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Abstract

The biochemical half maximal inhibitory concentration (IC50) is the most commonly used metric for on-target activity in lead
optimization. It is used to guide lead optimization, build large-scale chemogenomics analysis, off-target activity and toxicity
models based on public data. However, the use of public biochemical IC50 data is problematic, because they are assay
specific and comparable only under certain conditions. For large scale analysis it is not feasible to check each data entry
manually and it is very tempting to mix all available IC50 values from public database even if assay information is not
reported. As previously reported for Ki database analysis, we first analyzed the types of errors, the redundancy and the
variability that can be found in ChEMBL IC50 database. For assessing the variability of IC50 data independently measured in
two different labs at least ten IC50 data for identical protein-ligand systems against the same target were searched in
ChEMBL. As a not sufficient number of cases of this type are available, the variability of IC50 data was assessed by comparing
all pairs of independent IC50 measurements on identical protein-ligand systems. The standard deviation of IC50 data is only
25% larger than the standard deviation of Ki data, suggesting that mixing IC50 data from different assays, even not knowing
assay conditions details, only adds a moderate amount of noise to the overall data. The standard deviation of public
ChEMBL IC50 data, as expected, resulted greater than the standard deviation of in-house intra-laboratory/inter-day IC50 data.
Augmenting mixed public IC50 data by public Ki data does not deteriorate the quality of the mixed IC50 data, if the Ki is
corrected by an offset. For a broad dataset such as ChEMBL database a Ki- IC50 conversion factor of 2 was found to be the
most reasonable.
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Introduction

Public collections of IC50 data (the half maximal inhibitory

concentrations of ligands on their protein targets) represent

a wealth of knowledge on bioactivity with growing importance.

One of the major databases of public bioactivities for small

molecules is ChEMBL, [1] which currently contains roughly three

times more IC50 values than Ki values. It has been shown that the

gap between the number of IC50 and Ki values is still increasing.

[2] Proper usage of IC50 data facilitates the development of useful

methods for drug discovery. Examples of such applications are the

global mapping of pharmacological space by Paolini and co-

workers, [3] the Similarity Ensemble Approach (SEA), [4] the

Bayesian models for adverse drug reactions by Bender and

coworkers, [5] the models used for polypharmacological optimi-

zation by Hopkins et al., [6] and the kinome-wide activity

modeling studies by Schuerer and Muskal. [7] These methods

can be used to predict off-target effects based on heterogeneous

public activity data and chemical similarity analysis. Usually,

public off-target toxicity models like human Ether-à-go-go-Related

Gene (hERG) [8] and cytochrome P450 (CYP) models [9,10] are

based and validated on mixed public IC50 data, since there is not

enough public data available that originates from one single assay.

In contrast to Ki values, IC50 data is assay specific. For the

simplest typical case of competitive monosubstrate enzyme

inhibition, Ki can be calculated from the IC50 according to the

Cheng-Prusoff equation:

Ki~
IC50

1z DSD
Km

where |S| is the substrate concentration and Km is the Michaelis-

Menten constant of the substrate. [11] Under the same assay

conditions the measured IC50 of same inhibitor or two different

inhibitors (1 and 2 below) with the same mechanism of action can

be compared as

Ki,1

Ki,2
~

IC50,1

IC50,2

The problem is that assay details are not reported in public

bioactivity databases. Recently, Zdrazil et al. analyzed human P-

glycoprotein bioassay data from the ChEMBL and TP-search

databases. [12] They explore the ability of these data, determined

in different assays, to be combined with each other. Their study

indicates that for inhibitors of human P-glycoprotein this is

possible under certain conditions: i.e., data coming from the same

type of assay, same cell lines, and also same fluorescent or

radiolabeled substrates with overlapping binding sites. However

they point out that it is currently not possible to extract such data

in automated fashion from the current public databases. Effort in
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annotating assay details would increase the capabilities of safe data

integration thus increasing the usefulness of those huge data

repositories freely available.

In this manuscript we report an estimate of the error introduced

by mixing public IC50 data from different labs and how this can

affect the capability of drawing scientifically sound conclusions

from such data. By using the same statistical technique that we

have previously introduced to determine the experimental un-

certainty of heterogeneous public Ki data [13] we analyze the

variability of all pairs of biochemical IC50 measurements on the

same protein-ligand system independently of assay details.

