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Abstract

Background: Human Immunodeficiency virus type-1 (HIV) entry into target cells involves binding of the viral envelope (Env)
to CD4 and a coreceptor, mainly CCR5 or CXCR4. The only currently licensed HIV entry inhibitor, maraviroc, targets CCR5,
and the presence of CXCX4-using strains must be excluded prior to treatment. Co-receptor usage can be assessed by
phenotypic assays or through genotypic prediction. Here we compared the performance of a phenotypic Env-Recombinant
Viral Assay (RVA) to the two most widely used genotypic prediction algorithms, Geno2Pheno[coreceptor] and webPSSM.

Methods: Co-receptor tropism of samples from 73 subtype B and 219 non-B infections was measured phenotypically using
a luciferase-tagged, NL4-3-based, RVA targeting Env. In parallel, tropism was inferred genotypically from the corresponding
V3-loop sequences using Geno2Pheno[coreceptor] (5–20% FPR) and webPSSM-R5X4. For discordant samples, phenotypic
outcome was retested using co-receptor antagonists or the validated TrofileH Enhanced-Sensitivity-Tropism-Assay.

Results: The lower detection limit of the RVA was 2.5% and 5% for X4 and R5 minority variants respectively. A phenotype/
genotype result was obtained for 210 samples. Overall, concordance of phenotypic results with Geno2Pheno[coreceptor] was
85.2% and concordance with webPSSM was 79.5%. For subtype B, concordance with Geno2pheno[coreceptor] was 94.4% and
concordance with webPSSM was 79.6%. High concordance of genotypic tools with phenotypic outcome was seen for
subtype C (90% for both tools). Main discordances involved CRF01_AE and CRF02_AG for both algorithms (CRF01_AE: 35.9%
discordances with Geno2Pheno[coreceptor] and 28.2% with webPSSM; CRF02_AG: 20.7% for both algorithms). Genotypic
prediction overestimated CXCR4-usage for both CRFs. For webPSSM, 40% discordance was observed for subtype A.

Conclusions: Phenotypic assays remain the most accurate for most non-B subtypes and new subtype-specific rules should
be developed for non-B subtypes, as research studies more and more draw conclusions from genotypically-inferred tropism,
and to avoid unnecessarily precluding patients with limited treatment options from receiving maraviroc or other entry
inhibitors.
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Introduction

Entry of the Human Immunodeficiency Virus type 1 (HIV-1)

into target cells is a three-step process involving sequential

interactions between the viral envelope glycoprotein trimer (Env)

with the CD4 receptor and one of two coreceptors, CCR5 or

CXCR4 [1–7]. Binding to the CD4 receptor induces a series of

conformational changes within Env that expose the third

hypervariable region (V3-loop), which in turn binds the corecep-

tor, ultimately leading to the so-called ‘‘fusion-active’’ state

required for fusion of the viral and cellular membranes [8]. The

V3-loop, which is the main determinant of coreceptor binding,
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therefore largely accounts for viral tropism [9,10], and viral strains

are classified as R5, when using the CCR5 coreceptor for viral

entry, X4 when using CXCR4, and dual-tropic or mixed (R5X4)

when using both coreceptors [11]. Other regions of Env, and

namely the V1/V2 loops and the constant region C4, have been

shown to also participate in viral tropism [12,13].

R5 strains are generally predominant during the early stages of

infection and are thought to be preferentially transmitted by

distinct, not yet fully elucidated processes [14,15]. As infection

progresses, viral strains feature increased variability within the

infected host, and particularly, Envs acquire broadened coreceptor

usage. At late stages of infection, X4 strains become dominant in

50% of patients infected with subtype B strains [16], but subtype-

related specificities have been reported [17–20]. X4 strains

replicate more rapidly than R5 strains in vitro and have been

associated with increased cytopathicity. In vivo, the appearance of

X4 strains correlates with a sharp decline of CD4+ T cells and the

onset of AIDS defining symptoms [21].

With the advent of entry inhibitors targeting CCR5, such as

maraviroc, monitoring coreceptor usage has become prerequisite

to the prescription of such entry inhibitors, in order to exclude the

presence of X4 or R5/X4 variants [22–24]. Under maraviroc

selective pressure, pre-existing X4 or DM strains can be selected.

