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Abstract

Transcriptome analysis is a valuable tool for identification and characterization of genes and pathways underlying plant
growth and development. We previously published a microarray-based maize gene atlas from the analysis of 60 unique
spatially and temporally separated tissues from 11 maize organs [1]. To enhance the coverage and resolution of the maize
gene atlas, we have analyzed 18 selected tissues representing five organs using RNA sequencing (RNA-Seq). For a direct
comparison of the two methodologies, the same RNA samples originally used for our microarray-based atlas were evaluated
using RNA-Seq. Both technologies produced similar transcriptome profiles as evident from high Pearson’s correlation
statistics ranging from 0.70 to 0.83, and from nearly identical clustering of the tissues. RNA-Seq provided enhanced
coverage of the transcriptome, with 82.1% of the filtered maize genes detected as expressed in at least one tissue by RNA-
Seq compared to only 56.5% detected by microarrays. Further, from the set of 465 maize genes that have been historically
well characterized by mutant analysis, 427 show significant expression in at least one tissue by RNA-Seq compared to 390 by
microarray analysis. RNA-Seq provided higher resolution for identifying tissue-specific expression as well as for
distinguishing the expression profiles of closely related paralogs as compared to microarray-derived profiles. Co-expression
analysis derived from the microarray and RNA-Seq data revealed that broadly similar networks result from both platforms,
and that co-expression estimates are stable even when constructed from mixed data including both RNA-Seq and
microarray expression data. The RNA-Seq information provides a useful complement to the microarray-based maize gene
atlas and helps to further understand the dynamics of transcription during maize development.
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Introduction

Knowledge of the genome, transcriptome, proteome, and

metabolome is the basis of systems biology, a holistic approach

that strives to understand the role and interaction of individual

components in shaping the phenotype. Revolutionary genomic

technologies developed over the past decade have resulted in the

generation of rich information about the genomes and transcrip-

tomes of many species. This has led to increased efforts to

understand gene function and expression networks that vary

temporally and spatially through development of an organism. In

plants, transcriptome profiles during development have been

documented in several species including Arabidopsis (Arabidopsis

thaliana) [2], maize (Zea mays) [1], rice (Oryza sativa) [3], soybean

(Glycine max) [4], barley (Hordeum vulgare) [5], and Medicago

(Medicago truncatula) [6].

Traditionally, genome-wide transcriptional analysis has been

performed using microarray technologies. For instance, some of

the early work in maize was based on spotted cDNA amplicons

[7–10], a technology which was replaced by spotted oligonucle-

otide arrays [11]. With the development of in situ DNA synthesis

approaches, platforms such as Affymetrix served as the primary

tool for transcriptomic analysis [12–14]. Transcriptome analysis

efforts have been further enabled by the completion of reference

genomes [15]. Previously, we utilized the maize genome sequence

to design a custom NimbleGen array and develop a gene atlas that

documents expression patterns through maize development [1].

While microarrays have been very useful for transcriptome

analyses, there are some inherent drawbacks of this technology.

First, due to the static nature of microarray-based expression data,

expression can only be determined for gene models included on

the array. For genome sequences such as maize that are evolving

in terms of both gene content and gene model structural
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annotation, the use of microarrays could result in missing

expression information for a substantial number for genes not

available or annotated at the time of array design. Second, reliance

of microarray technology on DNA-DNA hybridization can

potentially lead to inaccurate expression estimates for genes

sharing high sequence homology. Finally, due to background noise

and signal saturation, the dynamic range of expression obtained

from microarrays is limited and, therefore, may not be suitable for

comparing very highly or lowly expressed genes.

The development of high-throughput ‘‘next-generation’’ se-

quencing technologies has enabled the use of RNA sequencing

(RNA-Seq) as an attractive alternative to microarrays for

transcriptome analyses [16]. A major advantage of RNA-Seq

technology is flexibility since the data can be reanalyzed to obtain

updated information as the genome sequence and annotation

evolves, and the stringency of mapping parameters can be adjusted

to potentially discern expression of highly homologous genes. In

addition, with the cost of sequencing decreasing in recent years,

this technology is rapidly decreasing in cost. Several recent studies

have exploited this technology to generate transcriptome infor-

mation for many plant species including Arabidopsis [17], rice

[18,19], and soybean [4,20]. In maize, RNA-Seq has been used to

develop detailed transcriptome information for leaf [21] and

inflorescence [22,23].

In this study, we used RNA-Seq to obtain expression profiles for

samples previously profiled using a microarray [1] to enhance the

resolution in expression of gene family members and to permit

assessment of expression across the entire genome. We performed

several analyses to compare the effectiveness of the two

technologies in providing genome-wide gene expression estimates.

We also examined the quality of co-expression networks developed

from the two data sets. This data is available to the community to

serve as a complementary resource to the microarray-based

expression atlas.