In the following, we first describe our attempts in extracting a set

of at least ten IC50 values from ChEMBL that have independently

been measured in two comparable assays. Since all sets of

identified measurements turn out to be not independent or

otherwise faulty, we analyze the standard deviation of all truly

independent pairs of IC50 values available from ChEMBL.

Dubious entries and filters used to spot and remove faulty entries

are described in detail. For the remaining pairs of measurements,

the original publications of protein-ligand systems showing various

ranges of IC50 differences were inspected in order to gain an

impression of which activity differences are due to database errors

and which activity differences are due to the variations in assay

conditions. We then fitted a Gaussian distribution to the

distribution of IC50 differences to estimate the standard deviation

of valid pairs of independent IC50 measurements. By comparing

the IC50 standard deviation to the equivalent Ki standard

deviation, we can estimate the variability of heterogeneous IC50

data. The average difference between Ki and IC50 values and their

correlation are assessed. Moreover the effect of mixing Ki and

IC50 values in order to enlarge the data size was evaluated. Lastly,

we analyze whether the variability of IC50 values depends on

simple ligand properties such as molecular weight (MW) and the

calculated octanol –water partition coefficient (logP).

Materials and Methods

Dataset Preparation
All measurements were extracted for the ChEMBL database

version 14. It is the currently largest public database with

bioactivities extracted from the literature. BindingDB [14] is

similar in size, but has a significant overlap with ChEMBL with

most of the values being copied from ChEMBL.

The raw data was filtered in order to remove erroneous entries

as described earlier. [13] Generally, all analyses presented here are

based on multiple affinity measurements of the same protein-

ligand system. The filtering steps were the following:

1. Remove all data from reviews, since this is not original data.

2. Remove all unclear measurements (i.e. Unit not M, mM, mM,

nM, pM, fM; qualified values (‘‘,’’ or ‘‘.’’); extremely high

(pActivity .15) or extremely low (pActivity ,2) values).

3. Remove younger entry for exactly the same value reported

twice (younger paper cites older paper).

4. Remove younger entry for very close values reported twice

(difference in pActivity ,0.02: younger paper cites older paper

and rounds).

5. Remove both entries if their difference is exactly 3, 6, or 9.

These are citations with unit-conversion errors.

6. Remove entries for which the authors could not be extracted

from PubMed.

7. Only keep pairs where the name overlap of the authors is zero

to make sure that measurements are from different laborato-

ries.

After each step, protein-ligand systems that had only one

measurement entry left (singletons) were removed. All affinity were

converted to their negative logarithm pActivity (e.g. pIC50 or pKi)

with M21 as base unit (e.g. 1 mM is converted to 6 [log Activity

units]).

In ChEMBL a confidence score is available for each bioactivity

entry. According to the ChEMBL homepage, a confidence score

of nine is the highest, a confidence score of four or more indicates

a biochemical measurement and a confidence score below four

indicates a cellular measurement. For the IC50 analysis, two sets of

data were generated: Set1 contains all data with a confidence score

of four and more, Set2 contains data with the highest confidence

score nine only. Since it turned out that there is no difference in

variability between Set1 and Set2, here we only report results for

Set1.

From the initially available 616.555 IC50 values with confidence

score greater or equal to four 10.895 IC50 values for 3.480

Protein/Ligand systems remained, yielding 20.356 pairs of

independent measurements. Overall, the number of both pro-

tein/ligand systems and individual IC50 data points available for

comparisons has been reduced by 94% and 93%. The filtering

statistics is shown in Table 1.

Metrics for Evaluating the Distribution of Errors
We analyze the distribution of the differences between two

affinity measurements on the same protein-ligand system using the

Standard Deviation (s), the Mean Unsigned (Absolute) Error

(MUE), the Median Unsigned Error (MedUE) the squared

Pearson’s correlation coefficient (R2
pearson =R2). They are defined

as

MUE~
1

n
ffiffiffi
2

p
Xn
i~1

Dypub,i,1{ypub,i,2D

MedUE~
1ffiffiffi
2

p median Dypub,i,1{ypub,i,2D for i in 1:::n
� �

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2 n{1ð Þ
Xn
i~1

ypub,i,1{ypub,i,2
� �2s

R2
Pearson~

Pn
i~1 ypub,i,1{�yypub,1

� �
ypub,i,2{�yypub,2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1 ypub,i,1{�yypub,1

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1 ypub,i,2{�yypub,2

� �2
r

�yypub,1~
1

n

Xn
i~1

ypub,i,1; �yypub,2~
1

n

Xn
i~1

ypub,i,2

with n being the number of pairs of measurements considered,

ypub,i,1 and ypub,i,2 being the two published values of pair i and pub

is the average of all measured values. If more than two

measurements are available for a given protein-ligand system, all

possible pairs are generated. The order of ypub,i,1 and ypub,i,2 has to
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be scrambled in order to not bias the calculation of R2
Pearson and s.

