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Abstract

High-throughput phenotyping projects in model organisms have the potential to improve our understanding of gene
functions and their role in living organisms. We have developed a computational, knowledge-based approach to
automatically infer gene functions from phenotypic manifestations and applied this approach to yeast (Saccharomyces
cerevisiae), nematode worm (Caenorhabditis elegans), zebrafish (Danio rerio), fruitfly (Drosophila melanogaster) and mouse
(Mus musculus) phenotypes. Our approach is based on the assumption that, if a mutation in a gene G leads to a phenotypic
abnormality in a process P, then G must have been involved in P, either directly or indirectly. We systematically analyze
recorded phenotypes in animal models using the formal definitions created for phenotype ontologies. We evaluate the
validity of the inferred functions manually and by demonstrating a significant improvement in predicting genetic
interactions and protein-protein interactions based on functional similarity. Our knowledge-based approach is generally
applicable to phenotypes recorded in model organism databases, including phenotypes from large-scale, high throughput
community projects whose primary mode of dissemination is direct publication on-line rather than in the literature.
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Introduction

The functional annotation of genes and their products using the

Gene Ontology (GO) [1] has been essential to the impact of recent

advances in the biomedical sciences arising from the explosion of

genome sequences now becoming available. The majority of GO

annotations are manually asserted by trained experts based on

literature evidence. Recently, large-scale community projects,

using forward and reverse genetics, as well as pan-genomic

phenotyping efforts, such as the International Mouse Phenotyping

Consortium (IMPC) [2] and the Zebrafish mutation project [3],

have begun the systematic phenotyping of animal model mutants.

Such efforts have a huge potential to provide novel insights into

gene functions and their roles in disease. However, data resulting

from high-throughput phenotyping efforts are not immediately

reported in the literature, and gene functions are not readily

inferred from phenotype data. Here, we present a novel method to

automatically infer functions of gene products from phenotype

data. Our method is applicable to both manually assigned

phenotype annotations and those resulting from electronically

reported, high-throughput phenotype experiments.

GO annotations are comprised of a gene product, a term that

represents molecular function, biological process or a cellular

component, the literature reference for the assignment, and an

evidence code that indicates how the annotation was derived.

Annotations of genes are maintained in model organism databases

and the GO annotation (GOA) database [4] which now covers

over 160,000 taxa and more than 32 million annotations. The

strategies for annotating genes and proteins range from explicit

expert manual curation of the literature, through electronic

inference based on orthology, protein-protein or genetic interac-

tions, to inference of functions based on protein family relations.

GO annotations for humans currently comprise 353,102 annota-

tions for 45,364 proteins (based on GOA version 115, accessed

December 2 2012), of which approximately half are manually

curated, the remainder being derived electronically. In the mouse,

there are 25,437 protein-coding genes with GO annotation (both

electronic and manual), and 9,990 proteins with experimentally-

derived annotations. The scale of the annotation task and the

speed with which new genomes are becoming available has

necessitated the development of automated and semi-automated

annotation strategies to maintain significant coverage, and several

automated function annotation methods have gained importance

in recent years [5,6]. However, phenotype data has not yet been

employed on a large scale as a source of high-quality electronic

annotations.

Animal model phenotypes are commonly characterized using a

species-specific phenotype ontology, many of which are based on

the Entity/Quality (EQ) framework [7]. While phenotype data has
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traditionally been gathered through literature curation, the results

of high-throughput phenotyping are commonly made available

directly in research databases without an associated report in the

literature. These results are therefore not available through

literature curation or inference of gene functions from phenotypes

by trained curators. A systematic exploitation of phenotype data to

identify gene functions requires a computational approach that

can assign functions to genes based on the recorded phenotypes.

Such an approach is applicable to manual curation of phenotype

data from the literature as well as data derived from high-

throughput phenotyping efforts.

The main challenge in designing such an approach is to relate

phenotype observations in mutagenesis experiments, which are

characterized using terms in species-specific phenotype ontologies,

systematically to gene functions, which are described using the

Gene Ontology [1]. We have developed a method that employs

the logical definitions of terms in phenotype ontologies [8] and

infers functions of genes and gene products from phenotype

statements. Our method relies on the assumption that, if a

mutation of a gene G results in a phenotypic manifestation that

affects a GO process or function F , then G must have been

involved in the function F . For example, if a phenotypic

observation of a targeted gene knockout mouse mutant is abnormal

B cell apoptosis, then the mutation must have occurred in a gene that

is involved in B cell apoptosis. We apply our approach to yeast

(Saccharomyces cerevisiae) [9], fly (Drosophila melanogaster) [10], fish

(Danio rerio) [11], worm (Caenorhabditis elegans) [12] and mouse (Mus

musculus) [13] phenotype data and identify several thousand novel

associations between genes and their functions.

