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Abstract

Fulvestrant is a representative pure antiestrogen and a Selective Estrogen Receptor Down-regulator (SERD). In contrast to
the Selective Estrogen Receptor Modulators (SERMs) such as 4-hydroxytamoxifen that bind to estrogen receptor a (ERa) as
antagonists or partial agonists, fulvestrant causes proteasomal degradation of ERa protein, shutting down the estrogen
signaling to induce proliferation arrest and apoptosis of estrogen-dependent breast cancer cells. We performed genome-
wide RNAi knockdown screenings for protein kinases required for fulvestrant-induced apoptosis of the MCF-7 estrogen-
dependent human breast caner cells and identified the c-Src tyrosine kinase (CSK), a negative regulator of the oncoprotein
c-Src and related protein tyrosine kinases, as one of the necessary molecules. Whereas RNAi knockdown of CSK in MCF-7
cells by shRNA-expressing lentiviruses strongly suppressed fulvestrant-induced cell death, CSK knockdown did not affect
cytocidal actions of 4-hydroxytamoxifen or paclitaxel, a chemotherapeutic agent. In the absence of CSK, fulvestrant-induced
proteasomal degradation of ERa protein was suppressed in both MCF-7 and T47D estrogen-dependent breast cancer cells
whereas the TP53-mutated T47D cells were resistant to the cytocidal action of fulvestrant in the presence or absence of CSK.
MCF-7 cell sensitivities to fulvestrant-induced cell death or ERa protein degradation was not affected by small-molecular-
weight inhibitors of the tyrosine kinase activity of c-Src, suggesting possible involvement of other signaling molecules in
CSK-dependent MCF-7 cell death induced by fulvestrant. Our observations suggest the importance of CSK in the
determination of cellular sensitivity to the cytocidal action of fulvestrant.
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Introduction

Approximately 70% of breast cancers express estrogen receptor

a (ERa), and most of these ERa-positive primary tumors depend

on estrogen signaling for their growth and survival [1]. Endocrine

therapy aims to shut off estrogen signaling in ERa-positive breast

cancer cells to halt cell proliferation and/or to induce cell death

[2–7]. Two types of antiestrogens with distinct mechanisms of

actions have been used for this purpose: Selective Estrogen

Receptor Modulators (SERMs) and the Selective Estrogen

Receptor Down-regulators (SERDs). The SERMs, represented

by tamoxifen or raloxifene, bind to ERa as partial agonist or

antagonists in a manner dependent on target tissues [8–10]. On

the other hand, the SERDs, represented by fulvestrant, bind to

ERa and induce rapid proteasomal degradation of ERa protein

[11]. Unfortunately, the benefit of endocrine therapy is seriously

limited by resistance of tumors against antiestrogens [12], and a

large number of studies have proposed molecular mechanisms

behind the endocrine therapy resistance of human breast cancer

cells. When activated by agonistic ligands, ERa functions as a

transcription factor and affects expression of thousands of genes in

human breast cancer cells [13–15]. In addition, ERa initiates

rapid intracellular signaling [16] through phosphorylation of

membrane receptor kinases, including insulin-like growth factor I

receptor (IGF-IR) [17], epidermal growth factor receptor (EGFR)

[18], and HER2/ERBB2 [19]. ERa also interacts with other

signaling kinases and adaptor molecules such as c-Src [20], Shc

[21], PAK1 [22], DLC1 [23,24], PELP1/MNAR [22,25,26], and

p85 PI3-kinase regulatory subunit [27]. These interactions lead to

activation of downstream signaling kinases such as the p42/44

MAPK and AKT [28], which play critical roles in regulating cell

proliferation and survival. Some of these ERa-activated protein

kinases (e.g., c-Src, PAK1, MAPK, and AKT) phosphorylate ERa
to enhance the genomic actions of ERa. Roles of another network

of signaling pathway involving STAT1, interferon regulatory

factor 1, NF-kB, and their downstream effectors (e.g., caspases and

BCL2 family apoptosis regulators) are also becoming increasingly

evident [29]. Thus, a large body of evidence supports the notion

that a highly complex signaling network is involved in the

mechanism of estrogen actions and possibly the endocrine therapy

resistance of ERa-positive breast cancer cells.

To identify novel components in the signaling network leading

to endocrine therapy resistance, functional screening studies using

the RNAi knockdown technique have been performed by several

laboratories. For example, Iorns et al. [30] transfected MCF-7

human breast cancer cells with an arrayed library of siRNA

oligonucleotides that targeted 779 human kinases and phospha-
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tases. By exposing cells to tamoxifen and identifying drug-resistant

clones, they identified three protein kinases (CDK10, CRK7, and

MAP2K7) required for tamoxifen-induced cell death. Taking a

similar approach of Iorns et al., in the present study we performed

lentivirus-based RNAi knockdown screening experiments covering

the entire human kinases and phosphatases and identified CSK (c-

Src tyrosine kinase) as a novel signaling molecule required for

fulvestrant-induced MCF-7 cell death. Whereas RNAi knockdown

of CSK caused significant resistance to fulvestrant, it did not affect

sensitivities to either tamoxifen or paclitaxel. We provide evidence

that this strong specificity of fulvestrant resistance caused by CSK

knockdown was due to suppression of the fulvestrant-induced

proteasomal degradation of ERa protein, which is not involved in

the mechanisms of actions of tamoxifen or paclitaxel. Our present

study provides important insights into the molecular mechanisms

of the cytocidal action of fulvestrant in human breast cancer cells,

providing evidence of requirement of CSK.

