

(Fig. 1). These latter sources of variability therefore contribute to

the intra-annual variability estimated.

Statistical analysis
The variability of fish counts associated with different factors

and temporal scales was estimated separately for each species using

log-linear mixed and random-effect models. The models were

fitted by restricted maximum likelihood (REML) using the lme4

and nlme libraries [29,30] implemented in the R software [31].

REML was preferred to maximum likelihood (ML) because it

compensates for the downward bias of the ML estimates of

variance components [29,32] and it is the recommended

methodology for estimating variance components in unbalanced

designs [32,33]. In all cases (mixed- and random-effect models),

the transect identity was treated as a random effect in order to

account for variation associated with spatial heterogeneity, i.e.,

heterogeneity among the experimental units given by reef depth,

reef geomorphology, bottom type, availability of refuges, etc.

Time-of-day and tidal state were evaluated as fixed factors, with

levels: morning and afternoon, and low and high tide, respectively.

Figure 1. Sampling design used to evaluate variability at different temporal scales. Scheme of the sampling design followed on each reef,
for each of the five species censused in 12 reefs within Nuevo Gulf (A), and for Pseudopercis semifasciata censused in three reefs from San José Gulf
(B).
doi:10.1371/journal.pone.0061072.g001
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Their significance was assessed by a t-test, conditional on the

estimates of the random effects variance parameters [29].

In order to quantify the variability contributed by the different

temporal scales, a nested random-effect model was fitted, which

included day, week and month as random factors, all nested within

transect (see Text S2). All random effects were assumed to be

normally distributed with mean zero and variances s2
x, where x

represents a given random effect. The variance estimated for each

of the random effects (spatial and temporal) measures the

contribution of each source to the total variability. The residual

error was interpreted as the base sampling error or instantaneous

variability.

The percent contribution of each source to the total variance

was calculated from the ratio of each variance to the sum of all

variance components. The significance of each random compo-

nent was evaluated by likelihood ratio tests [29], comparing the

full model with one in which the given component had been

dropped, one at a time. Additionally, the nested model for P.

semifasciata included year as a random factor given that the data

were collected over a two-year period. Note that the standard

deviation (s) estimated with log-transformed data is close to the

coefficient of variation (CV) in the natural scale, as

CV~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp(s2){1

p
. The CVs corresponding to variation due to

spatial heterogeneity among reefs, CVSPAT , and temporal

variation added at increasing temporal scales,CVTEMP(TEMP:

instantaneous, day, week, month) were calculated from the

respective estimated variances. Confidence bounds (95%) for each

standard deviation were calculated using the function intervals of

the nlme library.

Seasonal patterns of abundance for each species were examined

by plotting the monthly average (over reefs) best linear unbiased

predictions (BLUPs) [29] corresponding to the intra-annual effects.

In addition to the nested model above, separate models were

fitted to subsets of the data corresponding to each temporal scale

(e.g., only the instantaneous or the daily replicates), to evaluate the

sensitivity of the estimates of spatial variation.

Fish counts were log-transformed to obtain additive effects. Due

to the absence of some species in a few sampling occasions, we

added a constant ( = 1) to all raw fish counts [ln(y+1)], except in the

case of P. semifasciata, whose counts were always positive. In the

latter, counts were standardized as number of individuals per 25 m

of transect length, because the three reefs surveyed had different

lengths. We excluded a few reefs considered as marginal non-

representative habitat in the cases of S. oculatus and N. bergi, where

the mean abundance over all censuses was less than one fish per

transect.

Coefficient of variation vs. mean counts
The relationship between the empirical CVs and mean fish

counts was examined for the instantaneous, daily, weekly and

monthly scales. Percent CVs were calculated from the raw counts

for each species and transect, by selecting the censuses replicated

at each temporal scale.

Results

Diurnal and tidal variation
Fish abundance did not vary significantly with time-of-day or

tidal state; the inclusion of the fixed effect in the models did not

reduce the residual variation significantly (Table 1). The exception

was P. brasilianus, for which counts were significantly higher at low

tides (p = 0.034) (Table 1). This effect, however, was not consistent

across reefs: while in eight transects abundance was a 44% higher

on average at low tide, in the remaining four it was stable or

decreased slightly (mean = 28%). These differences were unrelat-

ed to the depth of the reefs.