The quality of gene function annotations is often evaluated

based on inter-annotator agreement [14,15] or a gold standard

[16]. However, for novel functions that either have not yet been

extensively studied or have not yet been reported in the literature,

these approaches are not readily applicable. Therefore, in order to

assess the quality of our inferred annotations, we applied the

phenotypically inferred functions to the task of predicting known

genetic and protein-protein interactions based on functional

similarity over GO biological functions [17–19]. We use the GO

annotations of gene products available from the various model

organism databases as well as the GOA database [4] as baseline

for predicting genetic interactions and PPIs, and compare the

results to manually curated and experimentally validated genetic

interactions and PPIs using Receiver Operating Characteristic

(ROC) analysis [20]. We then perform the same analysis again,

adding our inferred GO annotations to the annotations already

available from the model organism databases and GOA. For each

species, we identify an increase in the performance of predicting

known genetic interactions and PPIs when adding the functions we

infer, and, in most cases, the increase in performance is significant.

When combining the inferred annotations across all five species

and predicting genetic interactions and PPIs, we also find a

significant increase in ROC AUC (p~1:4|10{3 for PPIs,

p~8:2|10{5 for genetic interactions, pv10{6 for PPIs from

STRING, pv10{6 for BioGRID interactions; one-tailed t-test).

The inferred functions and our analysis code are freely available

on http://phenotype2go.googlecode.com.

Materials and Methods

Predicting Functions from Phenotypes
Table 1 provides an overview of the datasets and resources used

in this work. Phenotypes in the yeast, fly, worm and mouse

Table 1. Overview over main resources used in this work.

Data Downloaded from Downloaded on/Version

GO annotations Gene Ontology Annotation project [4] Nov 13, 2012

Genetic interactions Gene Ontology Annotation project Nov 13, 2012

Protein-protein interactions Gene Ontology Annotation project Nov 13, 2012

Protein-protein interactions STRING [21] Dec 25, 2012/v9.0

Protein-protein and genetic
interactions

BioGRID [22] Feb 20, 2013/v3.2.97

Phenotype data Model organism databases (MGI, SGD, ZFIN, FlyBase, WormBase) Nov 11, 2012

Phenotype ontologies OBO Foundry website Nov 13, 2012

Gene Ontology Gene Ontology website Nov 13, 2012

Mammalian Phenotype
Ontology: formal definitions

https://phenotype-ontologies.googlecode.com/svn/trunk/src/ontology/mp/mp-equivalence-axioms.
obo

Nov 13, 2012

Human Phenotype Ontology:
formal definitions

https://phenotype-ontologies.googlecode.com/svn/trunk/src/ontology/hp/hp-equivalence-axioms.
obo

Nov 13, 2012

Worm Phenotype Ontology:
formal definitions

http://obo.cvs.sourceforge.net/*checkout*/obo/obo/ontology/phenotype/worm_phenotype_xp.
obo

Nov 13, 2012

Ascomycete Phenotype
Ontology: formal definitions

http://obo.cvs.sourceforge.net/viewvc/obo/obo/ontology/phenotype/yeast_phenotype_xp.obo Nov 13, 2012

Flybase Controlled
Vocabulary: formal definitions

http://code.google.com/p/phenomeblast/source/browse/trunk/phenotypeontology/obo/fly_xp.obo Nov 13, 2012

The phenotype data resulting from single gene mutations and genetic interaction data for Drosophilae, Mus musculus, Saccharomyces cerevisiae, Caenorhabditis elegans
and Danio rerio were downloaded from FlyBase [10], Mouse Genome Informatics [13], Saccharomyces Genome Database [9], WormBase [12], and Zebrafish Information
Network (ZFIN) database [11] respectively. All phenotype data was downloaded on 11 Nov 2012. GO annotations were downloaded from the GOA website on 13 Nov
2012. The ontologies as well as the phenotype definitions were obtained from the OBO Foundry website on 13 Nov 2012. For zebrafish, we downloaded the files
Morpholinos.txt and genotype_features.txt on 02 Oct 2012 from the ZFIN website. We use these files to map ZFIN genotype and Morpholino identifiers to ZFIN’s gene
identifiers.
doi:10.1371/journal.pone.0060847.t001
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phenotype ontologies were manually defined [8] using the PATO

framework [7], while fish phenotypes are directly annotated using

PATO. According to PATO, a phenotype statement can be

decomposed into one or more entities (E) that are affected in a

phenotype and a quality (Q) that determines how the entity is

affected. Table 2 shows the number and completeness of the

phenotype definitions for yeast, fly, worm and mouse phenotypes

ontologies.