Results

RNAi knockdown of the c-Src Tyrosine Kinase (CSK)
caused resistance of MCF-7 cells to fulvestrant

Our prior studies revealed the critical importance of BIK (a

BH3-only family pro-apoptotic protein) and TP53 (a tumor

suppressor transcription factor necessary for transcriptional

induction of the BIK mRNA transcripts) in fulvestrant-induced

apoptosis of MCF-7 cells [31,32]. To obtain further insights into

the mechanism of fulvestrant actions, we performed RNAi

knockdown screenings to identify additional molecules required

for fulvestrant-induced MCF-7 cell apoptosis. MCF-7 cells grown

in 384-well plates were infected with a library of arrayed

lentiviruses expressing shRNA species targeting the entire RefSeq

collection of know human protein kinases and phosphatases

consisting of 6,560 lentivirus clones [33,34]. Cells were then

exposed to 100 nM fulvestrant for 7 days, and surviving cells were

visualized by crystal violet staining. These screenings revealed that

RNAi knockdown of MAP2K7 or CSK (c-Src tyrosine kinase,

NCBI gene ID = 1445) strongly suppress fulvestrant-induced

MCF-7 cell death (Fig. 1A for CSK data; MAP2K7 data not

shown). Since a similar RNAi knockdown project by Iorns et al.

already identified MAP2K7 and several other kinases including

CDK10 as Ser/Thr kinases required for tamoxifen sensitivity of

MCF-7 cells, we focused on the roles of CSK in the cytocidal

action of fulvestrant on MCF-7 cells.

RNAi knockdown of two independent shRNA lentivirus clones

targeting human CSK [The RNAi Consortium Clone

ID = TRCN0000199018 (target sequence, 59-CCACTAAGTCT-

GACGTGTGGA, is in the CSK coding sequence) and

TRCN0000199031 (target sequence, 59-

CCGTCTCTCTTGGACCCACCT, is in the 39-UTR of the

CSK mRNA transcripts); hereafter referred to as shRNA #1 and

#2, respectively] confirmed the requirement of CSK for the

cytocidal action of fulvestrant in MCF-7 cells. When cells were

infected with these shRNA lentiviruses at MOI = 4,8 and selected

by puromycin resistance for 48 hours, we observed about 65%–

75% reduction in CSK protein expression (Fig. 1B). The CSK

RNAi knockdown was stable in the infected cells for at least five

passages, within which all experiments in the present study were

performed. Exposure of cells to 100 nM fulvestrant for 7 days

induced massive cell death in mock-infected cells and cells infected

with the pLKO.1 empty lentiviral vector resulted in only

8.160.3% and 8.560.6% surviving cells, respectively (Fig 1C

and Fig. S1). In contrast, MCF-7 cells infected cells the CSK

shRNA lentiviruses showed significant resistance to fulvestrant-

induced death, with 21.561.3% and 35.362.7% surviving cells

after exposure to shRNA #1 and #2, respectively.

To determine whether the CSK knockdown efficiency corre-

lates with the strength of fulvestrant resistance, MCF-7 cells were

infected with a 10-clone panel of shRNA lentiviruses (Table S1),

and their fulvestrant-induced cell death was examined (Fig. S2).

Effective RNAi knockdown of CSK was observed with four

shRNA lentiviral clones whereas three clones as well as pLKO.1

control clones failed RNAi knockdown. Fulvestrant resistance was

observed with the four shRNA lentiviral clones that effectively

knocked down CSK whereas cells infected with the failed lentiviral

Figure 1. RNAi knockdown of CSK in MCF-7 cells causes
resistance to fulvestrant. (A) RNAi knockdown screening reveals
dependence of fulvestrant-induced MCF-7 cell death on CSK. Cells
infected with lentiviruses expressing shRNA to CSK (well is identified by
red circle) survived after 7 days of exposure to 100 nM fulvestrant.
Crystal violet staining of a representative screening plate is shown. (B)
Knockdown of CSK protein expression by shRNA lentiviruses. Cells were
infected with empty lentivirus vector (pLKO.1) or two independent
clones of lentiviruses expressing different shRNA species targeting CSK
shown in Figure 1 (CSK KD#1 and #2) and subjected to Western
blotting quantitation of CSK protein expression (top). Intensities of CSK
protein bands were determined by densitometry as shown in the bar
graph (bottom, mean6SEM of three independent experiments. Asterisk
indicates statistical significance, p,0.05). (C) Infection by lentiviruses
expressing shRNA targeting CSK causes fulvestrant resistance of MCF-7
cells. Cells were infected with empty lentivirus vector (pLKO.1) or two
independent clones of lentiviruses expressing different shRNA species
targeting CSK (CSK KD #1 and #2) and exposed to fulvestrant, or
vehicle for 7 days. % Cell survival (mean6SEM) was determined by
three independent experiments. *, p,0.001 to both mock infected and
pLKO.1-infected controls exposed to fulvestrant). No significant
changes were observed with cell survival ratio of any virus-infected
cells compared to mock infected control.
doi:10.1371/journal.pone.0060889.g001

CSK Is Required for Cytocidal Fulvestrant Action
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clones or the pLKO.1 empty viral vector control were completely

killed after 7-day exposure to 100 nM fulvestrant. These results

indicate that CSK is required for fulvestrant-induced MCF-7 cell

death.

RNAi knockdown of CSK does not affect MCF-7 cell
sensitivity to either tamoxifen or paclitaxel

Two different types of antiestrogens are presently used for

endocrine therapy of breast cancer–namely, the SERDs (repre-

sented by fulvestrant) and the SERMs (represented by tamoxifen).