CCR5 is a cellular target and resistance to maraviroc most often

arises through the re-emergence of archived minority X4 strains

rather than through a coreceptor usage switch or through the

acquisition of mutations that allow gp120 to engage with drug-

bound CCR5 [25–28]. Viral coreceptor usage can be measured

in vitro by phenotypic and genotypic assays [29]. Various

phenotypic assays based on different techniques are currently

available, including the TrofileH Enhanced-Sensitivity-Trofile-

Assay (ESTA) (Monogram Biosciences, South San Francisco,

CA) [30], the Virco phenotypic test (Virco BVBA, Mechelen,

Belgium) and others [30–33], which are based on pseudovirions,

and assays based on recombinant viruses, among which are the

Phenoscript test (VIRalliance, France) [34] and the Toulouse

Tropism Test [35]. These assays, their design and performance

are summarized in Table 1. The Trofile assay is the most widely

used in the clinic. It features a high sensitivity in detecting X4

minority variants [30]. Nonetheless, because phenotypic tests are

expensive, time consuming and require specialized laboratories,

more interest has been driven toward genotypic testing. Genotypic

assays are based on predictions of coreceptor usage from the V3-

loop sequence using bioinformatic tools and algorithms. They are

currently preferred in Europe due to their accessibility, rapid turn-

around and low cost [36,37]. Many prediction tools are available,

with similar specificities and sensitivities despite the fact that they

are based on different algorithms involving the 11/25 rule, the

number of positively charged AA, the overall net charge of the V3

loop, or combinations thereof. Among them, Geno2Pheno[cor-

eceptor] [38] and webPSSM [39] are the most widely used.

European Guidelines for HIV patient management currently

recommend the use of Geno2Pheno[coreceptor] with a 10% false

positive rate (FPR) cut-off, which has been shown to provide the

best balance between specificity and sensitivity for predicting R5

or X4/R5X4 tropism [40–43]. The major caveat of such

algorithms however lies in the fact that they are based on V3-

loop sequences from subtypes B and C mainly, and inadequacies

requiring fine-tuning or subtype-specific rules have been reported

[19,44–46].

This study evaluates the performance of an in-house Env

recombinant viral assay (Env-RVA) targeting the full HIV Env

ectodomain, in comparison to Geno2Pheno[coreceptor] and

webPSSM (Fig. 1). Concordance between the RVA and

Geno2Pheno[coreceptor] with a false positive cutoff set at 10% was

85.2% and concordance with webPSSM was 79.6%. Discordant

results most often involved non-B subtypes, particularly subtype

A1 for webPSSM and CRF01_AE and CRF02_AG for both

algorithms. Repeat experiments in the presence of coreceptor

antagonists and, when possible, testing the sample using the

Trofile ESTA, confirmed phenotypic results of the RVA. Taken

together, these results highlight that prediction algorithms are not

always accurate for predicting tropism of some subtypes,

particularly CRF01_AE and CRF02_AG and underscore the

usefulness of maintaining phenotypic testing as well as to adapt

algorithms for certain subtypes and recombinant forms.

Materials and Methods

Study Population
Plasma samples from 292 patients infected with HIV-1 subtypes

B (73), A1 (17), C (21), D (15), F (15), G (55), CRF01_AE (42) and

CRF02_AG (54) were included in the study. Left-over plasma

obtained from samples for routine clinical tests was used. Ethical

approval for use of left-over plasma was obtained from the Comité

National d’Ethique pour la Recherche in Luxembourg for HIV

assay validation in Luxembourg for HIV assay validation without

patient informed consent. The IRB waived the need for written

informed consent from the participants for this study. HIV-1

subtypes were determined from HIV-1 PR-RT and Env sequences

spanning the V3-loop using COMET (www.comet.retrovirology.

lu) and the REGA HIV subtyping tool [47]. CD4 counts ranged

from 11 cells/mm3 to 1460 cells/mm3 (mean: 391 and median:

356 cells/mm3). Plasma viral load (VL) (Abbott m2000 RealTime

HIV-1 assay) ranged from 466 to 1,350,000 RNA copies/ml for all

subtypes, with a mean and median of 14,055 and 71,115 RNA

copies/ml respectively. 26/73 subtype B samples with VL ,103

RNA copies/mL were also included to assess the RVA’s

performance for VL ,103 RNA copies/ml.