To identify gene functions from phenotypes, we first identified

the quality and the entity of the animal model’s phenotype

annotation and then identified the genes that have been mutated

in the animal model. If the entity that is part of the phenotype

statement is based on the GO, we assign that GO term as a

function to the gene that has been mutated in the animal model.

For example, the mouse model Vgftm1Srjs (MGI:2179681), a

targeted mutation of the Vgf gene, is characterized by a phenotype

lactation failure (MP:0010249). Lactation failure is decomposed into

the entity lactation (GO:0007595) and the quality lacking processual

parts (PATO:0001558). Since lactation is impaired in the phenotype

resulting from a mutation in Vgf, we infer that Vgf must be involved

in lactation.

Predicting Interactions
We evaluate the inferred gene functions by applying them to the

prediction of genetic interactions and PPIs. To obtain the genetic

interactions and PPIs, we use the GO annotation files and identify

GO annotations with the IGI (inferred from genetic interaction)

and IPI (inferred from protein interaction) evidence codes. The

GO annotations contain as additional evidence the interaction

partner from which the annotation has been inferred, and we use

this pair as a genetic interaction or PPI (depending on the evidence

code). Since the use of interactions contained in the GO

annotation files may introduce a bias when predicting interactions

based on GO annotation similarity, we further use known PPIs

from the STRING database [21] and interactions from the

BioGRID database [22] to provide additional independent

verification datasets.

We then filter the sets of interaction data from the model

organism databases and remove the interaction pairs for which we

have not inferred a novel function (i.e., if G1 and G2 interact but

we were not able to infer a novel function for G1 or G2, we remove

this pair from the interaction data set). For each species for which

we infer novel functions, we then perform a pairwise computation

of functional similarity between genes. To calculate the similarity

between two sets of GO annotations, we used the Jaccard index as

a measure of semantic similarity. If a gene G has the GO terms

t1,:::,ti as annotations, we generate the set An(G) as the smallest

set that contains t1,:::,ti and is closed against superclasses (i.e., if

t[An(G), and s is a superclass of t, then s[An(G)). We then define

the similarity between the genes G1 and G2 as:

Sim(G1,G2)~
jAn(G1)\An(G2)j
jAn(G1)|An(G2)j ð1Þ

While a large number of different semantic similarity measures

exists [19], we chose to apply the Jaccard index as it does not rely

on information content to determine similarity. While similarity

measures that incorporate the information content of an ontology

term commonly provide better performance than measures that do

not use information content [19], they may also introduce a bias

when comparing the results of an analysis performed on multiple

independent datasets. To ensure comparable results across all

species we analyze, we used the Jaccard index without any weights

based on information content.

As a result of applying this similarity measure, we obtain, for

each gene, a functional similarity value to all other genes. For each

gene G, we then rank this similarity list so that the gene that is

functionally most similar to G is on rank 1 and the least similar on

the last rank. Using the genetic interaction and PPI datasets as

positive instances and all other pairs as negative, we then predict

genetic interactions and PPIs based on functional similarity. We

measure the success using an analysis of the receiver operating

characteristic (ROC) curve and determine the area under the

ROC curve (ROC AUC) [20]. A ROC curve is a plot of the true

positive rate as a function of the false positive rate and can be used

to visualize the quality of the predictions. The ROC AUC is a

quantitative measure of the classifiers performance: a ROC AUC

of 0.5 indicates a random classifier (i.e., the true positive rate

increases proportional to the false positive rate), while a ROC

AUC of 1 indicates a perfect classifier (i.e., all true positive

instances are placed on the first rank, while the true negative

instances are all ranked lower).

In the absence of a large set of true negative examples of PPIs or

genetic interactions, we make the assumption that interactions that

are not present in our evaluation datasets are negative instances.

As a consequence, our true positive rate is lower than the one that

we would obtain when treating only validated negative interac-

tions as negative examples. Furthermore, the resulting ROC

AUCs are also lower than the ones we would achieve with

validated negative examples of interactions. Since we use the same

positive and negative instances (for each species) to perform our

comparative evaluation of current and inferred GO functions, this

assumption will not affect the validity of our results.

