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Abstract

This study investigated electroencephalographic correlates in chronically depressed patients compared to healthy controls
using intracutaneously applied electrical pain stimulus, to better understand the interaction between pain processing and
depression. A close interaction between pain and depression is generally recognized although the precise mechanisms are
not yet fully understood. The present study focuses on the hypothesis that effective brain connectivity in major depression
patients is altered. Multifunctional interactions between brain regions represent a robust index of effective interactions
within the brain, and can be quantified by network redundancy. Thus, structural network differences between 18 normal
controls and 18 major depression patients before as well as during the processing of moderately painful intracutaneous
electrical stimuli were investigated on the basis of network redundancy differences. In our sample, both patients and control
subjects exhibit comparable network redundancies before stimulus application. Caused by the stimulus, there is a global
increase of network redundancy in both groups. This increase is diminished in the group of major depression patients. We
found clear differences between patients and controls during the stimulus processing, where the network redundancy in
normal controls is larger in comparison to patients. The differences might be explained by the fact that major depression
patients are more restricted to the affective component of the processing. The well-established biasing to affective
processing might suppress the somatosensory processing resulting in a lower number of connections within the considered
network. This might then lead to a reduction in network redundancy during stimulus processing.
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Introduction

A close interaction between pain and depression is generally

recognized although the precise mechanisms are not yet fully

understood. Epidemiological studies report a mean prevalence rate

of major depressive (MD) disorder in patients with chronic pain

assessed in pain clinics of 52%, and a mean prevalence of pain in

depressed patients of 65% [1]. Depressed patients generally

describe more general physical symptoms such as abdominal

discomfort or musculoskeletal pain [2] vs. localized pain sites.

Multiple brain regions such as the insular cortex, prefrontal cortex

(PFC), anterior cingulate cortex (ACC), amygdala and hippocampus

have been implicated in bothMD and pain. Shared neurocircuitries

and neurotransmitters may play a role in connecting the two

pathophysiologies of depression and pain; in this complex interplay

anyalteration inbrain activity or function causedbyonedisorder can

affect the other. In addition, human imaging studies have shown that

MD is associated with abnormally increased activation within an

emotion-processing network that includes the extended amygdala

and prefrontal cortex during the anticipation of negative images [3].

Related studies that have examined experimental pain processes in

depressedpatientshaveprovidedevidence thatMDisassociatedwith

functional alterations of emotion-processing circuitry during the

perception of pain [4]. Although a correlation between depression

and pain has been accepted in the last few years, the underlying

physiologicalbackgroundstill remainsunsolved.Onehypothesis that

theprocessingofnoxious stimuliwithin theso-called ‘‘neuromatrixof

pain’’mightbedifferentwas recentlyaffirmed [5].Theauthors found

that the effective brain connectivity differs during the processing of

nociceptive stimuli betweenMDpatients andhealthy controls (HCs).

Moreover, stimulus-induced alterations of the connectivity pattern

were considerably more pronounced in the HCs compared to MD

patients.

The aim of the present study is to present a more complete

description of structural network differences between HCs and

MD patients. Such network (graph theoretical) approaches have

achieved an increasing impact in computational neurosciences
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because topological network properties are closely related to

optimal information processing and signal transmission between

neural units [6]. In particular, the small-world phenomenon [7] is

frequently used to describe topological network properties [8–11].

The small-world concept is closely related to shortest path lengths

between network nodes. However, beyond shortest paths, existing

longer pathways may be used to characterize complex connectivity

patterns. The existence of multiple parallel pathways seems to be

closely related to a concept of redundancy and robustness, which is

thought to be a natural mechanism of the brain for enhancing the

resilience to neural damage and dysfunction [12].