Cross-resistance of breast cancer cells to these distinct types of

drugs is often observed, in both clinical and cell culture settings

[35–37]. To examine whether CSK is required for the cytocidal

effects of tamoxifen, MCF-7 cells were exposed to 4-hydroxyta-

moxifen (4-OHT), which is the biologically active metabolite of

tamoxifen [38]. A 10-day exposure to 1 mM 4-OHT caused

significant MCF-7 cell death although its cytocidal effect was

weaker than that of fulvestrant (Figs. 2A and S3A), in agreement

with previous studies [39,40]. To our surprise, RNAi knockdown

of CSK did not affect the tamoxifen effect at all. These results

indicate that CSK is specifically required for fulvestrant (SERD)-

induced MCF-7 cell death while it is dispensable for the cytocidal

action of tamoxifen (SERM).

To further characterize the specificity of the CSK requirement

for drug-induced MCF-7 cell death, we examined the effects of

RNAi knockdown of CSK on MCF-7 cell sensitivity to paclitaxel,

a widely used chemotherapeutic drug that inhibits dissociation of

microtubule polymers [41]. A 2-day exposure of MCF-7 cells to

varying concentrations of paclitaxel (1–1000 nM) caused massive

cell death in a dose-dependent manner (Figs. 2B and 3SB).

However, RNAi knockdown of CSK failed to affect the cytocidal

effects of paclitaxel. Thus, the drug resistance of MCF-7 cells

infected with shRNA lentiviruses targeting CSK was highly

specific for fulvestrant.

CSK is required for fulvestrant-induced ERa protein
degradation in estrogen-dependent human breast
cancer cells

Fulvestrant causes proteasomal degradation of ERa protein in

breast cancer cells [11,31,35]. High concentrations of 17b-

estradiol (E2), a physiological ligand of ER, also causes

proteasomal degradation of liganded ERa protein [42–44]. Since

strong genetic and phenotypic heterogeneity, including sensitivity

to antiestrogens, has been shown to occur in MCF-7 cell cultures

maintained in different institutions and cell resource repositories

[45–50], we first attempted to confirm that both fulvestrant and

E2 cause proteasome-dependent degradation of ERa protein.

When MCF-7 cells were exposed to 100 nM fulvestrant,

expression of ERa protein was reduced in a time-dependent

manner (Fig. 3A, 3C). Similarly, exposure of hormone-starved

MCF-7 cells to 100 nM E2 caused time-dependent reduction in

ERa protein expression (Fig. 3B, 3C). Under our experimental

conditions, the time-dependent reduction in ERa protein caused

by exposure to fulvestrant and E2 were comparable, with only

35% of ERa protein remained after 6 hours of exposure (Fig. 3C).

It is important to emphasize that the E2-induced reduction in ERa
protein expression was observed only at the highest concentration

of the ligand tested (100 nM; Fig. 3D). In contrast, E2-stimulated

proliferation of MCF-7 cells at only 100 pM [13]. The observed

reduction in ERa protein expression after exposure to both

fulvestrant and E2 did not occur when cells were pre-exposed to

MG132, a wide-spectrum proteasome inhibitor [51] (Figs. 3F–G),

confirming the reported proteasome-dependent nature of fulves-

trant- and E2-induced degradation of ERa protein [52,53].

Exposure to a high concentrations of MG132 (125 nM) caused

increase in ERa protein expression to a level even greater than

cells not exposed to fulvestrant, suggesting the presence of basal

ERa protein turnover (i.e., persistent synthesis and proteasomal

degradation) in MCF-7 cells.

Although fulvestrant and tamoxifen are similar in inhibiting

estrogen signaling, their mechanisms of actions differ. Whereas

fulvestrant cause proteasomal degradation of ERa protein in

breast cancer cells [11,31,35], tamoxifen is known to stabilize ERa
protein [54,55]. To explain the fulvestrant-specific resistance of

the CSK-knockdown MCF-7 cells without affecting their tamox-

ifen sensitivity, we hypothesized that CSK may be required for

fulvestrant-induced proteasomal degradation of ERa protein. To

test this hypothesis, we examined time-dependent degradation of

ERa protein after exposure to 100 nM fulvestrant in MCF-7 cells

infected with pLKO.1 control or CSK shRNA lentiviruses (Fig. 4).

Infection with both CSK shRNA lentiviruses #1 and #2 almost

completely abolished the fulvestrant-induced ERa protein degra-

dation when examined by Western blotting. However, infection

Figure 2. RNAi knockdown of CSK does not affect MCF-7 cell
sensitivity to tamoxifen or paclitaxel. Cells were infected with
empty lentivirus vector (pLKO.1) or two independent clones of
lentiviruses expressing different shRNA species targeting CSK shown
in Figure 1 (CSK KD#1 and #2) and then exposed to 1 mM 4-
hydroxytamoxifen (4-OHT) for 10 days (A) or 1–1000 nM paclitaxel for 2
days (B). Cell viability was determined by crystal violet staining (Fig. S3)
and quantified by spectrophotometry (mean6SEM of three or more
independent experiments).
doi:10.1371/journal.pone.0060889.g002
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with pLKO.1 control virus did not significantly alter the action of

fulvestrant effect (Figs. 4A and 4B). To obtain more quantitative

ERa protein data, we repeated this experiment but using ELISA

(Fig. 4C). After exposure to fulvestrant for 6 hours, ERa protein in

pLKO.1-infected control cells was reduced from 37.6561.64 ng/

100 mg total extractable cellular protein to 22.2760.72 ng/

100 mg. On the other hand, ERa expression in cells infected with

CSK shRNA lentiviruses was slightly reduced from

37.4561.48 ng/100 mg to 30.2261.75 ng/100 mg (shRNA #1)