Results and Discussion

Prediction of Gene Functions
Applying our method, we extract 1,409 novel associations

between genes and their functions for zebrafish, 12,483 for yeast,

1,057 for fruitfly, 3,885 for worm and 14,013 for mouse, using

only the GO annotations with manually created evidence for

comparison (evidence codes Inferred from Experiment (EXP), Inferred

from Direct Assay (IDA), Inferred from Physical Interaction (IPI), Inferred

from Mutant Phenotype (IMP), Inferred from Genetic Interaction (IGI) and

Inferred from Expression Pattern (IEP)). We evaluate the quality of the

inferred functions both manually and by applying them for

predicting known genetic interactions and PPIs. First, we

randomly selected 20 annotations from each species and examined

scientific papers in which the gene and the resulting phenotypes

Table 2. Overview of the completeness of definitions for
several phenotype ontologies.

Phenotype ontology
Number of classes
in ontology

Number of
classes defined

Mammalian Phenotype
Ontology

9,241 6,587

Ascomycete phenotype
Ontology

329 159

C. elegans phenotype
Ontology

2,095 942

FlyBase Controlled
Vocabulary

821 743

doi:10.1371/journal.pone.0060847.t002
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are discussed. We find that the annotations that we generate are

biologically valid if the phenotype annotations, and the formal

definitions of the terms that are used to described them, are

accurate. For example, we infer that the mouse gene Efnb2

(MGI:105097) is involved in cloacal septation (GO:0060197), a

function that has previously been reported in the literature [23]

Figure 1. Sub-graph of the GO hierarchy displaying ancestors and children of erythrocyte development. The figure has been created
using the QuickGO browser [34].
doi:10.1371/journal.pone.0060847.g001
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Table 3. Predicted annotations of mouse genes for erythrocyte development (GO:0048821).

MGI ID Gene Existing GO annotation Allele supporting new annotation

MGI:1921354 Abcb6 Abcb6tm1Jsch

MGI:2158492 Ahsp GO:0030218 erythrocyte differentiation

MGI:88064 Ar ArTfm

MGI:88113 Atp4a Atp4atm1Ges

MGI:106190 Bcl11a Bcl11atm1:1Pwt

MGI:1338013 Cbfa2t3 Cbfa2t3tm1:1Swh

MGI:88316 Ccne1 Ccne1tm1Clur

MGI:96617 Cd47 Cd47tm1Fpl

MGI:103198 Cdc25a Cdc25atm1RF

MGI:2384875 Cdk5rap2 Cdk5rap2an

MGI:1344352 Dido1 Dido1tm1Cmar

MGI:1329019 Dnase2a GO:0030218 erythrocyte differentiation

MGI:1330300 Dyrk3 GO:0030218 erythrocyte differentiation

MGI:103012 E2f4 E2f4tm1Lees

MGI:95295 Egr1 Egr1tm1Jmi

MGI:95401 Epb4.1 Epb4.1tm1Cnby

MGI:95407 Epo GO:0030218 erythrocyte differentiation

MGI:95408 Epor Eportm1:4Jtp

MGI:109336 Etv6 Etv6tm2:1Sho

MGI:1351611 Exoc6 GO:0030218 erythrocyte differentiation

MGI:95513 Fech GO:0030218 erythrocyte differentiation

MGI:95661 Gata1 GO:0048821 erythrocyte development

MGI:95662 Gata2 GO:0045648 positive regulation of erythrocyte differentiation

MGI:1276578 Gfi1b GO:0045646 regulation of erythrocyte differentiation

MGI:96103 Hk1 Hk1dea

MGI:96109 Hlx Hlxtm1Rph

MGI:1098219 Hmgb3 GO:0045638 negative regulation of myeloid cell differentiation

MGI:96187 Hoxb6 GO:0034101 erythrocyte homeostasis

MGI:1342540 Ikzf1 Ikzf1tm1Kge

MGI:96560 Il6st Il6sttm1Kish

MGI:107357 Inpp5d GO:0045648 positive regulation of erythrocyte differentiation

MGI:96395 Irf8 GO:0030099 myeloid cell differentiation

MGI:96629 Jak2 GO:0030218 erythrocyte differentiation

MGI:99928 Jak3 Jak3tm1Ljb

MGI:104813 Jarid2 Jarid2jumonji

MGI:96677 Kit GO:0030218 erythrocyte differentiation

MGI:96974 Kitl Kitltm1:1Sjm

MGI:1354948 Klf13 GO:0045647 negative regulation of erythrocyte differentiation

MGI:96757 Lcn2 Lcn2tm1Mrgr

MGI:96785 Lhx2 Lhx2tm1Dra

MGI:101789 Lig1 Lig1tm1Dwm

MGI:1346865 Mapk14 GO:0045648 positive regulation of erythrocyte differentiation

MGI:2444881 Mfsd7b GO:0030218 erythrocyte differentiation

MGI:3619412 Mir451 Mir451tm1Eno

MGI:97249 Myb Mybtm1Jof

MGI:2442415 Myst3 GO:0030099 myeloid cell differentiation

MGI:1349717 Ncor1 Ncor1tm1Rsd

MGI:104741 Nfkbia GO:0045638 negative regulation of myeloid cell differentiation Nfkbiatm1.1Kbp