Based on the differing connectivity patterns found in theHCs and

MDpatients, particularly with regard to induced changes evoked by

nociceptive stimuli, alterations of the network redundancy may be

supposedbecause of observedmodified reactions topainful stimuli in

MDpatients, and because that reactivitymight be related to effective

connectivity. In addition, network redundancy can be interpreted as

multifunctional interactions between network nodes, and it repre-

sents a robust index of effective interactions between different brain

regions. Therefore, the goal of this study was to reveal network

redundancydifferencesbetweenHCsandMDpatients before aswell

as during the processing of moderately painful intracutaneous

electrical stimuli. We expect interesting new insights into the

relationshipbetween chronic pain anddepression.Thepresent study

directly follows up on the EEG experiments and the connectivity

estimates published previously [5] and is based on the same

experimental data.

Materials and Methods

Subjects
Eighteenpatients (10women,8men)withmajordepression (mean

age 6 standard deviation: 38.9615.5 years) and 18 sex-and age-

matched healthy control subjects (39.3614.8 years) participated in

the study. Patients were treated in a specialized psychiatric ward for

mood disorders. Major depression was established by a staff

psychiatrist according to DSM IV criteria using a structured

interview [SCID, [13]]. Beck depression inventory (BDI) was also

administered.BDIscoresofpatients ranged from19to48(29.469.7);

scores of control subjects were all below five (2.161.5). All subjects

were right-handed.Ninepatients receivedantidepressivemedication

(5 patients received selective serotonin reuptake inhibitors SSRI; 4

patients norepinephrine and serotonin reuptake inhibitors NaSRI)

while the remaining patients and all healthy subjects were free of any

medication. Prior to the experiment detailed information on the aim

and the procedures of the experiment was provided to each subject

and written informed consent was obtained. The procedure was

approved by the Ethics Committee of the Friedrich-Schiller-

University (reference number 2282–04/08).

Paradigm
Prior to the actual experiment, individual stimulus-response

properties to intracutaneous electrical stimuli [14] were de-

termined. Stimuli consisted of a bipolar rectangular pulse of

10 ms duration generated by a constant current stimulator (DS7H;

Digitimer, Welwyn Garden City, UK). Stimuli were applied

intracutaneously to the tip of the middle fingers of both the right

and the left hand through isolated golden pin electrodes with

a diameter of.95 mm and a length of 1 mm (for details of

stimulation see [15,16]). The pin was inserted into a small

epidermal cavity of 1 mm diameter to about 1 mm depth and

fixed with adhesive tape. The purpose of this preparation was to

reduce skin resistance and thus the current necessary to elicit a pain

sensation. A flexible stainless-steel electrode, fixed loosely around

the first finger joint, served as a reference electrode. Subjects were

grounded by using a broad, flexible, humid band electrode fixed

around the wrist of the stimulated hand. Using a modified method

Figure 1. Amplitude spectrum of grand average data at Cz post stimulus.
doi:10.1371/journal.pone.0060956.g001
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of limits, 3 series of single electrical pulses with up- and down-

going intensities were applied. Current intensity varied between

10 mA and 1 mA. Participants were requested to rate each

electrical stimulus on a scale ranging from 0 to 6 (0 = no sensation;

1 = just perceived, not painful; 2 = clearly perceived, but not

painful; 3 = low pain; 4 =moderate pain; 5 = strong pain, but

tolerable; 6 = unbearable pain, see [17]). Pain threshold was

defined as the intensity yielding a sensation described as a sharp

painful pinprick, corresponding to a rating of ‘‘3’’.

The mean intensity of the last two series of up- and down-going

series to elicit an intensity rating of ‘‘4’’ was used in the

experiment. One patient and two controls were excluded from

this study because they did not answer to this series in the

predicted way (increasing ratings with up-going intensities and

decreasing ratings with down-going intensities) such that we were

not able to determine a meaningful intensity rating of ‘‘4’’. During

the main experiment, ninety moderate painful electrical stimuli

with a constant inter-stimulus interval of 3 s were administered

intracutaneously to the left and right middle fingers. We used

a constant inter-stimulus interval because it is known that subjects

feel more confident in a situation when stimulus intensity and time

point of stimulation are known compared to when these

parameters are unknown. Thus, from the perspective of patients

with major depression it seems more appropriate to use such

a design. Finally, intensity ratings were obtained every 30 stimuli

with short breaks in between electrical stimulations.