Cell Culture
HEK293T cells were obtained from ATCC and were main-

tained in DMEM medium supplemented with 10% Fetal Bovine

Serum, 1% Glutamate, 50 mg/ml Penicillin and 50 mg/ml

Streptomycin. U87.CD4.CCR5 and U87.CD4.CXCR4 cells were

obtained from the NIH AIDS Reagent Program and were

maintained in DMEM containing 10% Fetal Bovine Serum, 1%

Glutamate, 300 mg/ml Geneticin and 1 mg/ml Puromycin to

maintain CD4 and co-receptor expression respectively. All media

supplements and antibiotics were sourced from Invitrogen,

Belgium.

Env Amplification
One ml of plasma or of Env-recombinant virus supernatant

was centrifuged at 24,0006g for 1 hour at 4uC and viral RNA

was extracted from the pellet using the Qiagen Viral RNA

extraction kit (Qiagen, Belgium) according to the manufacturer’s

instructions. Viral cDNA was synthesized in a one-step RT-PCR

reaction using forward primer KVL008 and reverse primer

KVL009 [48] in 50 ml mix containing 5 ml viral RNA, 20 mM of

each primer, 1 ml SuperScript III One-Step RT-PCR with

Platinum Taq High Fidelity mix and 8 units RNAseOUT (all

from Invitrogen, Merelbeke, Belgium) under the following

conditions: initial denaturation at 94uC for 2 mins and 40

amplification cycles (94uC for 15 s, 60uC for 30 s, 68uC for 4 mins)

followed by a final 10 mins extension step at 68uC. 2 ml of the

amplified cDNA was further amplified using forward primer MM1

FP (59-GCCTTAGGCATCTCTTATGGCAGGAAGAAG-39)
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and reverse primer rec HR1-2_RP (59-CTCTCTCTfCC-

ACCTTCTTCTTC-39) [27] in a 50 ml reaction mix containing

2 mM MgSO4, 0.2 mM of each dNTP, 20 mM of each primer, 2.5

Units Platinum Taq High Fidelity DNA polymerase. The amplifi-

cation conditions were: initial denaturation step at 95uC for 3 min,

35 cycles of denaturation at 95uC for 30 s, annealing at 48uC for

30 s, extension at 68uC for 3 min, and a final extension step at 68uC
for 10 min. Amplification was verified by agarose gel electropho-

resis. To avoid PCR selection, five independent amplifications were

performed in parallel for each sample and were pooled for

recombinant virus production and sequencing.

Sequencing
To circumvent a potential primer-linked bias, the V3-loop was

sequenced directly from the same Env ectodomain amplicon used

to produce Env-recombinant viruses (Fig. 1). Sequencing was

performed using the BigDye Terminator v3.1 dye on Applied

Biosystems 3500 xL DX genetic analyzer (Applied Biosystems

Europe BV, Belgium), using sense primers 6951 and 6990 and

reverse primers 7336 [49]. For sequencing of viral supernatants,

viral RNA was extracted and amplified as described previously

and a nested PCR was performed using 2 ml of the Env cDNA,

using primers KK1 [50] and DR8 [51] (400 nM each) in a mix

containing 5 ml 106PCR Gold Buffer II, 20 mM dNTPs, 200 mM

MgCl2 and 0.5 ml AmpliTaq Gold DNA polymerase (Applied

Biosystems), in the following cycling conditions: denaturing for

10 mins at 95uC, followed by 40 amplification cycles (15 sec 95uC,

30 sec 55,5uC, 1 min 72uC) and a final 10 mins extension step at

72uC. For those viral supernatants that could not be sequenced

using this method because of inadequate viral content, the viral

RNA was amplified and sequenced using primers KK1 and DR8

(400 nM each) in a one-step RT-PCR reaction containing 10 ml

viral RNA, 1.5 ml of each primer, 10 ml 56buffer, 40 mM dNTPs,

0.1 ml RNAse inhibitor and 2 ml Qiagen Taq (Qiagen), as follows:

RT: 30 mins at 50uC, denaturation: 15 mins 95uC, 40 cycles of

amplification (15 sec 95uC, 30 sec 55.5uC, 1 min 72uC) and a final

5 min extension step at 72uC, followed by an inner PCR using the

same conditions as above. V3-loop sequences are available under

EMBL Nucleotide Sequence Database with accession numbers:

HE972342-HE972511 and JN407569, JN407585, JN407591,

JN407601, JN407602, JN407608, JN407609, JN407611,

JN407624, JN407629, JN407632, JN407661, JN407676,

JN407696, JN407704, JN407706, JN407709, JN407713,

JN407726, JN407738, JN407740, JN407745, JN407747,

JN407805, JN407808, JN407810, JN407813, JN407814,

JN407816, JN407817, JN407836, JN407872, JN407949,

JN407971, JN407987, JN407991, JN408004, JN408005,

JN408022, JN408023, JN408027, JN408043 and JN408058.