Materials and Methods

Plant materials, growing conditions and RNA extraction
Remnant total RNA from a subset of samples used for the

microarray-based maize gene atlas [1] was used for this

experiment. The tissue samples were obtained from reference

inbred line B73 plants grown at the West Madison Agricultural

Research Station (Verona, WI) during summer 2008. Growing

conditions, sampling method, and detailed description of the

samples and other relevant information are as previously described

[1]. The list of samples included in this study is provided in

Table 1.

Calculation of RNA-Seq expression values
From approximately 5 mg of total RNA, mRNA was isolated,

fragmented, converted to cDNA, and PCR amplified according to

the Illumina RNA-Seq protocol (Illumina, Inc. San Diego, CA).

Sequence reads were generated using the Illumina Genome

Analyzer II (San Diego, CA) and Illumina HiSeq 2000 (San Diego,

CA) at the University of Wisconsin Biotechnology Center

(Madison, WI). Illumina barcodes were used to multiplex a

portion of the samples. Sequence reads generated were between 35

and 101 bp single-end reads. Sequencing platform, multiplexing,

and read length for each sample can be found in Table S1. RNA-

Seq read quality was evaluated based on the Illumina purity filter

and distribution of base quality scores at each cycle. All data

presented passed the quality control filtering based on these

metrics. Sequences are available in the Sequence Read Archive at

the National Center for Biotechnology Information (accession

number SRP010680).

Sequence reads for each tissue were mapped to v1 and v2 of the

B73 reference pseudomolecules (http://ftp.maizesequence.org/)

[15] using Bowtie version 0.12.7 [24] and the splice site aware

aligner TopHat version 1.2.0 [25]. The minimum and maximum

intron length was set to 5 bp and 60,000 bp respectively; all other

parameters were set to the default values. Gene model annotation

was not provided during the read mapping. Normalized gene

expression values expressed as fragments per kilobase pair of exon

model per million fragments mapped (FPKM) were determined

using Cufflinks version 0.9.3 [26]. The maximum intron length

was set to 60,000 bp and the quartile normalization option was

used. For the alignments to the v1 pseudomolecules, the 4a.53

annotation (http://ftp.maizesequence.org/) was provided as the

reference annotation and the v1 pseudomolecules were provided

for the bias detection and correction algorithms. For the

alignments to the v2 pseudomolecules, the 5b annotation

(http://ftp.maizesequence.org/) and v2 pseudomolecules were

provided. The default settings were used for all other parameters.

An average of FPKM value of three replicates was used for all the

analyses.

Microarray and RNA-Seq correlations
Microarray and RNA-Seq expression values were based on

mapping the probes (microarray) or reads (RNA-Seq) to version

4a.53 for direct comparison of these analyses with the microarray

data set published earlier [1]. In case of multiple annotated

transcripts per genes, a transcript encoding the longest peptide was

chosen. Since the microarray design did not cover all the 4a.53

gene models due to lack of a pseudomolecule assembly at the time

of design, this comparison was based on 22,151 genes common

between the microarray and RNA-Seq data sets. Correlations

were calculated for all 22,151 genes as well as for a subset of genes

that were expressed in both data sets. For the correlation estimates

based only on expressed genes, 19,744 genes with average

expression value of at least 200 in one of the 60 tissues included

in earlier study [1] were selected from the microarray dataset. For

RNA-Seq data set, genes with an FPKM 95% confidence interval

lower boundary greater than zero [27], as defined by Cufflinks

[26], in at least one of the tissues were designated as transcribed

and chosen for correlation analysis. Based on this criterion, 1,933

genes from the set of 19,744 genes expressed in microarray were

not expressed in RNA-Seq data set and hence removed. In all,

17,811 unique transcripts were used for this analysis. Log2

transformed values were used for correlation calculations. To

avoid taking the log of a number less than 1, all such FPKM values

were replaced by 1.

Principal Component Analysis
Principal Component Analysis (PCA) was performed using the

Spotfire DecisionSite for Functional Genomics (DSFG) package

(http://spotfire.tibco.com/). FPKM values and RMA-normalized

log2-transformed expression values were used for the RNA-Seq

and microarray data, respectively. To avoid taking the log of a

number less than 1, all such FPKM values were replaced by 1. The

analysis involved k-means clustering in order to group genes into

1000 clusters followed by PCA.

Hierarchical clustering
Hierarchical clustering was performed using the unweighted

pair-group method with complete linkage approach and Pearson’s

correlation as a similarity measure in the Spotfire DSFG package

(http://spotfire.tibco.com/).