The EEG was recorded continuously using Neuroscan (now

Charlotte, USA) amplifiers during the electrical stimulation from

60 electrodes, referenced to Cz, using a standard EEG cap (Easy

Cap, Falk Minow Services, Germany) based on an extended

International 10–20 system. Eye movements were also monitored.

All electrode impedances were kept ,5 kV. After analog filtering

(0.1–100 Hz), the EEG was sampled at 500 Hz. The recordings

were subsequently re-referenced to a linked ears reference. In this

study, only data from 9 electrodes were processed: F3, Fz, F4, C3,

Cz, C4, P3, Pz, and P4 according to the extended International

10–20 System of Electrode Placement. These electrodes were

chosen because they are situated above important regions of pain

processing, attention, and depression (frontal, central, and parietal

brain regions). These areas alone do not cover the entire brain and

some interesting areas of pain processing and depression, such as

the insula or prefrontal cortices, were omitted. However, the

intention of this study was to show the applicability of the

methodology to the present type of data. Furthermore, we avoided

utilizing adjacent electrodes because they are usually highly

correlated, which is disadvantageous for any Granger Causality or

PDC analysis on the basis of an autoregressive modeling of the

underlying processes.

Data Preprocessing
We used signal sections of 700 ms for the analysis: 700 ms pre

stimulus for the pre-stimulus condition (700 ms before stimulus to

stimulus onset) as well as 700 ms post stimulus for the post-

stimulus condition (interval from stimulus onset to 700 ms post

stimulus). In order to remove artifact contaminated single trials we

used the potentials at the electrodes Fp1, AF7, AF1, AF5, Fp2,

AF8, AF2, AF6, O1, O2, Oz, T7, T8, F7 and F8, because artifacts

were most pronounced at these electrodes. These are most likely

caused by eye movements and mastication muscle activity. A

single trial somatosensory evoked potential (SEP) was excluded if

Figure 2. Some examples of identified directed networks (graphs) according to [5]. The upper row shows networks of an MD patient
during the pre and post stimulus condition (left hand side stimulation). The lower row refers to a control subject accordingly. Here, for the sake of
clarity the electrode positions are circularly arranged.
doi:10.1371/journal.pone.0060956.g002
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the maximum absolute voltage at any of the above electrodes

exceeded 200 mV in the considered time interval. This procedure

resulted in the exclusion of three data sets since there were not

enough, i.e. less than 25, artifact free trials left for a reliable

analysis. Finally, 70.5 trials remained on average (standard

deviation 13.1, minimum 27, maximum 89).

Connectivity Analysis
In order to assess the effective connectivity between the nine

nodes the generalized partial directed coherence [18] was applied.

It is based on a multivariate autoregressive (AR) modeling of the

measured signals. To estimate the model parameters we used

a multi-trial multivariate least square estimator [19].

For each subject and condition the estimator was provided with

a large set of associated trials, i.e. each single trial is considered as

independent realizations of the same process. Finally, the multi-

trial estimator yields one common AR parameter set for an entire

set of single trials, instead of one estimation for each single trial.

An initial model order was determined according to Akaike’s

information criterion (AIC) [20] and tuned to achieve coincidence

between the parametric (AR related) and the Fourier power

spectra, where both spectra were compared for various model

orders. Finally, the smallest order, where all substantial frequency

components were represented by the parametric estimation, was

chosen. That is, it had to be ensured that the parametric spectrum

reconstructs all distinctive spectral peaks in the frequency range of

interest, where we considered only peaks with amplitudes

exceeding the noise level by factor two in at least three adjacent

frequency bins.

The tuning procedure considers that AIC criterion often results

in an overestimated model order. A proper fine-tuning is necessary

because the model order must be large enough to avoid severe

biases while the efficiency of the estimates suffers from too large

orders. Between both extremes, there is usually a broader range

where different model orders result in identically identified

directed interactions. Aiming at a group comparison of connec-

tivity measures, constant model settings have to be used for all

sample elements. Thus by means of the maximum of single order

estimations, we selected a common model order of 40 for all data

sets.