and 39.5560.65 ng/100 mg to 31.6060.77 ng/100 mg (shRNA

#2) (Fig. 4C). Thus, agreeing with the Western blotting data, ERa
expression determined by ELISA was reduced to 33.666.1% of

vehicle-exposed control after 6-hour exposure to 100 nM

fulvestrant in pLKO.1-infected cells. In contrast, cells infected

Figure 3. Both fulvestrant and 17b-estradiol (E2) enhance proteasomal degradation of ERa protein in MCF-7 cells. (A–C) Fulvestrant
(A) and E2 (B) caused time-dependent reduction in ERa protein expression: Western blotting. Intensities of ERa protein bands were determined by
densitometry (C, mean6SEM of three independent experiments. Asterisks indicate statistical significance, p,0.05 to vehicle control). (D, E) E2 dose-
dependent reduction in ERa protein expression. Cells were exposed to varying concentrations of E2 for 6 hours and subjected to Western blotting
analysis of ERa protein (D). Intensities of ERa protein bands were determined by densitometry (E, mean6SEM of three independent experiments.
Asterisk indicates t-test significance p,0.05 to vehicle control). (F–H), Pre-exposure to MG132 dose-dependently prevented reduction in ERa protein
expression caused by fulvestrant (F) and E2 (G). Con, vehicle control (0.1% ethanol). Cells were exposed to varying concentrations of MG132 for 30
minutes and then exposed additionally to fulvestrant or E2 for 6 hours. Intensities of ERa protein bands were determined by densitometry (H,
mean6SEM of three independent experiments. Asterisks indicate statistical significance, p,0.05).
doi:10.1371/journal.pone.0060889.g003
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with CSK shRNA lentiviruses retained 79.08614.72% (shRNA

#1) and 89.56620.44% (shRNA #2) ERa protein expression as

compared to vehicle control at under the same conditions. When

CSK protein was re-expressed in the cells infected with the CSK

shRNA #1 lentivirus by transfection of an expression plasmid, the

fulvestrant-induced degradation of ERa protein was partly rescued

(Fig. S4). However, re-expression of CSK did not reinstate the

fulvestrant-induced MCF-7 cell death (data not shown), presum-

ably due to the transient nature of CSK re-expression from a

plasmid vector. Thus, RNAi knockdown of CSK expression

strongly suppresses the fulvestrant-induced ERa protein degrada-

tion in MCF-7 cells.

To determine whether the suppression of the fulvestrant-

induced ERa protein degradation by RNAi knockdown of CKS

is also observed in another cell culture model, we repeated the

same experiment with T47D human breast cancer cells. Whereas

T47D cells are dependent on estrogen for their proliferation, they

survive in the absence of estrogen signaling due to the loss-of-

function mutation of the p53 tumor suppressor protein [56]. Thus,

when T47D cells were exposed to fulvestrant, cells neither

proliferated nor died (Fig S5A). Expression of ERa protein in

T47D cells infected with the pLKO.1 control lentiviral vector was

strongly diminished upon exposure to 100 nM fulvestrant for 3–

9 hours (Figs. S5C, S5E), reproducing the observation made with

MCF-7 cells (Fig. 2). In contrast, ERa protein was significantly

resistant to degradation in fulvestrant-exposed T47D cells infected

with the CSK-KD#1 shRNA lentivirus (Figs. S5D, S5E), whose

CSK expression was reduced by approximately 70% (data not

shown). The resistance was partly reversed by re-expression of

CSK from an exogenous vector (Fig. S5E). These results indicate

that CSK is required for the fulvestrant-induced ERa protein

degradation in T47D cells even though fulvestrant does not show

significant cytocidal action in this cell line.

Small-molecular-weight inhibitors of c-Src do not affect
fulvestrant-induced MCF-7 cell death or ERa protein
degradation

CSK (c-Src tyrosine kinase) is a protein tyrosine kinase that

phosphorylates the C-terminal regulatory tyrosine of c-Src

oncoprotein, which itself is a protein tyrosine kinase [57].

Phosphorylation by CSK suppresses the kinase activity of c-Src

as well as other Src-family tyrosine kinases, and this is a

physiological mechanism regulating c-Src activity both in mam-

mals and Drosophila [57,58]. Roles of CSK in metastasis of

human cancer cells have also been suggested [58]. c-Src directly

phosphorylates nuclear hormone receptors such as androgen

receptor or ERa, and this phosphorylation is required for steroid

hormone signaling [59–61]. Thus, c-Src links signaling initiated by

the plasma membrane receptor tyrosine kinases such as epidermal

growth factor receptor and steroid hormone signaling [62–64].

To determine whether CSK affects fulvestrant-induced ERa
protein degradation through altering c-Src kinase activity, we

examined effects of small-molecular-weight inhibitors of c-Src

tyrosine kinase on fulvestrant-induced MCF-7 cell death and ERa
degradation. PP1 is a relatively specific inhibitor of c-Src although

it also inhibits tyrosine kinase activities of c-Kit and Bcr-Abl [65].