Temporal variation
Daily and weekly components of variability in fish counts were

in general of similar magnitude to the instantaneous variation. A

remarkably low daily variation (with broad 95% confidence

bounds) was estimated for N. bergi and P. brasilianus (Fig. 2). In all

cases, the contribution of the daily component to the overall

variability was not statistically significant, while that of the weekly

scale was significant for A. patachonicus, S. oculatus and P. brasilianus

(Table 2). The intra-annual component showed the highest CV for

most species, indicating strong seasonal patterns in fish abundance;

the contribution of the intra-annual variation was statistically

significant, except for S. oculatus and P. semifasciata, whose densities

remained rather stable throughout the year (Table 2; Figs. 2 and

3).

The temporal variation in counts of A. patachonicus and P.

brasilianus was relatively small at the instantaneous, daily and

weekly scales, with respective CVTEMP of 0.11, 0.09 and 0.18 in A.

patachonicus, and 0.19, 0.08 and 0.22 in P. brasilianus, much lower

than those of the intra-annual component (CVmonth of 0.56 and

0.66 for the two species). The total contribution of the short time

scales (i.e., instantaneous, daily and weekly) to the overall

variability was 5.6% in A. patachonicus and 12.8% in P. brasilianus,

compared to 34.1% and 60.3% due to the intra-annual

component.

The temporal variation in S. oculatus counts was relatively small

at all time scales with the exception of the weekly scale, which had

the largest contribution (CVweek = 0.41, compared to

CVinstantaneous~0.18, CVday~ 0.13 and CVmonth~0.15). The

contribution of the monthly scale was not significant (Table 2),

although shallower reefs presented a slight seasonal pattern, with a

winter drop in abundance. Similar to S. oculatus, repeated and

intra-annual counts of P. semifasciata had relatively low and similar

CVs (CVinstantaneous~0.16 and CVmonth~0.18) (Table 2; Figs. 2

and 3).

Temporal variation of N. bergi counts was higher than that

observed for sedentary species, although the daily and weekly

contributions were not statistically significant (Table 2; Fig. 2). Fish

counts were dominated by a strong seasonal component: this

species was virtually absent in winter and spring (Table 2; Fig. 3).

Spatial heterogeneity
When separate models were fitted to subsets of the data

corresponding to each temporal scale (e.g., only the instantaneous

or the daily replicates), the estimated spatial variation in fish

counts was similar across temporal scales and factors analyzed, for

all the species studied. This supported the assumption made in the

nested model that the spatial variability was time-invariant. In the

case of N. bergi, however, theCVSPAT estimated from the mixed

(Table 1) and random models (Table 2) are not directly

comparable because different transects were used for model

fitting. Sebastes oculatus showed the largest spatial variability

(CVSPAT between 1.08 and 2.47) (Tables 1 and 2; Fig. 4), with

fish counts ranging from 0 to up to ,200 individuals per transect.

In both S. oculatus and A. patachonicus spatial variability was larger

than temporal variability, amounting to 94% and 60% of the total

variance, respectively. On the other extreme, P. semifasciata and P.

brasilianus showed the smallest spatial variation; their counts per

25 m of linear reef ledge had the narrowest range: between 1 and

5 for P. semifasciata, and between 5 and 45 for P. brasilianus

(CVSPAT equal to 0.10 and 0.44, respectively) (Fig. 4).

Variability in Counts of Temperate Reef Fishes
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Coefficient of variation vs. mean
The CVs of the raw fish counts for sedentary species were

inversely related to their mean abundance (Fig. 5). Although there

were several cases in which both were low, high mean abundance

always had low CVs. This relationship was consistent for all the

temporal scales considered: all showed a similar pattern while the

level of variability increased with time elapsed between censuses.

Nemadactylus bergi was excluded because its much larger CVs and

few records did not allow detecting any clear pattern.

Discussion

Our results showed that instantaneous variation represents a

non-negligible (.10%) basal level of variability that should be

taken into account in the design of monitoring programs, or when

interpreting past visual census estimates of reef fish abundance in

northern Patagonia. McClanahan et al. [14] drew attention to this

important and often ignored source of variation, which can lead to

difficulties in detecting differences over time and between sampling

methods or sites (e.g., in response to management regulations). In

their case, the estimates of instantaneous variation could be

somewhat inflated by the inclusion of between-diver differences.

The most relevant feature of our approach is that it allowed a

direct comparison between the magnitude of the different sources

of variability –both spatial and temporal– that affected fish counts,

by incorporating them into random-effect models. An advantage

of this method is that it can be applied to unbalanced designs such

as the one used in this study. This is not the case of standard

methods used for variance decomposition based on analysis of

variance, which do require that the sampling design be balanced

[3,32,33].