RNA-Seq-Based Maize Gene Atlas
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Coexpression network analysis
Genes that did not have detectable expression levels in either

dataset were removed leaving 19,328 filtered gene set (FGS) genes

for further analysis. For the microarray dataset, genes with the

average expression value exceeding 200 in at least one of the

tissues were considered expressed. In case of RNA-Seq, the

average expression value of a gene had to be greater than 0 FPKM

in at least one of the 18 tissues. Due to the differences in dynamic

ranges of the two platforms, we applied log2 transformation to the

microarray expression data and inverse hyperbolic sine transfor-

mation to the RNA-Seq data. The latter compresses larger values

more than smaller values and works well for the values below 1.

Individual coexpression networks were generated based on the

transformed datasets by calculating Pearson correlation coefficient

for each pair of gene expression profiles using Sleipnir library [28].

Fisher transformation and normalization were applied to the

values in both coexpression networks [29]. Expression conserva-

tion scores were derived by calculating Pearson correlation

coefficient for each pair of gene coexpression profiles [30]. The

significance of EC score was determined based on the gene’s null

expectation derived from the bootstrapping analysis that involved

generation of 1,000 random co-expression network pairs by

selecting a mixture of RNA-Seq and microarray profiles for the 18

tissue samples.

Results and Discussion

Overview of samples and quality assessment
We used RNA-Seq to profile the transcriptome of 18 tissues

representing distinct stages of maize plant development. These

tissues are a subset of samples included in a microarray-based gene

atlas described previously [1]. For direct comparison of the two

technologies, remnant total RNA from the microarray study was

used for RNA-Seq. A complete list, brief description, and plant

ontology terms of the samples included in this study are provided

in Table 1. For each sample, total RNA from three biological

replicates, each composed of pooled tissue from three randomly

chosen plants, was subjected to sequencing. For each tissue, we

generated between 5 and 28 million single-end (35–101 bp) reads

averaged across all three replicates (Table S1). Of these, 55.8 to

88.8% of the reads were mapped to the B73 filtered gene set

transcripts (version 5b; www.maizesequence.org) and expression

values in units of fragments per kilobase of exon model per million

fragments mapped (FPKM) was calculated. While multiple

transcripts have been predicted for the majority of maize genes,

for this analysis, we selected the transcript encoding the longest

peptide to represent each gene. The biological replicates were

highly correlated (Figure S1), with an average Pearson’s

correlation coefficient between replicates of 0.97160.004 with

83% of the correlations over 0.950 (Table S2). These observations

affirmed the technical reproducibility of the RNA-Seq technology

and reproducibility of biological replicates despite having variable

read numbers, read lengths, and percentage of reads mapped

across the tissues and biological replicates.

Global gene expression trends
For all analyses performed on a gene basis, we worked with the

transcripts from the FGS that exclude transposons, pseudogenes,

contaminants, and other low-confidence annotations. Genes with

an FPKM 95% confidence interval lower boundary greater than

zero [27], as defined by Cufflinks [26], were designated as

transcribed in the RNA-Seq data set. Based on this criterion,

29,447 (74.7%) of the 39,429 genes were transcribed in at least one

tissue. Of the non-expressed genes, 18.3% are ab initio genes

Table 1. List of tissues included in RNA-Seq-based gene atlas.

# Tissue name Plant ontology term Plant ontology tissue description

1 24H_Germinating Seed PO:0009001 Fruit (Kernel)

2 6DAS_GH_Primary Root PO:0020127 Primary root

3 V3_Stem and SAM PO:0020148 Soot apical meristem

PO:0020142 Stem internode

4 V5_Tip of stage-2 Leaf PO:0025142 Leaf tip

PO:0009025 Vascular leaf

5 V9_Immature Leaves PO:0009025 Vascular leaf

6 16DAP_Endosperm PO:0009089 Endosperm

7 16DAP_Embryo PO:0009009 Plant embryo

8 V9_Eighth Leaf PO:0009025 Vascular leaf

9 V9_Eleventh Leaf PO:0009025 Vascular leaf

10 V9_Thirteenth Leaf PO:0009025 Vascular leaf

11 VT_Thirteenth Leaf PO:0009025 Vascular leaf

12 R2_Thirteenth Leaf PO:0009025 Vascular leaf

13 10DAP_Whole seed PO:0009001 Fruit

14 12DAP_Whole seed PO:0009001 Fruit

15 12DAP_Endopsperm PO:0009089 Endosperm

16 14DAP_Whole seed PO:0009001 Fruit

17 14DAP_Endopsperm PO:0009089 Endosperm

18 16DAP_Whole seed PO:0009001 Fruit

H, hours; DAS, days after sowing; GH, greenhouse; V, vegetative; DAP, days after pollination; VT, vegetative tasseling; R, reproductive.
doi:10.1371/journal.pone.0061005.t001

RNA-Seq-Based Maize Gene Atlas
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predicted by Fgenesh [31] which accounted for 60.1% of all ab

initio genes in the current version (5b) of the maize genome.