Genotyping
The V3 nucleotide sequences were submitted to the Geno2-

Pheno[coreceptor] algorithm (http://coreceptor.bioinf.mpi-inf.mpg.

de) setting the FPR set at 5%, 10%, 15% and 20% and to

webPSSM (http://indra.mullins.microbiol.washington.edu/

PSSM/) using the X4/R5 matrix. The webPSSM subtype C

SINSI matrix was used sor subtype C. When mixtures were

present in the viral population, all possible combinations were

submitted independently to webPSSM and the results were

reported as numbers of R5, X4 or R5/X4 clones for comparison

with the phenotypic assay.

Production of Recombinant Viruses
pNL4.3DEC.Luc has been described elsewhere [27]. Briefly,

pNL4.3DEC.Luc is a NL4-3-derived plasmid deleted of the Env

ectodomain (6225–8314), containing a AfeI restriction site in the

place of Env for linearization and harboring a firefly luciferase gene

in the place of nef. For Env-recombinant viral production, 70%

confluent HEK293T cells were co-transfected with Afe I-

linearized pNL4.3DEC.Luc (Westburg, Netherlands) and pa-

tient-derived Env PCR amplicons using Lipofectamine 2000

(Invitrogen, Merelbeke, Belgium) according to manufacturer’s

instructions. HIV-1 NL4-3 (X4) and NL-AD8 (R5) were used as

positive controls. Cell-free culture supernatants were collected 48

Table 1. Characteristics of phenotypic assays developed for determination of HIV-1 coreceptor usage.

Assay System Env target Producer cells Target cells readout
Detection
limit reference

ESTA Pseudovirions Full Env Hek293T U87.CD4.R5/R4 Luciferase 0.3% X4 [30]

Virco Recombinant viral
particles

gp120 (NH2-V4) Hek293T U87.CD4.R5/R4 eGFP ,10% X4 [32]

Commercial
assays

Phenoscript Recombinant viral
particles

V1–V3 Hek293T U373MG.CD4.R5/X4 b-Galactosidase 5–10% X4 [34]

PhenXR Recombinant viral
particles

V1–V3 HeLa SX22-HeLaR5/X4 b-Galactosidase 1% X4 [71]

Toulouse tropism
test (TTT)

Recombinant viral
particles

Env Ectodomain Hek293T U87.CD4.R5/R4 Luciferase 0.5% X4 [35]

Non-
commercial
assays

Recombinant viral
particles

Full Env Hek293T U87.CD4.R5/R4 or
GHOST.
CD4.R5/X4

Luciferase 1% X4 [72]

Pseudovirions Full Env Hek293T U87.CD4.R5/R4 Luciferase 1% X4 (high
VL)

[33]

5% X4 (low VL)

CRP Env-RVA Recombinant viral
particles

Env ectodomain Hek293T U87.CD4.R5/R4 Luciferase 2.5% X4

5% R5

Abbreviations: ESTA: Enhanced Sensitivity Trofile Assay; Env: Envelope; eGFP: enhanced Green Fluorescent protein; X4: CXCX4-using strains; R5:CCR5-using strains.
doi:10.1371/journal.pone.0060566.t001
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hours post-transfection, clarified by centrifugation and stored at

280uC until use (Fig. 1). Viral production was determined by

quantifying p24 capsid protein using a p24 ELISA test (Perkin

Elmer, Amsterdam, Netherlands). Virus lacking an envelope

produced by transfecting the sole linearized backbone was used

to assess background noise.

Env Recombinant Viral Assay
104 U87.CD4.CCR5 or U87.CD4.CXCR4 cells in 96-well

plates were infected with Env-recombinant viruses (200 pg p24,

quantified by Perkin Elmer kit) by spinoculation at 12006g for 2

hours at 25uC [52], followed by incubation for 1 hour at 37uC.