As we have shown earlier, [13] MUE, MedUE and s calculated

from pairs of measurements are overestimated by a factor of !2.
Therefore MUE, MedUE and s calculated from pairs of

measurements were divided by !2.
Raw data was extracted from ChEMBL14 using MySQL

statements. Filtering and pairing of measurements were done using

Python 2.7. The statistical analysis was carried out using R version

2.15.1. [15] All R-, Python- and MySQL-scripts used including

detailed instructions on how to repeat the work can be found in

the Archive S1.

Results

In order to assess the comparability of IC50 values, we first

extracted all series of compounds that have been measured against

the same protein target in two independent assays from whole

ChEMBL. There were twelve series of ten or more compounds

whose activity on the same target has been measured in different

assays. An overview of the different series is given in Supporting

Information (Table S1, Text S1–S2 and Figures S1–S2). However,

eleven out of twelve series had overlapping authors and the single

independently measured series was incorrectly annotated into the

database.

Since it is not possible to find independently measured sets of at

least ten IC50 values for the same target, the IC50 variability was

determined differently. In the following, we analyze the IC50 data

using an approach that we have previously introduced for

analyzing the reproducibility of heterogeneous Ki data. All pairs

of identical protein-ligand systems with independently measured

IC50 values were extracted from ChEMBL and the variability of

the differences between the pairs of measurements was calculated.

The distribution of pIC50 values is shown in Figure 1. The

distribution of measured values is slightly skewed to the left with

a maximum of roughly 30% of all pIC50 values reported between

7.0 and 8.0.

The distribution of DpIC50 values and the distribution of the

number of independent measurements per protein-ligand system

are shown in Figures 2 and 3. Roughly 70% of all DpIC50’s are

smaller than one log unit.

Most systems with multiple independent measurements have

two or three independent measurements. The most frequently

measured system is celecoxib on cyclooxygenase-2 with 30

independently measured IC50 values.

Sets of ten pairs of measurements for seven ranges of DpIC50

were closely inspected. The selected ranges of DpIC50 for the

inspected ten cases span the whole range of DpIC50 (see Figure 2).

The values of 3.2 and 1.1 were selected to avoid pairs which could

contain combinations of citation of previous values and unit

transcription errors. The findings are summarized in Table 2.

We found that very high differences in pIC50 (DpIC50.2.5)

were in most cases due to annotation errors. Some measurements

had wrong units assigned (unit error). The receptor subtype was

sometimes incorrectly assigned or not assigned at all (receptor

subtype error). Other errors come from wrong stereoisomers of

ligands (stereochemistry error), cellular assays assigned as bio-

chemical assays (cellular assay error), incorrect target annotations

(target error) and erroneous values extracted from original

publications (value error).

Unit errors are the most common error. Receptor subtype

errors occur most often for older publications (e.g., papers from

the 1980’s with published IC50 values for dopamine receptors,

opioid receptors, and mono-amino oxidases in general, i.e. without

distinguishing the subtypes). This data is mixed with the subtype

specific data in ChEMBL. Stereochemistry errors occur when the

stereochemistry is wrongly extracted from the original literature.

Cellular assay errors occur when the reported IC50 values have

been measured in a cellular assay, despite being associated with

a confident score greater than four (see Dataset preparation

section).

Pairs with small DpIC50’s can also be composed of erroneously

reported IC50 data. For example, the group of pairs with

DpIC50 = 0.05 contains one case where the IC50 extracted from

the literature is incorrect as in the original manuscript there is an

activity range given, whereas in the ChEMBL database only one

threshold of the range is reported with an equal sign. Another

smaller set of problems come from retracted original publications

(for example, the original publication [16], publishing an IC50

value for the compound with ChEMBL ID CHEMBL266497 on

aldose reductase (CHEMBL2622), was retracted). Considering the

number of invalid pairs out of the ten inspected for the seven

DpIC50 ranges there is a high probability that pairs with

DpIC50$2.5 contains errors in the database or in the original

publication.