We restricted our analysis to a frequency band with a high band

power in order to work with a maximized signal to noise ratio. The

frequency band was determined to be in the delta-, theta- and the

alpha-bands (1 to 13 Hz) since the signal power is mainly situated

in this frequency range (Figure 1). Other frequency bands haven’t

been investigated due to low signal power. For a consolidated

analysis we pooled the generalized partial coherences (gPDCs) of

the corresponding frequencies to one quantity by averaging

gPDCs of the frequency range of interest. Thus, for each of the 72

(i.e. 92–9) possible directed interactions one quantity resulted. The

range of pooled gPDC values was [0.01 0.89]. Four conditions

were analyzed for each subject: pre stimulus/left middle finger, pre

stimulus/right middle finger, post stimulus/left middle finger, and

post stimulus/right middle finger, i.e. four data sets were available

for every subject. Each data set was composed of multiple single

trials, which were simultaneously processed to obtain one PDC

matrix. Thus finally, exactly one interaction pattern was revealed

for every subject and condition. A detailed description of the

procedure may be found in [5].

One of the most important questions is whether the pooled

generalized partial directed coherence is significantly greater than

the gPDC obtained when no interaction is present, which is

defined as the null hypothesis H0. The distribution under H0 is

analytically not known, thus it was constructed by the Bootstrap

Figure 3. Mean normalized network redundancy estimates of the LMMs with their standard errors for different path lengths.
Normalized network redundancy means that Rv(l)is normalized by the corresponding value of a complete (that is: fully connected) network
consisting of nine nodes.
doi:10.1371/journal.pone.0060956.g003
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Figure 4. Mean network redundancy estimates of the LMMs with their standard errors. The right column depicts the mean values and
their standard errors graphically. Rs refers to the scalar network redundancy, Rv(l), l= 1, …, 8, denote the vector redundancy measures for different
path lengths.
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procedure introduced in [21]. Briefly summarized, this method

represents a residual resampling, where the common starting

points are the model residuals and the set of estimated

autoregressive parameters arij , 1ƒi,jƒ9, 1ƒrƒ40. Assuming

that the interaction from the lth to the kth process component

should be tested, at first all parameters arkl are set to zero. That

modification effects an elimination of a possible interaction from

process component l to k. Based on this modified AR parameter

set and the resampled residuals from the original estimation

(sampling with replacement), a resampled time series is generated,

which is finally used to estimate one Bootstrap replication of the

underlying test statistics under the null hypothesis ‘‘no interaction

from process component l to k’’. We used 1500 Bootstrap

repetitions to estimate the test statistics distribution under H0.

Because interactions in a network have to be considered as a whole,

an a-adjustment is necessary. For all multiple test procedures, the

Holm correction [22] with a multiple significance level of a~0:05
was applied to control the familywise error rate for all 72

hypotheses at a. Exemplary identified networks are shown in

Figure 2. A drawback of this approach might be that a successful

simulation of an AR process based on the estimated AR parameter

set cannot be guaranteed. In this case, the significance threshold

cannot be determined by this procedure. With respect to the entire

sample, we detected this situation in 3.48% of all possible directed

interactions. We registered and treated the connections as missing

values in these cases.

Imputation of Missing Values and Statistics
Despite the minor number of missing values, many networks

were affected. This is caused by the fact that one network contains

72 edges, and a network as a whole is already affected, if at least

one edge information is missing. Finally, only 12.5% of networks

were not affected by missing values. Excluding patients with

missing values from analysis (list wise deletion) reduces statistical

power and, even worse, often leads to biased estimates [23].

In practice observed data often contain useful information for

predicting the missing values. In such cases, the data are missing at

random (MAR) and imputation procedures can exploit this

information to obtain unbiased estimates and retain the full

sample size. To account for the additional uncertainty due to

imputation, missing data are replaced by m .1 simulated values

(multiple imputation) yielding m completed datasets. Each dataset

has been analyzed with standard statistical complete-data methods

(i.e. mixed linear model) and results of each data analysis are

combined according to Rubin’s rules for multiple imputation

inference [24].