Medium was replaced and cells were cultured for a further 48

hours, after which luciferase activity was assayed using the

Promega Luciferase assay kit (Promega, Leiden, Netherlands)

according to manufacturer’s instructions. Luminescence readout

was performed on a Tecan microplate reader (Tecan, Switzerland)

over one second exposure. All infections were performed in

triplicate. Recombinant viruses were scored as positive for the

specific coreceptor if the luciferase signal was at least twice the

background.

Where used, 1 mM Maraviroc (CCR5 antagonist) or 1 mM

AMD3100 (CXCR4 antagonist) were added to the cells, the plate

was centrifuged at 4006g for 10 mins at 25uC and incubated at

37uC for 15 mins prior to addition of the recombinant viruses and

spinoculation.

Trofile ESTA
19 samples (5 subtype B, 2 subtype A1, 2 subtype C, 1 subtype

D, 3 CRF01_AE, 6 CRF02_AG) for which phenotypic results

differed from the Geno2Pheno[coreceptor]-inferred results and for

which plasma was available were tested in the TrofileH ESTA.

Statistical Analyses
In this study, we did not assume the RVA nor the genotypic

prediction tools to be the reference test to determine viral tropism,

therefore concordance and Cohen kappa values were assessed

using Statools (www.stattools.net). Concordance between the

Figure 1. Study design/RVA design. Viral RNA was extracted from patient plasma RT-PCR amplified. Env amplicons spanning the Env ectodomain
were further amplified through an inner PCR. Five independent PCRs were pooled to minimize PCR-selection. Recombinant viruses were produced by
co-transfecting HEK293T cells with Afe I-linearized, luciferase-tagged, Env-deleted, viral backbone and patient-derived PCR amplicon. Normalized
amounts of recombinant viruses were used to infect U87.CD4.CCR5 or U87.CD4.CXCR4 indicator cells. Infection was monitored by quantifying
luminescence in the cell lysates. Depending on the outcome of the infection, viruses were classified as either CCR5 tropic, CXCR4 tropic or dual/
mixed. The same patient-derived PCR amplicon used for viral production was sequenced and tropism inferred by Geno2Pheno[coreceptor] and
webPSSM algorithms. The phenotypic and genotypic results were compared. Abbreviations: Env EC: Env ectodomain; gp41-TM-CT: gp41
Transmembrane+cytoplasmic tail.
doi:10.1371/journal.pone.0060566.g001
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phenotypically measured and genotypically predicted tropism was

calculated as follows for each subtype or group of subtypes:

Concordance = Number of samples with the same tropism by both

assays/Total number of samples tested6100. The correlation

between tests is usually considered good when kappa.0.6.

Tropism measured using the RVA was considered to be

concordant with Geno2Pheno[coreceptor] prediction if they both

detected pure R5 or pure X4. When dual/mixed strains were

detected using the RVA, they were considered to be concordant

with an X4 genotypic prediction and discordant with a R5

prediction, as Geno2Pheno only predicts the presence of X4

strains. For comparison with webPSSM, results were considered to

be concordant if both assays provided the same result, i.e. R5, X4,

or Mixed (D/M). D/M samples detected as a purely X4 or purely

R5 sample by the other test were considered to be discordant.

Sensitivity and specificity were calculated using GraphPad Prism

version 5, setting the phenotypic results as ‘true’.

Results

Detection of Minority Variants
To determine the threshold for detecting minority variants,

mixtures containing known proportions of pNLAD8 (R5) and of

pNL4-3 (X4) were PCR-amplified and used to produce R5/X4

mixed Env recombinant viruses. U87.CD4.CCR5 and

U87.CD4.CXCR4 indicator cells were infected with 2-fold serial

dilutions of the recombinant NLAD8:NL4-3 mixtures (20 pg to

12.5 pg). As reported in Fig. 2A, 2.5% NL4-3 (X4) minority

variants could be detected for NL4-3 with signals higher than

200,000 RLU and 5% NL4-3 variants were detectable with pure

NL4-3 signals higher than 50,000 RLU. NLAD8 (R5) minority

variants were detected down to 5% at the highest viral input and

10% for control values above 50,000 RLU (Fig. 2B). In this study,

experiments were included if positive controls (pure NLAD8 and

NL4-3) generated infection signals above 50,000 RLU.