A plot of all pairs of pIC50 values is shown in Figure 4. The

correlation coefficient for the raw extracted data is R2 = 0.40.

Excluding a major part of the invalid pairs by removing all pairs

with DpIC50$2.5, the correlation coefficient becomes R2= 0.53.

We also calculated the standard deviation s of all DpIC50 and

DpKi values between 0.05 (lower threshold) and a variable upper

threshold (1.5, 2.0 and 2.5) by fitting the data to a Gaussian

distribution. The lower threshold of 0.05 was selected to remove

pairs which were just rounded duplicates. The standard deviations

obtained for the DpIC50 and DpKi distributions are shown in

Table 3. The fitted Gaussian and the raw distributions for

Table 1. Filtering statistics for extracting independent pairs of IC50 measurements on identical systems.

Filter # protein/ligand systems remaining # IC50 data points remaining

Systems with multiple measurements only 54.505 137.043

Remove multiple values from identical publications 18.804 85.705

Remove exact duplicate values 8.387 33.187

Remove pairs with unit errors 8.141 22.770

Remove duplicates with rounding errors 7.263 19.487

Remove unrealistic values 7.228 19.383

Remove pairs with overlapping authors 3.480 10.895

doi:10.1371/journal.pone.0061007.t001
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Figure 1. Distribution of the 9.465 pIC50 values for protein-ligand systems with independent multiple measurements.
doi:10.1371/journal.pone.0061007.g001

Figure 2. Distribution of the 16.844 pairs of DpIC50 values for protein-ligand systems with independent multiple measurements.
The largest DpIC50 is 7.7 log units.
doi:10.1371/journal.pone.0061007.g002
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DpIC50’s and DpKi’s with an upper threshold of 2.0 are shown in

Figure 5.

The standard deviations of the DpIC50 data is constantly 21–

26% larger than the standard deviation of the DpKi data. After

dividing by !2, the s for the Gaussian distribution fitted to all

DpKi values ,2.5 then becomes 0.47 (a bit lower than the s value

of 0.54 previously calculated for heterogeneous pKi data from

ChEMBL version 12 data without upper threshold for DpKi data.

[13] Since s, MUE, and MedUE are proportional to each other in

Gaussian distributions, we can estimate s, MUE and MedUE for

the IC50 data to be 21–26% larger than the same metrics for pKi

data, yielding spIC50 = 0.68, MUEpIC50 = 0.55 and MedUE

pIC50 = 0.43 (when using a factor of +25% for converting pKi

data to pIC50 data).

In order to test the alternative approach of directly obtaining

quality metrics from the data, we calculated the quality metrics

from the DpIC50 data with an upper threshold of DpIC50 = 2.5.

Here, spIC50 = 0.68, MUEpIC50 = 0.54 and MedUE pIC50 = 0.43

are obtained. These values are very similar to the values obtained

from comparing fitted Gaussian distributions and indicate that the

Figure 3. Number of published independent values per protein-ligand system.
doi:10.1371/journal.pone.0061007.g003

Table 2. Errors found for samples of pairs of measurements with specific differences in measured pIC50.

DpIC50 # invalid pairs out of 10 Error types found

From 4.7 to 7.8 9 unit error, receptor subtype error, stereochemistry error, cellular assay error

3.2 10 unit error, cellular assay error, target error, value error

2.5 8 unit error, receptor subtype error, value error

1.5 6 (+2 dubious) unit error, cellular assay error, receptor subtype error, value error

1.1 1 (+2 dubious) cellular assay error, receptor subtype error

0.05 1 (+1 dubious) value error, different assay conditions

0.02 0 (+4 dubious) original paper retracted, data cited from third source which is not available any more, receptor subtype
error

doi:10.1371/journal.pone.0061007.t002
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erroneous pairs of measurements do not have a large effect on the

overall result.

Similar performance was obtained considering only IC50 data

with ChEMBL confidence score of nine (data not shown). As

ChEMBL contains data from both human input and automatic

extraction processes, we also looked if there was a difference

between the two. Equally to the confidence score filtering, the

results were similar with both data types.

We checked whether the DpIC50 depends on the overall activity

measured or on physicochemical ligand properties like logP, logD,

molecular weight (MW), polar surface area (PSA), the number

hydrogen bond acceptors (HBA), the number hydrogen bond

donors (HBD) or the number of rotatable bonds. Boxplots of all

those properties versus the DpIC50 are shown in Figure 6. The

DpIC50’s depend neither on the average measured pIC50 nor on

any of the ligand properties examined.