Analysis of Phenotypes Reveals Gene Functions
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but which has not yet been added as a GO annotation of Efnb2. In

several cases, the annotations we generate are too general, i.e., a

biologist would be able to infer a more specific function from the

described experiment; nevertheless, even the general annotations

are valid and may provide useful information about a gene’s

function. The detailed manual evaluation results, including

references to the manuscripts that support the novel annotation,

are included as supplementary material.

We also found evidence in some systems for an improvement in

annotation granularity. Taking the novel annotations in the mouse

genome to erythrocyte development (GO:0048821), we manually

examined the underlying phenotype evidence in MGI for the

new assertions, together with the existing GO process and function

annotations. Of 77 novel annotations to erythrocyte development, 29

genes already had some annotation to erythrocyte differentiation

(GO:0030218) or regulation of the erythroid or myeloid lineages,

with the most common annotation being to the parent term

erythrocyte differentiation. Some genes were annotated to directional

regulation, such as positive regulation of erythrocyte differentiation (GO:

0045648), but others were annotated to much more general GO

terms such as myeloid cell differentiation (GO:00030099). The

remaining genes with novel annotations to erythrocyte development

have no current GO annotation to erythroid lineage processes but

mutants show phenotypes affecting erythroid differentiation or

development. Table 3 provides an overview over our manual

Table 3. Cont.

MGI ID Gene Existing GO annotation Allele supporting new annotation

MGI:97566 Pgm3 Pgm3mld1

MGI:2385902 Picalm Picalmfit1{494SB

MGI:97583 Pik3r1 Pik3r1tm2Dfr

MGI:1201409 Pknox1 GO:0030218 erythrocyte differentiation

MGI:101898 Pou2f1 Pou2f1tm1Shrp

MGI:1927072 Ppp1r15a Ppp1r15atm1:1Ajf

MGI:109486 Prdx2 Prdx2tm1Yu

MGI:97806 Ptpn2 Ptpn2tm1Mtr

MGI:97810 ptprc Ptprctm1Weis

MGI:97874 Rb1 GO:0043353 enucleate erythrocyte differentiation

MGI:103289 Relb Relbtm1Brv

MGI:99852 Runx1 GO:0030099 myeloid cell differentiation Runx1tm1:1(RUNX1�)Homy

MGI:2146974 Safb Safbtm1So

MGI:2445054 Senp1 GO:0010724 regulation of definitive erythrocyte differentiation

MGI:98282 Sfpi1 GO:0045646 regulation of erythrocyte differentiation

MGI:1928761 slc19a2 Slc19a2tm1Ejn

MGI:108392 Slc20a1 Slc20a1tm1Lbek

MGI:98354 Sos1 Sos1tm1:2Rak

MGI:1277166 Sp3 GO:0030218 erythrocyte differentiation Sp3tm1Sus

MGI:98385 Spna1 Spna1ihj

MGI:1915678 Steap3 Steap3tm1:1Atel

MGI:98480 Tal1 GO:0045648 positive regulation of erythrocyte differentiation

MGI:1196624 Tcea1 GO:0030218 erythrocyte differentiation

MGI:98822 Tfrc Tfrctm1Nca

MGI:98729 Tgfbr2 Tgfbr2tm1:1Karl

MGI:1920999 Ttc7 Ttc7fsn

MGI:1270126 Ulk1 Ulk1tm1:1Thsn

MGI:98917 Uros Urostm3Rjde

MGI:103223 Vhl Vhltm1Jae

MGI:1095400 Zfpm1 GO:0060318 definitive erythrocyte differentiation

Figure 1 shows the part of the GO hierarchy containing erythrocyte development. Of the 77 genes predicted by phenotypic analysis to annotate to erythrocyte
development, 29 already had some relevant annotation, shown in column 3. Relevant annotation was taken to be any child class of myeloid cell differentiation
(GO:0030099), or erythrocyte homeostasis (GO:0034101), thereby including as many levels of granularity as possible in order to compensate for possible curator
decisions to annotate more generally. The remaining 48 genes had no existing annotations to any of these classes. In many cases, multiple genotypes provided
evidence for the novel annotation; an example allele is shown in column 4. Phenotype annotations to abnormal erythropoiesis (MP:0000245) or its subclasses were
counted as evidence. Whilst close curation of the phenotypic evidence may suggest that annotation to a parent of erythrocyte development is more appropriate, in all
cases the evidence indicated that annotation to the neighbourhood of this class was correct but missing.
doi:10.1371/journal.pone.0060847.t003
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evaluation results for annotations to erythrocyte development, and