Similarly, 22.3% of the non-expressed genes encode for transcripts

with size below 500 bp, which account for 67.6% of all such genes.

In contrast, only 0.2% encode for transcripts larger than 5 kb.

Finally, 84.4% of the non-expressed genes lack functional

annotation according the current data (www.maizesequence.org);

these account for 42.6% of all non-annotated genes in the genome.

Thus, while some of these genes likely represent those not

expressed in the tissues included in this study, others might be

poorly annotated. However, some of these genes might encode

rare transcripts that were missed due to lower sequencing depth.

This is suggested by higher number of non-expressed genes

observed in V9_Immature Leaves and 16DAP_Endosperm

(Figure S2); both these tissues have lowest number of reads (Table

S1).

Classification of transcribed genes on their magnitude of

expression showed substantial variation in the range of expression

among tissues (Figure S2). Variation in expression was also evident

from distribution of FPKM values for all genes (Figure S3A) and

expressed genes (Figure S3B). To further investigate the repre-

sentation of genes among tissues, a subset of highly expressed

genes for each tissue were identified (Table S3) which, in many

cases, tended to have specific biological activities characteristic of

that tissue. For instance, consistent with initiation of a period of

high increase in fresh weight of endosperm at 16 Days After

Pollination (DAP), eight out of ten highly expressed genes at this

stage encoded zein proteins. Zeins are the major seed storage

proteins that account for roughly half of the endosperm proteins

[32] and their up-regulation is consistent with dramatic endsperm

growth and accumulation of storage compounds at this stage [33].

However, none of the zein-encoding genes were represented

among the ten highest expressed genes in 12DAP endosperm in

which a gene encoding defensin was the highest expressed gene.

Figure 1. Heat map showing hierarchical clustering of tissues
based on global gene expression. Clustering was based on log2-
transformed Fragments Per Kilobase Exon model per Million mapped
fragments (FPKM) values of 29,038 genes that were detected in at least
one tissue based on the FPKM 95% confidence interval lower boundary
greater than zero. Red, yellow, and blue colors indicate high, medium,
and low levels of gene log2-transformed expression, respectively.
doi:10.1371/journal.pone.0061005.g001

Table 2. Correlations between RNA-Seq and microarray-based expression values.

# Tissue
r (Pearson) (For genes expressed in both
platforms)

r (Pearson) (For all common genes for
both platforms)

1 24H_Germinating Seed 0.73 0.71

2 6DAS_GH_Primary Root 0.71 0.72

3 V3_Stem and SAM 0.67 0.71

4 V5_Tip of stage-2 Leaf 0.77 0.78

5 V9_Immature Leaves 0.75 0.77

6 V9_Thirteenth Leaf 0.71 0.74

7 V9_Eleventh Leaf 0.69 0.72

8 V9_Eighth Leaf 0.72 0.75

9 VT_Thirteenth Leaf 0.75 0.76

10 R2_Thirteenth Leaf 0.75 0.77

11 10DAP_Whole seed 0.75 0.76

12 12DAP_Whole seed 0.79 0.79

13 14DAP_Whole seed 0.80 0.78

14 16DAP_Whole seed 0.80 0.81

15 12DAP_Endosperm 0.83 0.81

16 14DAP_Endosperm 0.83 0.82

17 16DAP_Endosperm 0.81 0.81

18 16DAP_Embryo 0.79 0.79

doi:10.1371/journal.pone.0061005.t002

RNA-Seq-Based Maize Gene Atlas
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Defensins are antimicrobial proteins that protect the seed and

developing embryo against pathogens infections [34]. Interesting-

ly, consistent with higher oil accumulation in maize embryos, a

gene encoding oleosin - structural proteins found in vascular plant

oil bodies - was most abundant in 16DAP embryo. Likewise, genes

encoding proteins involved in photosynthesis were over-represent-

ed in mature leaves e.g. eighth leaf at vegetative 9 (V9) stage and

thirteenth leaf at vegetative tasseling (VT) stage. For such tissues

with predominance of a specific biological activity, a large

proportion of reads might represent the abundantly expressed

genes and, therefore, deeper sequencing will be needed for

detection of genes with relatively low expression levels.

Biological identity of the tissues was well reflected in the RNA-

Seq-based transcriptome analysis as revealed by hierarchical

clustering (Figure 1). A distinct cluster of 6 Days After Sowing

(DAS) primary root containing root apical meristem and V3 stem

and shoot apical meristem (SAM) indicate commonalities in the

transcriptome of meristematic tissues. Germinating seed and

embryo each had a distinct transcriptome consistent with the

specialized biological function of these tissues. Transcriptional

Figure 2. Principal Component Analysis (PCA) showing similarities between transcriptome profiles produced by RNA-Seq (A) and
microarray (B). PCA was performed independently for both datasets. First principal component (PC1) is shown on x-axis while the second principal
component (PC2) is shown on y-axis. Tissues belonging to same organ group are represented by different colors of the same shape.
doi:10.1371/journal.pone.0061005.g002
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differences among organs at different developmental stages were

also well captured as exemplified by leaf tissues. Maize leaf, a

developmentally complex organ, has been divided into at least

three stages of active cell division and growth (designated as stages

I, II, and III) followed by a fully mature state, with each of the

stages having distinct morphological and anatomical features [35].