Diurnal and tidal variation
In our comparisons, fish counts did not differ significantly

between morning and afternoon, similarly to other studies

[4,16,34,35]. Nor could we detect an effect of tidal state for most

species, a result that is also consistent with previous works [34,36].

The only exception was P. brasilianus, which was more abundant at

low tide in some of the reefs (Table 1). This species is the only

among the species studied that occupies the intertidal zone during

high tide (AJI, personal observation), suggesting that some fish

could move between subtidal and intertidal rocky areas following

the tidal cycle, and that fish abundance may increase in subtidal

shallow reefs during the low tide.

Most previous studies did not consider tidal state explicitly in

their sampling designs, thus any potential effects of tide may add

‘‘noise’’ or be confounded with those of other factors. Although we

did not find a strong influence of tide on our comparisons, its

effects were evaluated based on censuses made on a single day;

therefore possible interactions with other factors (e.g., season, tidal

amplitude, spawning activity) could not be evaluated. This

limitation is particularly relevant because tide is a complex factor,

correlated with other variables such as current speed and

direction, depth and availability of suitable intertidal habitats.

Furthermore, as current speeds are highly influenced by bottom

topography, the extrapolation of our results to other sites in

relation to the effect of tide would not be appropriate. Fish

movements in response to currents are well known by fishers, and

they were demonstrated for other reef species [37].

Temporal variation in fish counts
Compared to UVCs conducted in warmer regions, the

variability in fish counts estimated in this study was low for

sedentary species, but similar for schooling species [4,14,17,38].

Among time scales shorter than a year, the contribution of the

Table 1. Effects of Time-of-day and Tide on fish counts.

Spatial variation Residual variation

Species Data set Transects Model Fixed effect SD SD

A. patachonicus 1 12 Time-of-day 0.005 (ns) 0.70 0.13

Null - 0.70 0.12

2 12 Tide 0.088 (ns) 0.84 0.14

Null - 0.84 0.15

S. oculatus 1 8 Time-of-day 0.252 (ns) 0.88 0.26

Null - 0.88 0.30

2 8 Tide 0.047 (ns) 1.32 0.30

Null - 1.32 0.27

P. brasilianus 1 12 Time-of-day 0.005 (ns) 0.37 0.19

Null - 0.37 0.18

2 12 Tide 0.183 (*) 0.36 0.19

Null - 0.35 0.22

N. bergi 1 6 Time-of-day 0.097 (ns) 1.26 0.92

Null - 1.29 0.84

2 9 Tide 0.433 (ns) 1.10 0.73

Null - 1.07 0.75

Fixed-effect coefficients for levels afternoon and high-tide, and their significance (in parenthesis), and standard deviation (SD) of spatial and residual components of
variability. The number of replicates (i.e., number of reefs censused) for each data set is indicated in the ‘‘Transects’’ column. Significance is indicated as: ns = not
significant (p.0.05), * = significant (p,0.05), ** = highly significant (p,0.01). Spatial variation was highly significant in all cases.
doi:10.1371/journal.pone.0061072.t001
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instantaneous variation was in general similar to that of the other

short temporal scales (i.e., daily and weekly). Variability in counts

between low and high tides, and between morning and afternoon,

was similar in magnitude to the instantaneous variation (i.e., the

residual error in the nested random models), reinforcing the

conclusion that differences in counts could be due to instantaneous

stochastic variation, similar to the results reported by McClanahan

et al. [14]. In the case of P. semifasciata, the repeated counts were

conducted by different divers, which may have inflated the

estimates of instantaneous variation, even though the diver effect

was found to be non significant [24]. Similarly, as tidal state was

not controlled in the sampling design of the temporal censuses, it

may have contributed to the variability estimated for P. brasilianus.

Except for P. semifasciata and S. oculatus, the other species analyzed

(A. patachonicus, P. brasilianus and N. bergi) showed high intra-annual

variation associated with a strong seasonal pattern (Fig. 3).