Fully Conditional Specification (FCS) is a multiple imputation

method which does not require assumptions about the joint

distribution of the variables (i.e. multivariate normality). Instead of

the joint model, conditional distributions (regression imputation

models) for each variable with missing values, involving all other

variables as predictors, have to be specified. Imputation under

FCS is done by iterating over all conditionally specified imputation

models, each iteration consisting of one cycle through all variables

with missing values (Gibbs sampling procedure) [25]. FCS can

handle different types (binary, ordered, continuous) of variables

and we used this flexible method to deal with missing values in our

data set of directed graphs.

Network Redundancy
The theoretical representation of a network is the graph. A

graph consists of a set of N nodes and a set of links (connections)

indicating the presence of some sort of interaction between the

nodes. The adjacency matrix A contains the information about the

connectivity structure of the graph and it has dimensions N6N.

When a link connects two nodes i and j, the corresponding entry of

the adjacency matrix aij is equal to one, otherwise it equals zero. In

a graph, a path is a sequence of nodes such that, from each of its

nodes, there is a link to the next vertex in that sequence. Shortest

paths represent one possible way in which two nodes in a graph

can interact. Existing longer pathways can be generally taken into

account when characterizing functional brain connectivity pat-

terns [26]. The most intuitive way to compute all the possible

paths in a graph is to count the total number of paths between the

nodes, which is a NP-complete problem. Thus, a three-di-

mensional matrix P of size N6N6L may be determined, contain-

ing the number of all the possible paths of length l=1, …, L in

each node pair, where L is at maximum N–1. From this P matrix,

the following characteristic measures can be defined:

The scalar redundancy Rs is the total sum of the number of paths of

any length l=1, …, N–1, found between all the nodes, excluding

the self-connections

Rs~
XN

i~1

XN

j~1

XL

l~1

P(i,j,l): ð1Þ

It represents the global level of network redundancy by means

Table 1. LMM estimates of the regression parameters with
respect to Rs and their standard errors (bold: significances).

Parameter Mean 6 Standard Error P-value

b0 3063167892

bgroup 21028461181 p=0.358

bstimulus 21916566446 p=0.003

binter 950169182 p=0.301

doi:10.1371/journal.pone.0060956.t001

Table 2. LMM estimates of the regression parameters with
respect to Rv(1) and their standard errors (bold: significances).

Parameter Mean 6 Standard Error P-value

b0 40.7662.19

bgroup 23.7063.11 p=0.234

bstimulus 26.1261.57 p,0.001

binter 4.3762.23 p=0.051

doi:10.1371/journal.pone.0060956.t002

Table 3. LMM estimates of the regression parameters with
respect to Rv(2) and their standard errors (bold: significances).

Parameter Mean 6 Standard Error P-value

b0 165.7616.1

bgroup 228.43622.83 p=0.213

bstimulus 246.95611.30 p,0.001

binter 32.70616.10 p=0.042

doi:10.1371/journal.pone.0060956.t003
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of a scalar number. The higher Rs is, the higher the tendency is of

the graph to exhibit multiple parallel pathways.

The vectorial redundancy Rv is the total sum of the number of paths

found between all the nodes, excluding the self-connections, with

respect to each path length l=1, …, N–1

Rv(l)~
XN

i~1

XN

j~1

P(i,j,l): ð2Þ

It represents the total level of network redundancy across

different path lengths. The higher Rv(l) is, the higher the tendency
of the graph is to exhibit multiple parallel pathways with a specific

length l. In particular, Rv(1) corresponds to the number of

connections in the graph (network).

Statistical Analysis
Because of multiple measurements of each subject (left hand side

and right hand side stimulation, pre stimulus and post stimulus

situation), a statistical method that considers the correlation

structure has to be applied. An appropriate statistical approach is

given by linear mixed models (LMMs) [27], where the dependent

variables were specified by the scalar Rs or vector re-

dundanciesRv(l), l=1, …, 8, respectively. In detail, we used nine

separate LMMs to estimate mean network redundancies

ŷygroup,stimulus~b̂b0zb̂bgroup
:xMDzb̂bstimulus

:xprezb̂binter
:xMD,pre: ð3Þ

For different models, the symbol y is respectively substituted by

Rs or Rv(l). The group assignment (MD: xMD~1, HC: xMD~0)
and the stimulus condition (pre: xpre~1, post: xpre~0) were used

as fixed factors. In order to show different progressions between

the HC and MD groups, we were particularly interested in the

interaction of group assignment and stimulus condition. Thus, we

included the corresponding interaction term in the LMM.