For instance, the transcriptome of V9 immmature leaves, which

belong to stage II characterized by rapid blade and ligule growth

[35], was quite distinct from V9 eighth leaf, a fully mature leaf

(Figure 1).

While the depth of sequencing for some tissues was somewhat

low (Table S1), very high correlations between biological replicates

together with clustering of the tissues based on their biology

indicates that the sampling depth is sufficient for drawing

inferences about the transcriptome.

RNA-Seq and microarrays produce very similar global
expression trends

We compared the RNA-Seq expression dataset with the

previously published microarray based gene atlas [1] for various

aspects of transcriptional analyses. The fact that both data sets

were generated from the exact same RNA samples eliminated the

variance due to growing conditions, tissue handling, and RNA

extraction. For all comparisons, we used the microarray and

RNA-Seq expression data generated based on the 4a.53 annota-

tion for consistency as this was the version used for the microarray-

based gene atlas [1]. Since microarray design covered only 22,151

genes, only these genes were used for calculating Pearson’s

correlation coefficients between tissues. Correlation estimates were

computed for all 22,151 genes as well as for only a subset of genes

that were expressed in both data sets (See Materials and Methods).

Gene expression estimates for the eighteen tissues from RNA-Seq

and microarray were significantly (P,0.001) correlated with the

Pearson’s correlation coefficients ranging between 0.70 and 0.83

(Table 2, Figure S4). The correlation estimates based on all

common genes as well as those based only on the expressed genes

were very similar (Table 2). These correlation estimates are similar

to those reported earlier [23,36,37]. For further comparison, we

evaluated the effectiveness of both techniques in categorizing

tissues based on global gene expression using PCA performed

independently for RNA-Seq and microarray datasets. Interesting-

ly, both technologies produced very similar tissue clusters that

reflected biological relatedness and developmental stage of the

tissues (Figure 2). For instance, seed and leaf tissues were separated

by the first principal component owing to their distinct develop-

mental profiles by both RNA-Seq and microarray (Figure 2 A and

B). Similarly, whole seed and endosperm tissues were also

separated by the second principal component in both analyses,

wherein the differences can be attributed to transcriptomes of the

embryo and pericarp – two tissues that differentiate these samples.

To summarize, these analyses showed that RNA-Seq and

microarray transcriptome profiles are highly correlated.

RNA-Seq based gene atlas provides better breadth of
coverage of the transcriptome compared to the
microarray-derived atlas

To compare the effectiveness of RNA-Seq and microarray

technologies in transcriptome analyses, we compared the RNA-

Seq data set with microarray-based gene atlas [1]. Of the 32,535

gene models (4a.53), 82.1% were detected in at least one tissue by

RNA-Seq following the criterion described above and previously

used [27], while only 56.5% were detected by microarray using a

cutoff expression value of 200 as described previously [1].

Primarily, this disparity is due to lower coverage of the microarray

platform as only 22,153 (68.1%) of the gene models (4a.53, see

Materials and Methods) were represented on our custom

NimbleGen microarray. Nevertheless, RNA-Seq clearly provided

a more comprehensive picture of the transcriptome. RNA-Seq also

provided better sampling of the classical maize genes that have

been historically identified based on striking mutant phenotype

and overrepresented in maize genetics literature [38]; of 464

classical genes, 427 were detected by RNA-Seq compared to 390

by the microarray. Furthermore, expression patterns of these

genes followed expected trends. For instance, brown midrib3 (bm3),

which encodes caffeic acid O-methyltransferase enzyme involved

in the lignin biosynthetic pathway [39], was predominantly

expressed in developing leaves concomitant with active lignifica-

tion (Figure S5). Expression of glossy15, an APETALA2-like gene

that controls juvenile to adult vegetative phase change [40], was

expressed only in shoot apical meristem at vegetative-3 stage.

Interestingly, expression of DMT101, the closest homolog of the

Arabidopsis MET1 gene [41], showed a developmental gradient in

endosperm that was highest at 14DAP. This is consistent with

notion that endosperm is the most likely target tissue for genomic

imprinting and that imprinting is associated with DNA hyper-

methylation [42]. Finally, expression of purple plant1, which

encodes a Myb transcription factor that controls anthocyanin

synthesis in leaves and sheaths [43], was expressed specifically in

these tissues.