Figure 1 shows the corresponding part of the GO hierarchy.

To further evaluate the predicted annotations, we quantify their

impact on predicting known genetic interactions and PPIs. For

this purpose, we applied a measure of functional similarity

between genes (see Materials and Methods section) and rank

genes based on their similarity. For evaluating the functional

similarity, we use all GO annotations available for a gene,

including electronically inferred annotations. We then use

datasets of genetic interactions and PPIs as a gold standard.

We obtain the interactions from the GO annotations tagged

with the IGI (inferred from genetic interaction) and IPI (inferred

from protein interaction) evidence codes. We further use protein

interactions from the STRING database [21] and protein and

genetic interactions from the BioGRID database [22] to

evaluate the results. Figure 2 shows the results of the ROC

analysis for predicting genetic interactions, Figure 3 shows the

results of the ROC analysis for predicting PPIs (extracted from

GO annotations), Figure 4 shows the results of the ROC

analysis for predicting PPIs from STRING and Figure 5 shows

the results of the ROC analysis for predicting interactions from

the BioGRID database. We find that the performance of

predicting genetic interactions and PPIs based on gene functions

improves for every species when including the gene functions we

infer. The results are summarized in Table 4, and detailed

evaluation results are provided as Supplement S2.

One example of our evaluation is provided by Casp1 (caspase 1,

MGI:96544) and Il1b (interleukin 1 beta, MGI:96543), which

are known to interact in mice and both are essential for several

shared functions [24]. Based on the asserted GO functions, their

functional similarity is relatively low. However, based on the

phenotypes observed for caspase 1 mutations and interleukin 1

beta mutations, we infer several new functions in which both are

involved, including defense response to bacterium and interleukin-1 beta

secretion. We also infer the involvement of Casp1 in inflammatory

response which is a known function of Il1b. As a consequence of

the novel functional annotations, Casp1 and Il1b are functionally

significantly more similar than currently inferred through

asserted functional annotations (full data provided as Supple-

ment S2).

Comparison to related work
The most similar related work of which we are aware are

explicit mappings between phenotype terms and GO terms that

have been created as part of the curation pipeline in WormBase

(available at http://wiki.wormbase.org/index.php/Gene_Ontology#
Phenotype2GO_pipeline_.28Sanger_and_Caltech.29). In these map-

pings, particular PATO-based ontology terms are explicitly and

manually mapped to GO terms that can reliably be inferred

Figure 2. ROC curves for predicting genetic interactions. We compare the performance of predicting genetic interactions using all available
annotations from GOA (labeled ‘‘original’’ in the graphs) and using GOA’s annotations combined with our inferred functions (labeled ‘‘new’’ in the
graphs). For the evaluation, we used 4,061 genetic interactions in yeast, 783 interactions in fly, 169 interactions in fish, 3,970 interactions in mouse
and 893 interactions in worm. We also show the ROC curve resulting from the combined annotations and interactions in all five species. All ROC
curves include the line of no-discrimination (labeled ‘‘x’’ in the graphs). The detailed evaluation results are provided as supplementary material.
doi:10.1371/journal.pone.0060847.g002
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based on the phenotype annotation. For example, the

WormBase Phenotype Ontology term Long (WBPheno-

type:0000022) is mapped to the GO term negative regulation of

multicellular organism growth (GO:0040015), and these mappings

are used to infer functional annotations from mutant phenotype

automatically in WormBase. In our approach, we use the

PATO-based definitions that have been created for the WormBase

Phenotype Ontology [25] to infer gene functions, which leads to

complementary functional annotations. In particular, as a conse-

quence of automated inference of GO functional annotations from

phenotypes in WormBase, we observe the highest overlap of functions

we infer with existing GO annotations (see Table 4), while we

nevertheless infer a large number of novel functions that cannot

currently be identified through WormBase’s mappings. Furthermore,

we use an ontology-based approach to extend such a mapping

between observed phenotypes and functional annotations to other

model organism species. In particular, we reuse the large number of

PATO-based definitions [7] for phenotype ontologies that has recently

been created [8,26], and are therefore able to apply our approach to

any model organism data for which such definitions have been

created. Furthermore, model organism databases such as ZFIN [11]

use PATO-based phenotype descriptions directly, and our method is

directly applicable to such phenotypes.