Abundance trends for these species paralleled the annual cycle

of water temperature in Nuevo Gulf: fish abundance increased

slowly during spring and summer, peaked in autumn when water

temperature is maximum (17uC in March-April), and diminished

Figure 2. Temporal components of variability in counts. Coefficients of variation associated with different factors and temporal scales of
variability in fish counts, estimated using mixed- and random-effect models fitted to census data for five reef-fish species. Soft grey bars represent the
component of variation contributed by each temporal scale (with 95% confidence intervals) and darker grey bars represent the total (cumulative)
variation of counts at each temporal scale. Note the different scale of the y-axis for Nemadactylus bergi.
doi:10.1371/journal.pone.0061072.g002
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gradually towards late winter, when the water is coldest (9uC in

August-September). This trend was much more marked for N.

bergi, which was virtually absent during winter (for more details on

the seasonal patterns of abundance see [24,39]).

The levels of variability estimated for the different species were

consistent with their life history attributes and behavior. The

instantaneous variability was smallest for A. patachonicus, followed

by P. semifasciata, S. oculatus, P. brasilianus and N. bergi, in that order.

This ranking can be mostly explained in terms of degree of site-

attachment and swimming speed. Acanthistius patachonicus, for

example, is a sedentary species commonly observed in close

proximity (within 5 m) to the refuge [40], which facilitates

censusing. This makes A. patachonicus a reliable candidate for

assessing the status of the reefs and the impact of angling and

spear-fishing, or even for detecting small changes in abundance.

Pinguipes brasilianus and P. semifasciata are more mobile than A.

patachonicus. While these species can be observed resting on the

bottom on their pelvic fins, in general they swim in and out of the

refuges and of the area censused. For example, one individual of P.

semifasciata was spotted in places distant up to 46 m along a reef

ledge over a 1-hour period (although most, i.e., 30 of 35 fish,

remained within 13 m) (LAV, unpublished data), and it is

common to observe fish more than 20 m far from the reefs

feeding on soft bottoms (AJI, personal observations).

The schooling species N. bergi had the highest variability at all

temporal and spatial scales due to high mobility and variation in

group size. Similar patterns have been found for others schooling

species (e.g., Lutjanidae, Acanthuridae and Scaridae families

[4,14,25]). When counting these species, observation events

regularly record fish schools as a unit, whilst in sedentary species

they record individual fish. This explains the high variability

observed, as the presence or absence of a school could easily result

in counts changing from 0 to 100 individuals. The information

provided by visual censuses on schooling species would be limited

to detecting their presence and seasonal trends in the reefs.

Figure 3. Seasonal patterns of abundance for the five rocky reef species. Monthly average (over reefs) best linear unbiased predictions
(BLUPs) corresponding to the intra-annual effects 6 one standard error are shown for each species.
doi:10.1371/journal.pone.0061072.g003

Table 2. Spatial and temporal components of variability.

Temporal variation Spatial variation

Species Habit Sources p SD %VC Transects p SD %VC

A. patachonicus Sedentary Total - 0.61 39.70 12 *** 0.75 60.30

Instantaneous - 0.11 1.25

Daily ns 0.09 0.95

Weekly ** 0.18 3.40

Intra-annual *** 0.56 34.10

S. oculatus Sedentary Total - 0.49 11.02 8 *** 1.40 88.95

Instantaneous - 0.18 1.52

Daily ns 0.13 0.78

weekly *** 0.41 7.69

Intra-annual ns 0.15 1.03

P. brasilianus Sedentary Total - 0.72 73.11 12 *** 0.44 26.70

Instantaneous - 0.19 5.17

Daily ns 0.08 0.95

Weekly * 0.22 6.67

Intra-annual *** 0.66 60.32

P. semifasciata Sedentary Total - 0.24 86.70 3 *** 0.10 13.30

Instantaneous - 0.16 36.10

Intra-annual *** 0.18 48.20

Inter-annual *** 0.04 2.40

N. bergi Schooling Total - 1.29 85.76 11 *** 0.53 14.20

Instantaneous - 0.69 24.27

Daily ns 0.09 0.46

weekly ns 0.57 16.93

Intra-annual *** 0.93 44.10

Standard deviations (SDs) of spatial and temporal components of variability, and their percent contribution (%VC) to total variance for each species. The number of
replicates (i.e., number of reefs censused) for each species is indicated in the ‘‘Transects’’ column. The significance of the variance components is indicated in the
column denoted with ‘‘p’’: ns = not significant (p.0.05), * = significant (p,0.05), ** = highly significant (p,0.01), *** = very highly significant (p,0.001). The
instantaneous variation was estimated as the residual error of the nested random models; therefore its significance was not evaluated.
doi:10.1371/journal.pone.0061072.t002
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Spatial variation
The design of impact studies should address the spatial