AZD0530 (a.k.a. saracatinib) selectively inhibits c-Src and Bcr-Abl

kinases [66–69]. We reasoned that, if CSK is required for

fulvestrant-induced cell death or ERa protein degradation through

suppression of c-Src, inhibition of c-Src tyrosine kinase by

chemical inhibitors would pharmacologically mimic CSK activa-

tion and show the opposite effect of CSK knockdown-namely,

enhanced MCF-7 cell sensitivity to fulvestrant actions. However,

by our hands, neither PP1 (0.5–10 mM) nor AZD0530 (0.1–2 mM)

significantly affected the fulvestrant-induced MCF-7 cell death

(Fig. S6). These c-Src inhibitors did not affect the fulvestrant-

induced ERa protein degradation, either (Fig. 5). Repeated

experiments with reduced fulvestrant concentrations or shorter

exposure times did not reveal any effects of PP1 or AZD0530 (data

Figure 4. CSK is required for fulvestrant-induced ERa protein
degradation in MCF-7 cells. (A, B) RNAi knockdown of CSK protein
expression caused resistance of intracellular ERa protein to fulvestrant-
induced degradation: Western blotting. Cells were infected with control
(pLKO.1) or two CSK-knockdown shRNA lentivirus clones and subjected
to exposure to fulvestrant. Expression of ERa protein was determined
by Western blotting at varying time points of exposure (A). Intensities of
ERa protein bands were determined by densitometry (B, mean6SEM of
three independent experiments. Asterisk indicates statistical signifi-
cance, p,0.05). (C) Similar experiments as shown in panels (A, B) were
performed, but amounts of ERa protein in total cellular protein were
determined by ELISA (mean6SEM of three independent experiments; *,
p,0.05 to vehicle control; #, p,0.05 to pLKO.1-infected cells exposed
to fulvestrant for the same period).
doi:10.1371/journal.pone.0060889.g004
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not shown). Effective inhibition of c-Src tyrosine kinase activity by

these compounds was confirmed by strong suppression of

epidermal growth factor-induced phosphorylation of Tyr416, a

well-accepted hallmark of c-Src activation [58,70–73] (Fig. S7).

Interestingly, c-Src kinase activity was not significantly enhanced

in the MCF-7 cells whose CSK expression was suppressed by

RNAi knockdown (Fig. S7C), suggesting that c-Src regulation by

CSK may have been replaced by other mechanisms.

Discussion

Activation of ERa by E2 triggers assembly of an active

transcription complex, which in turn signals polyubiquitination

and proteasomal degradation of the liganded ERa protein [44,74–

80]. Chu et al. reported that the E2-triggered proteasomal

degradation of ERa protein in MCF-7 cells were enhanced by

activation of c-Src [81]. Binding of fulvestrant to ERa also causes

proteasomal degradation although it is not associated with

transcriptional activation. Because the fulvestrant-triggered ERa
protein degradation is 10 times faster than that triggered by E2 in

MCF-7 cells [82], mechanisms of the ERa protein degradation

invoked by these two ligands may significantly differ. Our present

study provided evidence that CSK, the negative regulator protein

tyrosine kinase of c-Src, is required for fulvestrant-triggered ERa
protein degradation in MCF-7 cells, which appears to be opposite

to the report of Chu et al. [81]. However, the apparent lack of c-

Src activation in the MCF-7 cells whose CSK expression was

stably suppressed by RNAi knockdown (Fig. S7) may suggest that

c-Src might be regulated by other mechanisms in the absence of

CSK in these cells. Rengifo-Cam et al. demonstrated activation of

c-Src by 48-hour adenoviral overexpression of a dominant-

negative CSK in human colorectal cancer cells [58]. Since our

present study was performed using stable CSK-knockdown

cultures of MCF-7 cells, transient activation of c-Src, if any, could

have been suppressed by compensating mechanisms. Our attempts

to suppress the intracellular CSK actions by dominant-negative

CSK as reported by Rengifo-Cam et al. were unsuccessful due to

nonspecific induction of apoptosis of MCF-7 cells, which express

Figure 5. PP1 or AZD0530 tyrosine kinase inhibitors had no effect on ERa protein degradation in MCF-7 cells. In panels (A) and (B),
ERa protein expression after 6-hour exposure to 100 nM fulvestrant in the presence of PP1 or AZD0530 was determined by Western blotting (A) and
ELISA (B, mean6SEM of three or more independent experiments. Asterisks indicate statistical significance, p,0.05, to fulvestrant-only group). In
panels (C) and (D), fulvestrant concentration was reduced as indicated, and ERa protein expression after 6-hour exposure in the presence of PP1 or
AZD0530 was determined by Western blotting (C). Panel (D) shows a typical densitometric quantitation of the ERa protein band. Three
independently performed experiments did not show statistically significant effects of PP1 or AZD0530.
doi:10.1371/journal.pone.0060889.g005
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wild type p53 tumor suppressor protein as the majority of human

ER+/PR+/HER2- breast cancers [56,83].

In MCF-7 cells, fulvestrant mobilizes ERa into the nuclear

matrix in a manner dependent on interactions between the helix

12 domain of ERa and cytokeratins 8 or 18 [75,84–86].

Mobilization of ERa to nuclear matrix is necessary for poly-

ubiquitination of ERa protein by a mechanism involving the

NEDD8 ubiquitin-like protein and the Uba3-containing NEDD8-

activating enzyme [87] and subsequent degradation by the 26S

proteasome [85]. Using a panel of kinase inhibitor/activator

chemicals, Marsaud et al. observed that protein kinase C is an

enhancer of the fulvestrant-induced proteasomal ERa degradation

in MCF-7 cells whereas protein kinase A, MAPKs, and

phosphatidyl-inositol-3-kinase act as suppressors [82]. Tsai et al.

also reported that forskolin, a potent activator of protein kinase A,

prevents fulvestrant-induced ERa protein degradation in MCF-7

cells [88]. Thus, the signaling involving protein kinases seems to

have significant roles in regulating the fulvestrant-induced

proteasomal ERa protein degradation in breast cancer cells.