Shannon entropy [44,45] is often used to estimate the tissue-

specificity of gene expression across samples. The tissue-specificity

of gene expression was assessed in both platforms, and there were

more examples of tissue-specific patterns in RNA-Seq data than in

microarray data (Mann-Whitney U test, p,0.01; Figure 3). Thus,

RNA-Seq provided enhanced coverage of the transcriptome with

more tissue-specific patterns.

Figure 3. Shannon entropy was calculated for each gene
expression profile to assess their tissue specificity. Distribution
of the entropy values is shown for both Microarray and RNA-Seq
datasets. Tissue-specific expression patterns are more prevalent in the
RNA-Seq dataset (Mann-Whitney U test, p,0.01) indicating higher
sensitivity of the platform to the expression differences between genes.
doi:10.1371/journal.pone.0061005.g003

RNA-Seq-Based Maize Gene Atlas
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Figure 4. Relative efficiencies of RNA-Seq and microarray in discerning expression of two paralogous genes. A. Expression patterns of
endosperm-specific Brittle-2 (Bt2) gene B. Expression patterns of leaf specific Agpslzm/L gene. C. Expression patterns of five individual probes
representing Agpslzm/L gene. Sequence differences of each of the 60-mer probes from the paralogous Bt2, shown as number of mismatches, are in
the inset of each graph.
doi:10.1371/journal.pone.0061005.g004

RNA-Seq-Based Maize Gene Atlas
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Resolution of expression of paralogs by RNA-Seq and
microarray

We compared the two technologies for discerning expression of

paralogs. There were a total of 2,434 paralog pairs for which we

had both microarray and RNA-Seq expression data. These pairs

include genes from the two sub-genomes of maize resulting from a

whole-genome duplication event [46]. The correlation of the

expression levels for the two genes was assessed within each

platform and was compared to random pairs of genes. Analysis of

RNA-Seq expression data showed that paralogs were highly

correlated compared to random pairs of genes (Figure S6).

However, there were more examples of highly correlated pairs of

paralogs (.2 standard deviations above random gene pairs) within

the microarray data (41.2%) than within the RNA-Seq data

(31.1%). This higher correlation between paralogs within the

microarray data is expected as the microarray was not always

specifically assessing expression of individual genes.

As a specific example, we chose two paralogous genes, Brittle-2

(Bt2) [47] and Agpslzm/L2 [48] which both encode a small subunit

of ADP-glucose pyrophosphorylase (AGP). The two genes share

high nucleotide similarity at the mRNA level (84%) and likely

arose during tetraploidization of maize genome [49]. However,

the two genes are tissue-specific; Bt2 encodes a cytosolic small

subunit and is expressed in the endosperm while Agpslzm/L2

encodes a plastidial small subunit and is expressed in leaves

[49,50]. Based on microarrays, the expression of endosperm-

specific Bt2 was substantially higher in endosperm and whole

seeds, but detectable levels of expression were also observed in

some of the leaf samples (Figure 4A). Furthermore, expression was

also detected in embryo which could actually be contributed by

Agp2, the third gene encoding a plastidial AGP small subunit

specific to embryo [51]. Using RNA-Seq, however, expression was

strictly limited to the seed tissues. Likewise, microarrays detected

substantial expression of the leaf specific Agpslzm/L2 in seed tissues

while with RNA-Seq, detectable expression was only found in

mature leaves which are expected to accumulate starch (Figure 4B).

To determine if spurious expression in microarray data is due to

cross-hybridization of the probes, we examined the expression of

individual probes representing Agpslzm/L2 gene. Indeed, the

Agpslzm/L2 probes with 2–3 mismatches out of 60 nucleotides

with Bt2 produced sizable spurious signal in seed tissues, and only

with 5 or more mismatches did the Agpslzm/L2 expression became

specific to seed (Figure 4C). Therefore, it appears that cross

hybridization is an important contributing factor for lower

resolution of paralog expression in microarrays. Based on this

data, RNA-Seq clearly provides better resolution of expression of

genes with similar sequence.

Similarities and differences in RNA-Seq and microarray
co-expression networks

The RNA-Seq and microarray transcriptome profiles from 18

samples were used to generate co-expression networks to assess

how the profiling platform affected network properties. A set of

19,328 FGS genes that demonstrated detectable expression in the

microarray profiles and had mapped reads in at least one RNA-

Seq sample were used for this analysis. The two expression

profiling platforms have different dynamic ranges, which can

complicate comparisons of the data. The microarray data was log2

transformed while the RNA-Seq data was log transformed using

an inverse hyperbolic sine function, which allows for greater

compression of the larger values that are present in RNA-Seq

data. Co-expression networks were generated for the averaged

microarray and RNA-Seq data for the 18 tissues.