We also examined whether the DpIC50 depends on the

combination of average activity and logP, since one might expect

large deviations in measured pIC50’s for compounds with low

activity and high logP due to solubility issues. Here we also did not

find a clear trend (Figure S3).

Can ChEMBL Ki and IC50 Data be Mixed?
Empirical statistical models and SAR interpretations improve

with the amount of data. Above, we have shown that the

variability of heterogeneous IC50 data is roughly 25% worse than

that of Ki data. Therefore it is not recommendable to add IC50

data to Ki data as this would lower the quality of the data.

However, since there is much more IC50 data than Ki data

available, it is interesting to see what happens by augmenting the

IC50 dataset with additional Ki data. Figure 7 shows the

distribution of pKi and pIC50 data extracted from ChEMBL with

the filters mentioned in Table 1. Overall, pIC50 and pKi data show

a similar distribution with the pKi data slightly shifted towards

higher values.

For identical protein-ligand systems, we extracted all pairs of

pKi and pIC50 data that have passed the filters individually. This

yields 11.556 pairs of measurements on 670 protein-ligand

systems. A plot of measured pIC50 versus pKi is shown in Figure 8.

Figure 4. All Pairs of pIC50 values extracted from ChEMBL. The two outer diagonal lines indicate the 2.5 log unit threshold, outside which the
probability for finding faulty pairs of measurements is very high. The extreme disagreements are all due to clear errors.
doi:10.1371/journal.pone.0061007.g004

Table 3. Standard deviation of a Gaussian distribution fitted
to the inner part of the distribution of DpIC50 and DpKi.

Upper threshold 1.5 2.0 2.5

DpIC50 s= 0.80 s= 0.84 s= 0.86

DpKi s= 0.66 s= 0.68 s= 0.68

doi:10.1371/journal.pone.0061007.t003
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Based on the Cheng-Prusoff equation and under the assumption

of a competitive mechanism of action, pKi values are larger or

equal to pIC50 values. However due to unknown mechanism,

experimental uncertainty and some database annotation errors in

the data, there are a significant number of pairs where the pIC50 is

larger than the pKi. On average, the measured pKi values are

0.355 log units larger than the measured pIC50 values, corre-

sponding to a factor of 2.3. A factor of 2 is in agreement with

a balanced assay condition in which the substrate concentration is

equal to the Km value. This is often used in order to allow the

detection of inhibitors with different mechanism of action.

After subtracting 0.35 log units from the pKi values and

correcting by !2, pKi and pIC50 values agree with an R2= 0.46,

s=0.68, MUE=0.54 and MedUE=0.43. The standard devia-

tions of Gaussian distributions fitted to the inner part with an

upper threshold of 1.5, 2.0 and 2.5 DpActivity units are 0.79, 0.83,
and 0.85.

Overall, this is close to or even slightly better than the

agreement obtained for pIC50 values with themselves. Therefore

we can conclude that pKi values can be used to augment pIC50

values without any loss of quality, if they are corrected by an offset.

In the absence of assay information, the best guess for the

conversion factor between Ki into IC50 is extrapolated from the

average offset calculated from the heterogeneous ChEMBL data,

i.e. a factor of 2.3, corresponding to 0.35 pActivity units.

Discussion

In this contribution we show how the comparability of IC50 data

can be analyzed using the public ChEMBL database. We find that

when comparing all independently measured pIC50 data, the

variability found for pIC50 data is approximately 25% larger than

the variability found for pKi data, with spIC50 = 0.68, MUE-

pIC50 = 0.55 and MedUE pIC50 = 0.43. These values correspond to

the most probable variability of pIC50 data mixing from different

(unknown) assays.

We want to stress that pIC50 data from different assays can only

be compared under certain conditions. However, as discussed in

the introduction, this is often done in large-scale data analysis. A

standard deviation of 0.68 corresponds to a factor of 4.8, meaning

that 68.2% of all IC50 measurements agree within a factor of 4.8,

even when measured in different laboratories under potentially

different assay conditions. One reason why the variability of IC50

data is found only moderately higher than the variability of Ki data

might be that practically most of the IC50 assays may have been

run using very similar assay protocols. Unfortunately, the assay

descriptions available within ChEMBL are too terse to permit

analyzing this any further.