Our finding that CSK is required for this fulvestrant action

provides additional insights into how the kinase/phosphatase-

mediated intracellular signaling network in human breast cancer

cells is closely linked to antiestrogen sensitivity.

A number of previous studies including ours [35] isolated

fulvestrant-resistant variants of MCF-7 cells after long-term

exposure of the polyclonal MCF-7 cell culture to fulvestrant.

These studies agree that the fulvestrant resistant variants isolated

with this approach did not depend on estrogen signaling because

other signaling pathways (e.g., EGF receptor, ERK1/2, c-Met,

and AKT [89–92]) supported their proliferation and survival. In

these fulvestrant resistant variants, the fulvestrant-induced ERa
protein degradation was intact. By siRNA transfection-based

RNAi knockdown screenings generating synthetic resistance to

tamoxifen, Iorns et al. identified CDK10, CRK7, and MAP2K7

as kinases necessary for tamoxifen sensitivity of MCF-7 cells [30].

Again, knockdown of any of these three kinases caused estrogen

insensitivity in MCF-7 cells. Our shRNA lentivirus-based RNAi

knockdown screenings generating synthetic resistance to fulves-

trant identified MAP2K7 and CSK as kinases necessary for

fulvestrant-induced MCF-7 cell death. Independent identification

of MAP2K7 as a kinase required for sensitivities of both tamoxifen

(Iorns et al. [30]) and fulvestrant (our present study) supports

validity of the RNAi knockdown screenings performed in our

present study. Since MAP2K7 knockdown did not affect the

fulvestrant-induced proteasomal degradation of ERa protein (data

not shown), CSK is a unique protein whose knockdown in MCF-7

cells does not cause estrogen insensitivity but leads to drug

resistance due to cancellation of the induced ERa protein

degradation.

Details of the link between CSK knockdown and cancellation of

the fulvestrant-induced proteasomal ERa degradation remain to

be determined. Attempts made in our present study did not

establish roles of c-Src in the requirement of CSK for the

fulvestrant-induced ERa protein degradation although the possi-

ble involvement of c-Src in this mechanism cannot be denied. As

CSK directly phosphorylates not only c-Src but also the

transcription factor [93] and the ATP-activated P2X3 receptor

[94], these non-Src CSK substrates might also be involved in the

fulvestrant-induced ERa protein degradation. In this context, it is

interesting that phosphorylation of c-Jun at Tyr26 and Tyr170 by

CSK causes ubiquitination and proteasomal degradation of the c-

Jun protein [93].

In summary, our present study identified CSK as a novel

protein tyrosine kinase required for the fulvestrant-induced

proteasomal degradation of ERa protein in MCF-7 cells. RNAi

knockdown of CSK caused specific resistance to fulvestrant

without affecting MCF-7 cell sensitivities to tamoxifen or

paclitaxel, suggesting possible importance of CSK for better

understanding of the mechanisms of the cytocidal action of

fulvestrant in human breast cancer cells.

Materials and Methods

Chemicals
Fulvestrant (FaslodexH/ICI 182,780; research-grade pure chem-

ical) and PP1 were purchased from Tocris (Ellisville, MO). Crystal

violet, 4-Hydroxytamoxifen, paclitaxel, and MG132 were from

Sigma (St. Louis, MO). Puromycin hydrochloride and 17a-

Estradiol was from Calbiochem (Gibbstown, NJ). AZD0530 was

obtained from Selleck Chemicals Co. (ShangHai, China).

Recombinant human epidermal growth factor (EGF) was

purchased from R&D Systems (Minneapolis, MN).

Cell Culture
MCF-7 human breast cancer cell culture (BUS stock) was

provided by C. Sonnenschein and A. M. Soto (Tufts University)

[95,96], and its fulvestrant-sensitive monoclonal subline (W2) was

described in our recent study [35]. Our present study was

performed using the W2 clone of MCF-7 cells. T47D human

breast cancer cells were purchased from ATCC (Manassas, VA).

All cells were maintained in Dulbecco’s MEM (DMEM) supple-

mented with 5% FCS (HyClone, DEFINED grade; Thermo

Scientific, Waltham, MA) in 10% CO2 at 37 uC. To examine ERa
protein degradation induced by 17a-estradiol, subconfluent cells

were washed three times with phenol red-free DMEM (containing

no serum) and incubated in the last wash medium for 60 minutes

at 37 uC. Medium was then replaced by phenol red-free DMEM

supplemented with 5% charcoal/dextran-stripped FCS (HyClone)

and hormone-starved for another 24 hours before exposure to

17a-estradiol [13].

shRNA Lentivirus Production and Infection
Lentiviruses expressing shRNA species targeting specific human

mRNA transcripts were produced using the pLKO.1 vector

harboring the puromycin-resistance marker following published

protocols [33]. Subconfluent HEK293T packaging cells growth in

96-well plates were transfected with arrayed, pLKO.1-based

shRNA expression plasmids for human kinome screening (6,560

protein kinases and phosphatases) obtained from The RNAi

Consortium (Broad Institute, Cambridge, MA) with the expression

plasmids for VSV-G surface antigen and the core lentiviral

genome. For infection, 5 6103 cells were seeded into wells of 96-

well plate and allowed to attach for 24 hours. Cells (5,10 6 104

cells/well)were infected with lentiviruses (46104 IU; MOI = 4,8)

in the presence of 8 mg/ml polybrene under 1,200 x g gravity by

spinning for 60 minutes. Medium was changed 48 hours after

infection, and successful infected cells were selected by puromycin

(2.5 mg/ml) for 48 hours.