In general, the two networks contain many examples of similar

co-expression relationships and exhibit a relatively high global

correlation of R = 0.75 (Figure 5A). However, this correlation

between the networks was slightly lower than the correlation

between co-expression networks generated from two biological

replicate samples of microarray data (R = 0.86) or RNA-Seq data

(R = 0.90). The reduced similarity between the RNA-Seq and

microarray networks was partially driven by a large set of gene-

pairs that exhibit near perfect correlation (R = 1) in the RNA-Seq

network but a range of correlations in the microarray network

Figure 5. Comparison of RNA-Seq and microarray co-expres-
sion networks. (A) The density of Fisher-transformed and normalized
edge weights are shown for both the microarray (y-axis) and RNA-Seq
(x-axis) co-expression networks. (B) The frequency of correlation
coefficient (R) values for a series of 1000 random co-expression
networks is plotted relative to the observed value (red arrow). The
random co-expression networks were generated by selecting a mixture
of RNA-Seq and microarray data for each of the two networks.
doi:10.1371/journal.pone.0061005.g005
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(indicated by the cluster of points below and to the right of the

dotted line in Figure 5A). We investigated a set of 1000 genes

connecting a large fraction of these edges and found that they

exhibited significantly lower mean RNA-Seq counts than the rest

of the genome (Mann-Whitney U test, p,1e-55). Many of these

co-expression relationships may be false-positives due to spurious

correlations among genes with very low expression levels. Indeed,

a more stringent criterion requiring FPKM .5 in at least one

tissue removed 841 genes from the analysis and resulted in slightly

improved matrix correlations for the microarray and expression

data (R = 0.78) (not shown). This observation suggests that caution

should be used when computing correlation for genes with very

low coverage in RNA-Seq. Microarrays do not typically provide

significant co-expression relationships for these genes, likely

because the background noise accompanying the low intensity

signal prevents measurement of spurious correlations.

We further explored the impact of computing co-expression

networks from datasets composed of a mix of RNA-Seq and

microarray expression profiles as compared to data from a single

platform. A series of 1,000 pairs of co-expression networks were

generated by randomly forming two groups of profiles, each

composed of a mixture of RNA-Seq and microarray profiles for

the 18 samples (Figure 5B). The similarity between each pair of co-

expression networks generated from mixed data was compared to

the observed similarity between the networks from pure RNA-Seq

and microarray datasets. The observed similarity between the

single-platform networks falls within the range of values for the

mixed networks (Figure 5B), suggesting that robust co-expression

networks could be generated from a mixture of RNA-Seq and

microarray profiles.

Expression conservation (EC) provides one method for assessing

the similarity of co-expression relationships for individual genes in

two different networks. An EC score is based on a comparison of a

gene’s neighbors in two different networks. Genes with signifi-

cantly different EC scores show different patterns of co-expression,

i.e. different neighbors, in the two networks. An analysis of EC

scores computed for the RNA-Seq and microarray-derived co-

expression networks revealed that the majority of genes (82.6%)

have similar neighbors in both networks. However, there are 3,354

genes with significant differences, based on the EC score measure

(p,0.01). We investigated several features of these genes to

understand the factors that might contribute to divergent co-

expression relationships between the two platforms. The genes

with divergent EC values are enriched for genes with retained

duplicates in the two sub-genomes (p,0.05). There was no

evidence for significant enrichment for genes in one of the two sub-

genomes [52]. A comparison of the mean expression levels for

genes with significantly different co-expression relationships

revealed several major groups of genes with distinct expression

level characteristics (Figure 6). One group of divergent genes is

highly expressed in both platforms. However, within the micro-

array data, these genes are clustered around the maximum

measurable expression value in some tissues and are likely

expressed outside the dynamic range of microarrays. Therefore,

one possibility is that the co-expression relationships derived from

RNA-Seq data capture more information for these genes given the

increased dynamic range on that platform. The other group of

genes with divergent EC scores has very low expression levels in

RNA-Seq data and a range of expression values in microarray

data. In fact, most of these genes have a median expression level of

zero in the RNA-Seq samples indicating that over half of the

Figure 6. Comparison of expression profiles for individual genes in RNA-Seq and microarray co-expression networks based on
expression conservation. The 3,354 genes with significant differences (p,0.01) in expression conservation between RNA-Seq and microarray data
were assessed. The mean expression level in microarray samples (x-axis; log2 tranformed) and RNA-Seq samples (y-axis; inverse hyperbolic sine
transformed) was compared. The color coding indicates connectivity in the two co-expression networks; red indicates the 122 genes with more
connections in the microarray network, blue indicates the 796 genes with more connections in the RNA-Seq co-expression network and grey
indicates relatively similar connectivity in both networks. The circles indicate two clusters of genes with divergent EC scores.
doi:10.1371/journal.pone.0061005.g006
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samples lack expression of the gene. The majority of these genes

have significant EC scores due to having higher connectivity

(several highly correlated partners) in the RNA-Seq data. Using a

stringent criterion requiring FPKM.5 in at least one tissue (see

above) removed a number of genes with significant differences (not

shown). As discussed previously, this suggests that caution should

be used in computing co-expression for genes with low coverage in

RNA-Seq.