IC50 values measured in the same laboratory usually show

a better reproducibility. From our in-house database, we extracted

series of reference pIC50 values measured for assay standards. The

plots in Figure 9 show the pIC50 values measured for rolipram on

PDE4D and cilostamide on PDE3. The standard deviation of the

pIC50 values are s=0.22 for rolipram/PDE4D and s=0.17 for

cilostamide/PDE3.

There is some variation over time which could indicate changes

in the assay conditions and solution handling. We also tried to find

public series of at least ten compounds that have been measured in

independent parallel assays. However, such series did not exist

within ChEMBL as all the series we found were either measured in

Figure 5. Fitted Gaussian distribution of DpIC50 (red) and DpKi (black). The Gaussian distributions shown were fitted to all DpActivity values
with an upper threshold DpActivity = 2.0. Standard deviations for the fitted Gaussian distributions are spIC50 = 0.87 and spKi = 0.69. Note that since the
s here is calculated from pairs of measurements each containing experimental uncertainty and other sources of variability, it has to be divided by !2
in order to obtain the true s of the individual measurements [13].
doi:10.1371/journal.pone.0061007.g005
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the same laboratory or the target protein was mistakenly

annotated.

For extracting the pairs of IC50 data, which are indeed

independently measured on the same protein-ligand system, we

applied a set of filters that we have previously applied to filter and

analyze Ki data. Here, the filters removed more than 90% of the

IC50 data erroneously assumed to be independent measurements

on the same protein-ligand system. When inspecting the remaining

20.356 pairs of measurements from 3.480 protein-ligand systems,

we found that there are still a number invalid pairs, especially but

not limited to the pairs with larger DpIC50. The main errors we

found were unit transcription errors, wrong annotation of the

receptor subtype, and annotation of cellular assays as biochemical

assays. More rarely occurring errors were wrongly assigned

stereochemistry, values and protein targets. These errors cannot

be automatically detected and have to be manually curated out of

the database over time [17].

In contrast to our previous study of Ki values, we observed

a larger number of invalid pairs even for smaller DpIC50

approximately 2.5. To reduce the impact of these hard to find

cases, we applied a different strategy to find the variability of the

true pairs. By fitting a Gaussian distribution to the central part of

the distribution we were able to compare the variability of the

pIC50 data to the variability of the pKi data. We found that the

ratio between pKi and pIC50 variability is relatively stable between

21 and 26% when varying the upper threshold for fitting the

Gaussian distribution between 1.5 and 2.5 DpActivity units. Using

this approach, we were able to estimate the variability of the IC50

data from the variability of the Ki data.

ChEMBL has a confidence score assigned for each activity

value. The confidence score indicates how much the ChEMBL

authors trust the value reported. Confidence scores below four

indicate that the assay was a cellular assay, whereas confidence

scores between four and nine indicate biochemical assays. In this

study, we used all values that had a confidence score of at least

four. The most confident data with a confidence score of nine was

also exclusively used, but the results did not change. We also

examined, whether there is a difference in data annotated as

‘‘autocurated’’ and data annotated as ‘‘expert’’ data. In this

experiment, we also did not find any significant difference. The

Figure 6. DpIC50 versus average pIC50 measured, logP, logD, polar surface area, molecular weight, number of hydrogen bond
acceptors, number of hydrogen bond donors and number of rotatable bonds. The numbers above the boxplot indicate the number of
DpIC50 values falling into the specific bin. Some boxplots are truncated at the very low and high ends because the low number of samples/bin makes
the boxplot insignificant.
doi:10.1371/journal.pone.0061007.g006

Figure 7. Distribution of published pIC50 (dark grey) and pKi (light grey) values for protein-ligand systems with multiple
independent measurements.
doi:10.1371/journal.pone.0061007.g007
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availability of assay description within ChEMBL would have

allowed the analysis of whether specific assay types are statistically

better comparable than other assay types or if the variability of

pIC50 is lower in comparable assays. However, such information is

not easily added to the database because this would require

detailed assay ontologies and in the original literature assay details

are often missing as well.

One might assume that higher IC50 values show a larger

variability than for example single digit mM IC50 values because of

solubility limits. However, our analysis shows that on the average

this is clearly not the case. Moreover, the variability does not

depend on any specific ligand properties such as logP, MW, PSA

etc.