Cell Viability and Crystal Violet Staining
Cell viability was assessed by crystal violet staining. Cells grown

in 96-well plate were washed with PBS twice and then fixed with

12% formaldehyde. After 10 minutes incubation at room

temperature, cells were completely dried and stained with 1%

crystal violet for 5 minutes. Stained cells were washed with tap

water and subjected to spectrophotometric quantitation (OD

590 nm) using SpectraMax M5 (Molecular Devices, Sunnyvale,

CA).
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Protein Analyses
Western blotting was performed as we previously described

[97]. Briefly, cells were washed with ice cold PBS and lysed with a

RIPA buffer (150 mM NaCl, 25 mM Tris HCl pH 7.6, 1% NP-

40, 1% sodium deoxycholate, 0.1% SDS). Protein concentration

was determined by bicinchoninic acid (BCA) protein assay kit

(Pierce, Rockford, IL) with BSA as a standard. 80 mg of total

cellular protein was separated on 7.5% Tris-HCl polyacrylamide

gels and transferred to PVDF membranes (Bio-Rad, Richmond,

CA). The membranes were incubated for 1 h with 5% dry skim

milk in PBST buffer (PBS containing 0.05% tween 20) to block

nonspecific binding and then incubated with primary antibodies

(x1000 dilution) overnight at 4 uC. The primary antibodies were:

anti-human actin (goat IgG, sc.-1616/I-19, Santa Cruz Biotech-

nology, Santa Cruz, CA), anti-human ERa (rabbit IgG, sc-542/

MC-20 and sc-544/G-20, Santa Cruz Biotechnology), and anti-

human CSK (goat IgG, ab744–100, Abcam, Cambridge, MA).

The membranes were washed with PBST and then incubated with

peroxidase-conjugated secondary antibodies (donkey anti-goat

IgG or goat anti-rabbit IgG, x3000 dilution, Santa Cruz

Biotechnology) for 1 h at room temperature. All antibodies were

diluted in 1% dry skim milk in PBST buffer. Protein bands were

visualized by enhanced chemiluminescence (GE Healthcare,

Piscataway, NJ) using Kodak BioMax MR films (Perkin Elmer,

Waltham, MA). Signal intensities of protein bands were quanti-

tated by densitometry from at least three independent experiments

using ImageQuant system (GE Healthcare).

Phosphorylation of c-Src was examined using the Odyssey

infrared imaging system (LI-COR Biosciences, Lincoln, Nebraska)

as previously described [98] using rabbit anti-phosphorylated

human c-Src polyclonal antibody (P-Tyr416, #2101, Cell

Signaling Technology, Danvers, MA) and mouse anti-human c-

Src monoclonal antibody (IgG1, sc.-32789, Santa Cruz Biotech-

nology) as primary antibodies. Secondary antibodies (IRDye 680

donkey anti-rabbit IgG and IRDye 800 donkey anti-mouse IgG)

were purchased from LI-COR Biosciences. For c-Src kinase

activity assay, c-Src protein was immunoprecipitated using the

anti-human c-Src monoclonal antibody and protein G beads and

subjected to the ProFluor Src family kinase assay (Promega,

Madison, WI) following the manufacturer’s instructions.

ERa ELISA
Cell lysates were prepared with the RIPA buffer, and 100 mg of

total protein was subjected to ERa ELISA (Active Motif; Carlsbad,

CA) following manufacturer’s instructions. Absorbance at 450 nm

was determined by Synergy HT plate reader (BioTek, Winooski,

VT).

Expression of CSK by transient transfection of an
expression plasmid

An expression plasmid for human full-length CSK (Cat. #
RC210758) and its control vector (pCMV6-ENTRY) was

purchased from OriGene Technologies (Rockville, MD). The

plasmid expressed an open reading frame for human CSK

transcript variant 1 tagged C-terminally with the myc and DDK

epitope peptides and placed under the CMV promoter. Subcon-

fluent cells were transfected with the CSK expression plasmid or

the control plasmid together with an expression plasmid for a

green fluorescence protein (S65T red shift mutant of EGFP) using

TransIT-LT1 transfection reagent following the manufacturer’s

instructions (Mirus Bio, Madison, WI). High transfection efficiency

(.70%) was confirmed by expression of the EGFP observed using

a fluorescence microscope.

Statistics
Values are expressed as mean6SEM of at least three

independent experiments. One-way analysis of variance (ANOVA)

was performed on the values followed by Tukey post-hoc test in

GraphPad PRISM6 statistic software package (GraphPad Soft-

ware, La Jolla, CA).

Supporting Information

Figure S1 RNAi knockdown of CSK in MCF-7 cells
causes resistance to fulvestrant: Crystal violet staining
data. Cells were infected with empty lentivirus vector (pLKO.1)

or two independent clones of lentiviruses expressing different

shRNA species targeting CSK (CSK KD #1 and #2) and

exposed to puromycin, fulvestrant, or vehicle for 7 days.

(PDF)

Figure S2 RNAi knockdown of CSK in MCF-7 cells and
resistance to fulvestrant. (A) Cells were infected with empty

lentivirus vector (pLKO.1) or lentivirus clones expressing different

shRNA species targeting CSK as listed in Table S1 and subjected

to Western blotting quantitation of CSK protein expression. CSK-

KD, CSK knockdown. (B, C) Fulvestrant resistance of MCF-7

cells infected with shRNA lentiviruses targeting CSK. Cells

infected with shRNA lentivirues were exposed to 100 nM

fulvestrant or vehicle for 7 days. (B) Gross appearance of cell

culture after crystal violet staining. (C) Phase contrast microscopic

images. MCF-7 cells expressing CSK (MCF-7 W2 and pLKO.1

infected cells) showed massive apoptotic death after fulvestrant

exposure whereas cells subjected to RNAi knockdown of CSK

survived. MCF-7 cells with CSK knockdown often showed

significant pileup growth appearance as shown in this picture.