There are a large number of automated function prediction

algorithms that utilize text mining [4,27–29], interaction networks

[5] and sequence information [6]. Our approach incorporates

experimentally derived phenotype data that has, to the best of our

knowledge, not yet been incorporated on a large scale into GO

function prediction algorithms.

Electronically Inferred Annotation and ‘‘Downstream’’
Effects

While our approach will not replace the experimental validation

and manual curation of functional information in model organism

databases, it is, to the best of our knowledge, the first large-scale

approach to infer gene functions from phenotype information.

With the emergence of genome-wide phenotyping projects, our

method provides the necessary tool to bridge the gap between the

availability of phenotype information and the inference of

functions. In particular, traditional literature curation alone will

not be applicable to the analysis of phenotypes resulting from high-

throughput phenotyping efforts and the insights they can provide

into gene functions, primarily since they are not directly reported

in literature.

Our method electronically infers functions from mutant

phenotypes and will not create GO annotations in which scientists

can have the same confidence as in manually created annotations.

However, we have demonstrated the great utility of inferring some

annotations electronically from experimental data, in particular

Figure 3. ROC curves for prediction of protein-protein interactions. We compare the performance of predicting protein-protein interactions
using all available annotations from GOA (labeled ‘‘original’’ in the graphs) and using GOA’s annotations combined with our inferred functions
(labeled ‘‘new’’ in the graphs). For the evaluation, we used 4,834 genetic interactions in yeast, 500 interactions in fly, 23 interactions in fish, 3,152
interactions in mouse and 765 interactions in worm. We also show the ROC curve resulting from the combined annotations and interactions in all five
species. All ROC curves include the line of non-discrimination (labeled ‘‘x’’ in the graphs). The detailed evaluation results are provided as
supplementary material.
doi:10.1371/journal.pone.0060847.g003
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the improvements these novel annotations can bring to compu-

tational analyses and the prediction of genetic interactions and

PPIs. GO evidence codes are used to indicate the source and

evidence for an annotations, and our annotations would obtain an

inferred by electronic annotation (IEA) evidence code. An evidence code

specifically indicating that the electronic annotation was made

based on the analysis of mutant phenotypes would further improve

the accuracy of the evidence code annotation.

One limitation of our approach is its inability to distinguish

between direct involvement of a gene in a biological process or

function, and the involvement of a gene through regulation of

other genes, or functions, that are directly responsible for the

resulting phenotypes. This phenomenon, known as ‘‘downstream

effects’’ (cf. http://www.geneontology.org/GO.annotation.

conventions.shtml#Downstream_Process_guidelines), is a major

concern for GO annotations. Currently accepted practices resolve

this issue by requesting more specific terms to be added to GO and

annotating to these terms instead. In particular, parthood and

regulatory terms, which are defined using appropriate part-of or

regulates relations, should be used instead of annotating to the more

general process in which genes are only involved indirectly. By

following the relations used in defining the more specific terms,

involvement in the general process can then be defined based on

the GO structure [1]. As our inference of GO functions is based on

phenotype information alone, we cannot infer the specific function

in most cases. Often, additional experiments would be required to

determine how a gene leads to an observed phenotype. In some

cases our annotations will be rated high-level, but nevertheless are

likely to be useful and correspond to GO annotations that can be

inferred if the specific function of the gene was known, assuming

the appropriate relations between processes and functions are

asserted in GO and the phenotype annotations and the definition

of phenotype terms are correct. Our manual analysis of

annotations to processes in erythrocyte development and differ-

entiation, however, suggests that in some cases we are able to

suggest more specific annotation based on underlying experimen-

tal phenotype data.