While the quality of pure Ki datasets would be reduced by

adding IC50 data, we have shown that augmenting IC50 datasets

by Ki data does not deteriorate the quality, if the Ki data is

corrected by an offset. We found that pKi values reported in

ChEMBL are on average 0.35 log units higher than pIC50 values,

which corresponds to a factor of 2.3. The IC50 to Ki conversion

factor is exactly 2.0 in competitive monosubstrate IC50 inhibition

assays, if the substrate concentration is set equal to its Km value.

This factor is close to the average difference between pKi and

pIC50 values in ChEMBL and therefore in absence of any further

specific assay knowledge available, a factor of 2.0 is the most

probable conversion factor to convert Ki values to IC50 values.

Summary and Conclusions

In this contribution, we present an analysis of the comparability

of public heterogeneous IC50 data. We find that the agreement of

independently measured biochemical IC50 values is only 23–30%

worse than the agreement of pKi data, irrespective to the used

condition and type of assay. For heterogeneous biochemical pIC50

data, we find a variability with spIC50 = 0.68, MUEpIC50 = 0.55

and MedUE pIC50 = 0.43. Although theoretically IC50 values with

different assay conditions should not be comparable, this is

common practice in analyzing large-scale off-target and toxicity

datasets. Our analysis quantitatively assesses the consequence in

doing so. We believe that this knowledge should be important for

everybody who decides to work with IC50 data from various

heterogeneous sources. We also show that Ki data can be used to

augment IC50 datasets without any loss of quality if corrected by

a factor of 2, which is the conversion factor most frequently found

by comparing the IC50/Ki values in ChEMBL for the same

protein-ligand systems.

Nevertheless, public IC50 data extracted from ChEMBL14 is

quite error prone. The most common errors we found are unit

conversion errors, receptor subtype errors and errors in mixing up

biochemical and cellular assay. The data quality is good enough to

build large-scale fishing tools where errors partially cancel each

other out, but for detailed SAR analysis and methods based on

individual or very few data points like activity cliff or matched pair

Figure 8. Measured pKi versus measured pIC50 for identical protein-ligand systems.
doi:10.1371/journal.pone.0061007.g008
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analysis it is mandatory to take recourse to the original literature

and ensure that the values are correctly annotated and compa-

rable.

This work augments our previous work where we focused on the

experimental uncertainty of heterogeneous public Ki data. As we

have previously stated, it is likely the data quality will rise over

time by continuous iterative improvement of the large databases

such as ChEMBL and BindingDB. In a different branch of affinity

databases, smaller high-quality affinity databases, potentially

combined with other physicochemical data or structural knowl-

edge are being built up (see for example the CSARdock challenge

[18,19]). It will also be interesting to see what the reproducibility of

such high-quality data is going to be.

It is surprising that we did not find in ChEMBL a single set of at

least ten inhibitors for which IC50 values on the same target has

been independently measured by different laboratories or a scien-

tific contribution in literature addressing the comparison of

heterogeneous IC50 values. Due to the scarcity of details about

the experimental assay setup in both original publications and

current large activity databases it is not possible to systematically

analyze the comparability of the reproducibility of IC50 data for

the same assay or various assay types under the same conditions.

Using in-house data we were able to estimate the interlab

Figure 9. Variation of measured pIC50 values over time for rolipram/PDE4D and cilostamide/PDE3.
doi:10.1371/journal.pone.0061007.g009
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reproducibility of IC50 for the same assay under the same

conditions.

We hope that with this article we increase the awareness of noise

added during mixing blindly public IC50 values during the data

selection process for SAR analysis and QSAR models and its

impact in limiting the maximal achievable performance of these

techniques.
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Figure S1 Agreement of IC50 values for two dopamine
transporter assays, measured in the same laboratory.
Here the pairs of measurements agree quite well with an R2 of

0.70 and a mean error of 0.29. According to the assay description

of the primary literature, the assay conditions have been the same.

The same is true for the norepinephrine transporter assay

(R2= 0.73, MUE=0.29).
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Figure S2 Agreement of IC50 values for two rattus
norvegicus dihydrofolate reductase assays, measured
in the same laboratory. Although the assays have been run in

the same lab on DHFR from the same species, the IC50 values of

rattus norvegicus DHFR agree with R2= 0.25 and MUE=0.61.
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Figure S3 Median DpIC50, binned according to average
activity and logP. The numbers indicate the number of entries

per bin. We do not see a clear trend in this plot.
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