(PDF)

Figure S3 RNAi knockdown of CSK does not affect
MCF-7 cell sensitivity to tamoxifen or paclitaxel. Cells

were infected with empty lentivirus vector (pLKO.1) or two

independent clones of lentiviruses expressing different shRNA

species targeting CSK (CSK KD#1 and #2) and then exposed to

1 mM 4-hydroxytamoxifen (4-OHT) for 10 days (A) or 1–1000 nM

paclitaxel for 2 days (B). Cell viability was determined by crystal

violet staining. Quantified data obtained by spectrophotometry of

the stained cells are shown in Fig. 2.

(PDF)

Figure S4 Re-expression of CSK in MCF-7 cells rescues
fulvestrant-induced ERa protein degradation. (A) Dimin-

ished CSK protein expression in MCF-7 cells subjected to

lentiviral RNAi knockdown and re-expression by transfection of

a CSK expression plasmid: Western blotting. MCF-7 cells were

infected with pLKO.1 control lentivirus (lane 1) or the CSK-

KD#1 shRNA lentivirus (lanes 2, 3). The cells infected with the

CSK-KD#1 virus were further subjected to transfection of an

expression plasmid for human CSK (lane 3) or a control plasmid

harboring no insert (lane 2). Expression of CSK protein was

determined by Western blotting 24 hours after transfection. (B)

Time-course of ERa protein expression in MCF-7 cells exposed to

fulvestrant: Western blotting. Intensities of ERa protein bands

were determined by densitometry (C, mean 6 SEM of three

independent experiments. Asterisk indicates statistical significance

(p,0.05) against the control without exposure to fulvestrant (con).

Sharp indicates statistical significance (p,0.05) between CSK

knockdown cells with or without re-expression of CSK1 from a

plasmid.

(PDF)
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Figure S5 Re-expression of CSK in MCF-7 cells rescues
fulvestrant-induced ERa protein degradation. (A, B)

Effects of E2 and fulvestrant on proliferation and survival of

T47D cells. Cells were for up to 6 days (A) or 11 days (B) in the

presence or absence of E2 and/or fulvestrant in the medium, and

the live cell numbers in the culture were determined by crystal

violet staining. Note that live cell number was not decreased in the

presence of fulvestrant even though cells were not proliferated in

this condition, either. (C–E) Changes in ERa protein expression in

T47D cells exposed to fulvestrant. T47D cells infected with

pLKO.1 control lentivirus (C) or the CSK-KD#1 shRNA

lentivirus targeting CSK (D) were exposed to 100 nM fulvestrant

or vehicle (ethanol) for 3, 6, or 9 hours (control, no exposure) and

then subjected to Western blotting determination of ERa protein

expression. Intensities of ERa protein bands were determined by

densitometry (E, mean 6 SEM of three independent experiments.

Asterisk indicates statistical significance (p,0.05) against control;

sharp indicates significant differences between the pLKO.1-

infected and the CSK-KD#1 infected cells observed when cells

were exposed to fulvestrant (p,0.05, t-test).

(PDF)

Figure S6 PP1 or AZD0530 tyrosine kinase inhibitors
had no effect on fulvestrant-induced cell death. Cells were

exposed to PP1 (0.1–2 mM, A) or AZD0530 (0.1–2 mM, B) for 30

minutes and then exposed to 100 nM fulvestrant in the presence of

the same c-Src kinase inhibitors for 5 days. Cell viability was

determined by crystal violet staining. Representative crystal violet

staining images are shown. Amounts of stained cells were

determined by spectrometry as shown in the bar graphs (mean

6 SEM of three independent experiments; asterisk indicates

statistical significance p,0.05 against the vehicle control, sharp

indicates significance against the absence of AZD0530).

(PDF)

Figure S7 c-Src phosphorylation and kinase activity in
MCF-7 cells. (A) Fulvestrant does not induce c-Src phosphor-

ylation. MCF-7 cells were exposed to 100 nM fulvestrant or

20 ng/ml EGF for 5, 10, and 30 minutes and subjected to Western

blotting of Tyr416-phosphorylated and total c-Src. (B) Inhibition

of EGF-induced c-Src Tyr-416 phosphorylation by PP1 or

AZD0530. Cells were exposed to 10 mM PP1 or 2 mM AZT for

30 min and then stimulated with 20 ng/ml EGF for another 30

minutes. Phosphorylation of c-Src at tyr416 was determined by

Western blotting. Typical images of three repeated experiments

are shown for panels (A) and (B). Asterisks indicate statistical

significance (p,0.05). (C) c-Src kinase activities in MCF-7 cells. c-

Src was enriched by immunoprecipitation and subjected to kinase

assay (mean 6 SEM of three experiments). 1–3, MCF-7 cells

infected with pLKO.1 control lentivirus exposed to vehicle (1),

10 mM PP1 (2), or 2 mM AZT (3) for 30 min. 4–5, MCF-7 cells

infected with CSK-KD#1 (4) or CSK-KD#2 (5) shRNA

lentiviruses.

(PDF)

Table S1 The TRC collection of shRNA lentiviral clones
targeting human CSK.

(PDF)
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