Relevance for Scientific Analyses
One of the most widely adopted applications of GO-based gene

function annotation falls in the domain of analysis and interpre-

tation of gene expression data [30]. This method relies on the

quality and quantity of available functional annotation of genes

and gene products, and our method has the potential to further

improve the accuracy and statistical power of such analyses. Gene

functions are also widely used to infer relations between genes and

gene products, including the construction of genetic and protein

interaction networks [31], the identification of causal genes in

Figure 4. ROC curves for prediction of STRING [21] protein-protein interactions. We compare the performance of predicting STRING’s
protein-protein interactions using all available annotations from GOA (labeled ‘‘original’’ in the graphs) and using GOA’s annotations combined with
our inferred functions (labeled ‘‘new’’ in the graphs). For the evaluation, we used 73,245 interactions in yeast, 4,422 interactions in fly, 1,085
interactions in fish, 42,322 interactions in mouse and 11,517 interactions in worm. We also show the ROC curve resulting from the combined
annotations and interactions in all five species. All ROC curves include the line of non-discrimination (labeled ‘‘x’’ in the graphs). The detailed
evaluation results are provided as supplementary material.
doi:10.1371/journal.pone.0060847.g004
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diseases [32] or for drug discovery and drug repurposing [33]. All

these approaches can be improved with a higher coverage of

reliable functional gene annotations, and further extend the

functional analysis of gene expression datasets using data observed

in phenotype experiments.

A further computational application for functional annotations

is the prediction of genetic interactions and PPIs, and we have

demonstrated that both tasks improve significantly when the gene

functions we infer are included. This improvement is measurable

even when the electronically inferred annotations currently

available for genes are taken into consideration, thereby demon-

strating that our approach is complementary to other electronic

annotation methods.

However, we find significant differences between species when

predicting genetic interactions and PPIs. For example, we

observe only a small increase in ROC AUC for yeast, although

we infer a large number of novel gene functions, while we

observe a high increase in ROC AUC for predicting both

genetic interactions and PPI in zebrafish, although the number

of gene functions we infer is much lower. One explanation for

this observation may be the different completeness of annota-

tions in different species, either as a result of different cost and

complexity of functional genomics experiments (which is lower

in yeast than for most other species), or as a consequence of

different resources available for annotating gene functions in the

various model organism databases. Furthermore, our evaluation

datasets contain large differences in the number of interactions

within each species. We aim to account for these divergent

numbers of positive and negative examples of interactions by

using a t-test to compare the difference in ROC AUC.

Nevertheless, the ROC AUCs reported for species with low

numbers of known interactions will be less accurate than ROC

AUCs for species with a high number of known interactions,

and this may explain parts of the differences observed in ROC

AUC.

Future Research
Currently, we are conservative in the assumptions we make that

allow us to infer functional information. However, our approach

can be extended to infer more detailed and complex functional

information. For example, if an abnormal morphology of the tail is

observed as a phenotype resulting from a mutation in a gene, then

this gene will likely be involved in tail morphogenesis. However, in

some cases such a phenotype may not immediately be the

consequence of mutations in the gene but rather the result of an

impaired function of another gene that is related with the mutated

Figure 5. ROC curves for prediction of BioGRID [22] protein-protein and genetic interactions. We compare the performance of predicting
BioGRID’s interactions using all available annotations from GOA (labeled ‘‘original’’ in the graphs) and using GOA’s annotations combined with our
inferred functions (labeled ‘‘new’’ in the graphs). For the evaluation, we used 172,547 interactions in yeast, 1,335 interactions in fly, 11 interactions in
fish, 124 interactions in mouse and 2,261 interactions in worm. We also show the ROC curve resulting from the combined annotations and
interactions in all five species. All ROC curves include the line of non-discrimination (labeled ‘‘x’’ in the graphs). The detailed evaluation results are
provided as supplementary material.
doi:10.1371/journal.pone.0060847.g005
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gene through a biochemical, cellular or physiological pathway. In

future research, an explicit representation of such interactions, in

particular on an organism-wide physiological scale, will further

improve the performance of our method.

Supporting Information

Supplement S1 Inferred GO functions. A complete dataset of

inferred GO annotations from phenotypes. Each file contains the

gene idenfier and the novel GO functions we infer for each species.

(ZIP)

Supplement S2 Computational evaluation results. A

complete dataset for predicting interactions (genetic interactions,

PPIs from GO, PPIs from STRING and interactions from

BioGRID) using GO functional similarity. The first two columns

of each file contains the interaction partners, the third column

contains the position of the interaction pair in the functional

similarity list (i.e., a value of 0 indicates that both partners are the

functionally most similar, while a value of 1 indicates that both

partners are the functionally least similar) based on GOA

annotations, and the fourth column indicates the position of the

interaction pair in the functional similarity list based on GOA’s

and our inferred annotations.

(BZ2)

Supplement S3 Manual evaluation results. A dataset of

manually evaluated inferred functions. The file contains an

inferred function for 20 genes from yeast, worm, fruitfly, zebrafish

and mouse, as well as a PubMed reference to a manuscript

providing evidence for the function.

(ZIP)
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