Availability of the maize transcriptome
To facilitate gene discovery and functional genomics of maize

and related grasses, the RNA-Seq-based transcriptome is available

to the community at Maize Genetics and Genomics Database

(www.maizeGDB.org) MaizeGDB [53], and additional data to

that described here will be incorporated as it becomes available.

The dataset is linked to the B73 genome browser based on

GBrowse2 (www.gmode.org) where viewers can quickly browse

the expression (FPKM) of a gene of interest in all the tissues

(Figure S7). Expression information is available at both the

individual transcript level and the gene model level along with

physical location, gene sequence, and a table of expression values.

The microarray-based transcriptome [1] is also available in the

same display for obtaining comprehensive expression information

based on both technologies. A table of FPKM values for the tissues

described in this manuscript is also provided (Table S4).

Conclusions

In this study, we performed transcriptional analysis of 18

representative maize tissues capturing important aspects of maize

development using RNA-Seq. While we reported on a microarray-

based maize gene atlas [1] earlier, this data set provides enhanced

coverage of the transcriptome, and provides an opportunity for

comparison of RNA-Seq and microarray technologies for tran-

scriptional analysis. A coarse comparison showed that both

technologies produced a very similar overview of the transcrip-

tome. However, RNA-Seq provides enhanced coverage of the

genome as microarrays are limited by the gene models represented

on the microarray chip. RNA-Seq also provided better resolution

of expression differences among paralogs. Co-expression networks

are highly valuable tools for identification of novel genes in

biological pathways and assigning functional annotation to genes

of no known function. We found that co-expression networks

developed from RNA-Seq and microarrays are highly compara-

ble. The differences in co-expression networks from the two

platforms can largely be attributed to differences in the dynamic

range or in the precision of estimating exact levels of expression for

low-expressed genes.

Supporting Information

Figure S1 Quality of the biological replicates. Pair-wise

Pearson’s correlation (r) was calculated for all three pairs of

biological replicates for each tissue.

(TIF)

Figure S2 Distribution of genes based on magnitude of
expression in 18 maize tissues. For each tissue, a gene was

considered expressed if the FPKM value and FPKM lower 95%

confidence interval was more than 0. For each tissue, the

expressed genes were further divided in to low (FPKM .0 to

#5), medium (FPKM .5 to #200), and high (FPKM .200)

expression.

(TIF)

Figure S3 Distribution of FPKM values for all genes (A)
and expressed genes (B). Expression values of all 39,429 genes

and 29,447 genes were used to make the distribution plots,

respectively. Since the major differences in the smaller set is

absence of genes with no expression, the two plots look very

similar.

(TIF)

Figure S4 Correlations between gene expression esti-
mates for each of the eighteen tissues obtained by RNA-
Seq and microarray. In each panel, the average (log2) FPKM

value for each gene is shown on x-axis while average (log2) relative

expression based on microarray is shown on y-axis. See Materials

and Methods section for details of correlation analysis.

(TIF)

Figure S5 Expression profiles of selected classical
maize genes derived using RNA-Seq.

(TIF)

Figure S6 Density estimates for the distribution of the
correlation coefficients of paralogous genes in the RNA-
seq co-expression network. The correlation co-efficients

among tissues were calculated for 2,434 pairs of paralogs (from

Schnable et al., 2011, PNAS) that were expressed in multiple

tissues. The density plot illustrates the values for these correlation

coefficients relative to a set of randomly selected genes.

(TIF)

Figure S7 Sreenshot of the RNA-Seq data display at
Maize Genetics and Genomics Database (www.maizeGDB.

org). Data display is based on mapping the RNA-Seq reads to

version 2 of the B73 reference genome (http://ftp.maizesequence.

org). Data display and download of FPKM values based on

transcript and gene level is available. FPKM values were

calculated using Cufflinks version 0.9.3 [26] and the 5b annotation

(http://ftp.maizesequence.org).

(TIF)

Table S1 Average number of reads, read length, and
other details of sequencing.

(XLSX)

Table S2 Pearson’s correlation coefficients for biolog-
ical replicates. All correlations had P,0.0001.

(XLSX)

Table S3 Top 10 expressed genes in each tissue.

(XLSX)

Table S4 FPKM values for all transcript for all the
tissues included in the study based on mapping to v2 of
the B73 reference pseudomolecules.

(TXT.ZIP)
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