Thereby, the corresponding indicator variable xMD,pre is exclu-

sively equal to one for MD patients during the pre-stimulus

condition. Furthermore, the side information (left, right) was used

as repeated measurements. The inclusion of this variable is

important to estimate the covariance matrix of subject-specific

residual errors properly. In contrast to repeated measures

ANOVA, which implies a compound symmetry covariance

structure, LMMs provide more flexibility in modeling the residual

covariance matrix. We assumed first-order ante dependence as

a general covariance structure for the residuals in all LMMs,

because this structure exhibited the best fit according to a restricted

maximum likelihood estimation in comparison to other sub-

stantially suitable covariance structures, although a small number

of parameters has to be estimated using this covariance structure.

All statistical analyses and the multiple imputation of missing

values were performed by means of IBM SPSS Statistics 18. The

common significance level was set to 5%.

Results

Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9 show the LMM’s regression

coefficient estimates and their standard errors depending on

different network redundancy characteristics. It is noticeable that

a subject assigned to the MD group is provided with a reduction of

the mean network redundancy independent of the considered

redundancy measure (all regression coefficients of rows bgroup are
negative). Furthermore, an analogous statement is applicable for

the pre stimulus situation (all regression coefficients of rows bstimulus
are negative). Neglecting the interaction, this implies that the

stimulus resulted in an increase of all considered network

redundancy measures Rs and Rv(l), l=1, …, 8. That effect is

significantly independent of the network redundancy measure

considered. In contrast, the regression coefficient binter referring to

the interaction of group assignment and stimulus condition is

always positive; i.e., the combination of an MD subject with the

pre stimulus situation yields an increase of the mean network

redundancy independent of the considered redundancy measure.

Bundling all three statements, the difference between the MD and

HC group is diminished in the pre stimulus situation, while the

main difference between the two groups appears in the post

stimulus condition. This effect is especially prominent in the case

of Rv(1) (number of directed interactions), Rv(2), and Rv(3),
where it is even significant for Rv(2). These findings are also found

in Figure 3 and Figure 4. They show mean network redundancy

estimates of the LMMs with their standard errors. In our sample,

both MD and HC subjects begin the pre-stimulus interval at

comparable levels. As shown by the statistics, there is a global

increase of network redundancy caused by the stimulus. This

increase is pronounced in the HC group. In particular, this

relationship can be observed for vector redundancy measures with

Table 4. LMM estimates of the regression parameters with
respect to Rv(3) and their standard errors (bold: significances).

Parameter Mean 6 Standard Error P-value

b0 595.4679.4

bgroup 2145.86112.7 p=0.196

bstimulus 2232.2656.5 p,0.001

binter 151.2680.7 p=0.061

doi:10.1371/journal.pone.0060956.t004

Table 5. LMM estimates of the regression parameters with
respect to Rv(4) and their standard errors (bold: significances).

Parameter Mean 6 Standard Error P-value

b0 18146302

bgroup 2552.36428.8 p=0.198

bstimulus 2863.36221.2 p,0.001

binter 526.46315.8 p=0.095

doi:10.1371/journal.pone.0060956.t005

Table 6. LMM estimates of the regression parameters with
respect to Rv(5) and their standard errors (bold: significances).

Parameter Mean 6 Standard Error P-value

b0 44306887

bgroup 2151861285 p=0.228

bstimulus 224326676 p,0.001

binter 13926964 p=0.149

doi:10.1371/journal.pone.0060956.t006
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low path lengths (e.g. from one to three).

Discussion

This study investigated electroencephalographic correlates in

chronically depressed patients compared to healthy controls using

intracutaneously applied electrical pain stimulus, to better un-

derstand the interaction between pain processing and depression.