heterogeneity in order to avoid confounding its effects with the

factors under investigation [3]. Our results show that patterns of

spatial heterogeneity differed among species, a result of the

complex interactions between morphological, physical and eco-

logical characteristics of the reefs, and the particular microhabitat

and food requirements of each of the species studied. Amongst the

sedentary species, S. oculatus showed the highest spatial variation

due to marked contrasts in abundance between shallow and deep

reefs. Conversely, P. brasilianus, a pinguipedid with an apparently

weak microhabitat association [39], had low spatial variation

(Fig. 2). In the case of P. semifasciata, reefs with high fish abundance

were intentionally selected to investigate seasonal patterns [24];

hence their spatial variation (the lowest estimated) is not

representative of the variability corresponding to a random

collection of reefs. Overall, spatial heterogeneity for each species

was consistent across the different temporal scales and/or factors

analyzed; thus environmental differences between reefs could be

considered stable between seasons.

Figure 4. Spatial coefficients of variation in counts. Coefficients of spatial variation in fish counts estimated by the mixed-effect models used
to evaluate the effects of time-of-day and tidal level, and by the random-effect models used to estimate variability at different temporal scales.
doi:10.1371/journal.pone.0061072.g004
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Implications for design of monitoring programs
The instantaneous variation, understood as baseline variation or

error in fish counts, tends to obscure relevant patterns at larger

temporal and/or spatial scales. Its magnitude sets the minimum

variance to be used in power analyses to calculate minimum

sample sizes required for detecting any given change in

abundance. Given that instantaneous variation and detectability

are strongly related to swimming behaviour, shape and size

([4,9,14–16] and our results), and are independent of spatial

heterogeneity [16], it is possible to use published results for other

systems and similar species to explore power and sample size

requirements. In the case of schooling species, for example, only

large effects could be detected given the high variability of UVC

counts at all scales.

In general, the power of UVC experiments may be increased by

augmenting either the number of replicates or the length of the

transects. The level of sampling effort would of course depend on a

trade-off between the desired precision and logistics and monetary

constrains. Increasing the number of replicates per transect would

increase the statistical power by reducing the variance of the

average in proportion to 1/n. Faster reductions may be possible by

increasing the length of the transects in cases in which

instantaneous variability is caused not so much by counting errors

but by fish moving along a reef ledge, in and out of the sampled

portion. This is the case of P. semifasciata and P. brasilianus. In such

cases, the best alternative, for any given total distance covered,

would be to use longer transects rather than to replicate short

transects. Overall, the choice between increasing the number of

replicates or the length of the transects should depend on the size

and shape of the fishes’ home ranges, and on their degree of

association with specific portions of the reefs. Longer transects

would be required in studies focused on scarce or rare species,

given the inverse relationship between variability and mean fish

Figure 5. Coefficients of variation versus mean fish counts. Empirical coefficients of variation versus mean fish counts for each temporal scale
studied. Each point corresponds to one transect or reef.
doi:10.1371/journal.pone.0061072.g005
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counts found for all sedentary species at all temporal scales (Fig. 5).

This relationship is consistent with previous studies [4,14].

Some studies have found that sampling sites and instantaneous

variation in counts made by a single diver were more important

sources of variation than diver identity [14–16]. On this basis, the

authors proposed that a better choice to increase power would be

to increase sampling effort using the same group of divers rather

than spending valuable water time to undertake prolonged diver

retraining [16]. Diver inter-calibration and training would become

important for longer-term studies in which divers change over time

[16]. When the focus is on temporal comparisons, our results, in

concordance with those of Thompson & Mapstone [4], suggest

that the use of fixed transects is a good strategy to increase power,

and to remove the spatial heterogeneity by treating the sampling

units as a random effect. In most cases, high between-site

variability could obscure most temporal patterns if not accounted

for. Additionally, for inter-annual comparisons or in short time-

scale experiments, UVCs should be done preferentially during

periods of highest abundance, when CVs are lower.

Regarding diurnal variation, our results agree with the

recommendation of Thompson and Mapstone [4], that sampling

during the middle of the day (between 2 to 3 h after sunrise and 2

to 3 h before sunset) is a good strategy to minimize possible time-

of-day effects. It is noteworthy that time-of-day effects are

generally associated to crepuscular periods [41,42], not investi-

gated in this study. Finally, tidal state could not be discarded as a

factor that may affect abundance estimates; fixing the tidal state on

sampling designs or evaluating the tidal effects on experiments or

monitoring programs appears to be necessary.
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