We have investigated network redundancy and found robust

changes for the stimulus condition. Network redundancy is

significantly lower during the pre-stimulus time window compared

to the time window during which the specific nociceptive

information is processed. More importantly, we found clear

differences for these changes between MD patients and HCs as

evidenced by a lower increase of redundancy for MD patients

compared to HCs. These differences were pronounced for smaller

network redundancies and reached significance for Rv(2). Un-

expectedly, there was no significant difference between MD

patients and controls during the pre-stimulus time window.

We found a clear increase in all redundancy parameters for the

comparison of the network structures of the time window when

comparing the pre and post stimulus condition. An explanation

might be proposed with respect to the processing of noxious

stimuli within the neuromatrix of pain [28]. It is well accepted that

the processing of a noxious stimulus involves a number of

structures (thalamus, primary and secondary somatosensory

cortex), insula, anterior cingulate cortex, prefrontal cortex etc.

[29–31] including several functional components, e.g. somatosen-

sory or affective components [32–34].Thus, the processing of the

noxious stimulus is associated with more intensive interactions of

these components involving the aforementioned structures. In-

deed, we found an increase of overall connectivity Rv(1) in the

stimulus condition. In addition, we also reported an increased

number of interaction trails in terms of redundant alternative

pathways which reflect a global tendency of the brain to

strengthen the short and long range interactions between the

regions of the brain in response to the painful stimulus.

Importantly, we found clear differences between MD patients

and HCs for the time period after the noxious stimulation. In

particular, our data demonstrates for the first time that the

redundancy in HCs is larger in comparison to patients during the

processing of the noxious stimulus. An explanation might be

proposed with respect to the processing of noxious stimuli within

neuromatrix of pain; the processing in MD patients may be more

restricted to the affective component of the processing as indicated

by the increased activation in the anterior insula during heat pain

perception in patients with MD in comparison to controls [4]. The

well-established biasing to affective processing might suppress the

somatosensory processing resulting in a lower number of

connections within the considered network. This might then lead

to a reduction in redundancy during the processing of the stimulus

in the MD group.

Network redundancy was previously studied by De Vico Fallani

et al. [26] who compared patients with spinal cord injury and

healthy controls during the attempt to move one’s feet. This is the

only other study to the best of our knowledge which has

investigated network redundancy parameters in patients and

control subjects. The results of this work demonstrated differences

in redundancy between groups depending on the frequency band.

Both studies are highly suggestive that multiple pathway analysis is

useful for detecting changes in network structures by exploiting all

the available information contained in paths of any length. Such

investigative methods might shed light on the hypothesis of altered

information processing in different populations.

We did not observe significant differences between MD patients

and controls during the pre-stimulus time window, although we

also expected altered redundancies in the pre-stimulus network

structure due to the affective bias of MD patients. There are

several explanations for this finding. Possibly, the extent of

processing and redundancy due to the expectation of the stimulus

is the determining activity in the network during this period of

time, thus it is less influenced by the affective bias. An alternative

interpretation might be that the expectation of a nociceptive

stimulus evoking the sensation of pain is associated with a negative

affective processing in HC subjects. In addition, it might be

possible that the applied methods discriminate groups more

sensitive after a defined and arousing stimulus was applied.

In the present study we analyzed directed networks and

neglected weights of directed links. Basically, link weights provide

additional information when the total outgoing/incoming in-

formation flow of each ROI is evaluated [35,36]. In a graph

theoretical approach, such information is typically estimated

through the in- and out-degree of a node [11]. The present study

focuses on the estimation of a specific concept which is rather

related to the redundancy of the information between ROI pairs.

Such concept is mathematically defined by a graph-based index

which basically counts the number of multiple paths between

nodes, i.e. ROIs. The higher the number of alternative paths is,

Table 7. LMM estimates of the regression parameters with
respect to Rv(6) and their standard errors (bold: significances).

Parameter Mean 6 Standard Error P-value

b0 802361916

bgroup 2281162715 p=0.300

bstimulus 2490261527 p=0.001

binter 257362176 p=0.237

doi:10.1371/journal.pone.0060956.t007

Table 8. LMM estimates of the regression parameters with
respect to Rv(7) and their standard errors (bold: significances).

Parameter Mean 6 Standard Error P-value

b0 950662730 p,0.001

bgroup 2308763867 p=0.425

bstimulus 2631762278 p=0.006

binter 288163244 p=0.374

doi:10.1371/journal.pone.0060956.t008

Table 9. LMM estimates of the regression parameters with
respect to Rv(8) and their standard errors (bold: significances).

Parameter Mean 6 Standard Error P-value

b0 555461943 p=0.004

bgroup 2148562751 p=0.589

bstimulus 2395261692 p=0.020

binter 142862406 p=0.553

doi:10.1371/journal.pone.0060956.t009
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the higher is the redundancy between two nodes. Indeed, a path is

defined as a sequence of links which connects two nodes and it

contains topological information describing if and how efficiently

two nodes can get in touch. Longer paths imply a higher distance

and then a lower efficiency in their communication [37]. It is

possible to include link weights into this computation. However,

this inclusion is not straightforward as there is not a common

consensus on the real meaning of a link weight in the evaluation of

path-based distances for functional brain networks [6,38]. In

particular, it is not clear if and to what extend larger weights

within a path contribute to shorter or higher "functional" distances

between nodes. In this context, some authors have suggested to use

the inverse of the weight [11,39]. Although it appears to be at least

an intuitive solution there is no underlying neurobiological

evidence for such arbitrary choice. From this point of view, the

topological unweighted information between nodes seems to be

a more stable approach, and the interpretation of the results is

clearer as it can be properly associated to the concept of multiple

alternative pathways between brain regions, i.e. redundancy.

We restricted the analysis to the bandwidth with the highest

power excluding some interesting bands from analysis (i.e. the

gamma band, see e.g. [40–42]). The underlying connectivity

analysis is based on sensor data. Thus, it is not possible to draw

stringent conclusions concerning the involved brain structures due

to the relatively low number of electrodes included into the

analysis and the difficulty to directly conclude from EEG

potentials or connectivity distributions to contributing structures.

Therefore we did not primarily interpret our results with respect to

neural generators. For such an analysis, a corresponding analysis

based on the generator structure would be necessary, see e.g. [43].

In the present study one common order of the underlying AR

processes was used. For it the maximum estimated order of the

entire data set was selected in order to avoid a model order

underestimation. The drawback of this approach is that the

common order exceeds the individual order for several sample

elements. As described in the context of Granger Causality by

Barnett and Seth [44] a model order overestimation may result in

an increased amount of unstable AR-parameter estimates, and the

effect is even amplified for filtered time series. Definitely a too high

model order impairs the AR-parameter estimation quality and has

disadvantageous effects to significance tests with respect to

Granger Causality indexes [44]. Similar results for PDC analyses

may be found in [45].

In our sample, poorer parameter estimates increase the variance

of derived network redundancy measures. As a consequence

potential group differences might not be revealed. An alternative

approach would be to work with individual orders for each sample

element. That would improve the AR-parameter estimation

quality for several sample elements, and it would not influence

the type I error of the significance test transforming raw PDC

values into directed interactions. However, it would influence the

type II error resulting in different proportions of false negatives in

dependence on the model order. From this point of view, the

sample elements would not be processed (observed) in the same

way, and the influence on a subsequent statistical analysis is

unclear. Therefore the first approach was applied being aware of

risks and limitations caused by possible overestimated model

orders.

Patients were treated with antidepressants. Pain processing in

patients treated with norepinephrine and serotonin reuptake

inhibitors might be influenced by medication. Thus, future studies

need to test the potential influence of this kind of treatment on the

results presented here. In conclusion, we found increased network

redundancy in HC when compared to patients with MD and our

results are suggestive of aberrant pain processing in these patients.

Future more detailed investigations focusing on disentangling the

network redundancy in regions of the brain involved with

processing of noxious stimuli, i.e. in the ’’neuromatrix of pain’’,

are needed.
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