Production of Patient-derived Env-recombinant Viruses
Overall PCR amplification success of patient-derived Envs was

87% (254/292 samples included) (Table 2). Amplification success

was dependent on both subtype and VL. For subtypes A1, B, C,

G, and CRF01_AE and CRF02_AG, amplification was achieved

in 83.3–100% of cases, while for subtypes D and F, amplification

was successful in 66.7% and 46.7% of cases respectively (Table 2).

Of note, for some subtypes (D, F) few samples were available (15)

inflating the relative weight of failed amplification compared to the

overall rate. Both viral load (VL,1,000 RNA copies/mL) and

non-B subtype compromised amplification success: the use of

subtype-specific primers designed to target the most conserved

regions of env and based on the most frequent polymorphisms did

not improve these figures further (data not shown). When stratified

for viral load, amplification succeeded in 94.9% of cases for

VL.100,000 RNA copies/mL, 89.7% of cases for VL between

10,001–100,000 RNA copies/mL, 83.8% of cases for VL between

1,000–10,000 RNA copies/mL and decreased to 70% for

VL,1,000 RNA copies/mL (Fig. 3). Recombinant viruses could

be produced for 231 Envs, as determined by p24 antigen ELISA in

the viral supernatant. Of those, 91.3% were infectious and tropism

was tested (Table 2).

Concordance of Env-RVA with Genotypic Prediction
Tropism determined phenotypically using the Env-RVA was

compared to tropism inferred by the Geno2Pheno[coreceptor] and

webPSSM prediction algorithms based on the V3-loop sequence.

These two algorithms were chosen among all available genotyping

tools because they are the most widely used in the clinic. Results

are reported in Table 2. Overall, concordance between the

phenotypically measured tropism (RVA) and Geno2pheno[corecep-

tor] (10% FPR cutoff) was 85.2% and concordance of the RVA

with webPSSM was 79.5% (Table 2). The overall Cohen kappa

value for comparison with Geno2Pheno was 0.6252, ranging from

0.3226 (CRF01_AE) to 0.9180 (subtype G) (Table 2), reflecting

good concordance of the phenotypic measure with genotypic

prediction. Overall kappa value for comparison of phenotypically

measured tropism with webPSSM was lower (0.4544), ranging

from 0.0745 (CRF02_AG) to 0.6190 (subtype C with webPSSM

subtype C). If detection of the presence of X4 strains is considered

rather than full concordance between the phenotype and the

genotype inferred by webPSSM, then concordance between these

two assays increased to 83.3% (not shown) and Cohen kappa value

reached 0.5240, ranging from 0.1509 (subtype A1) to 0.8262

(subtype G) (Table 2). Among discordant samples, in 14 cases the

outcome of both prediction algorithms was identical but disagreed

with the phenotypic result, while in the remaining cases, the

phenotypically measured tropism disagreed with one algorithm

only (Table 3). Decreasing the Geno2Pheno[coreceptor] FPR cutoff

to 5% (less sensitive to detect X4) increased concordance to

91.4%, as expected, while augmenting the FPR to 15% and 20%

lowered concordance to 81.0% and 79.5% respectively (Table 2).

For all discordant results (FPR cutoff up to 20% for

Geno2Pheno[coreceptor] and webPSSM) for which enough material

was available (50/74 samples) the phenotypic assay was repeated

using CCR5 and CXCR4 inhibitors (1 mM Maraviroc and 1 mM

AMD3100 respectively) (not shown). In all but two cases, the use of

coreceptor inhibitors confirmed tropism. In one case, detection of

X4 minority variants was close to the limit of detection and was

not confirmed in the repeated experiment. In the second case, a

strictly R5 strain by phenotypic measure and webPSSM,

Maraviroc inhibited infection by 3 logs but did not fully inhibit

entry in U87.CD4.CCR5 cells. To rule out the possibility that an

intrinsic bias in the recombination step of the RVA would result in

selection of some strains and in failure to detect some minority X4

strains, we sequenced the V3-loop of Env-recombinant viral

particles used to infect U87 indicator cells. For all re-tested

samples (50), the V3-loop sequence of recombinant viral

supernatants was identical to the V3-loop of the parental PCR

amplicon used to produce the recombinant viruses, and when

submitted to Geno2Pheno[coreceptor], a similar or identical FPR

was obtained (data not shown), strongly arguing against the

hypothesis of a selection due to the recombination process while

generating recombinant viruses. Further, for 18 discordant

samples, tropism was determined using the Trofile ESTA, which

is based on pseudovirions rather than on recombination. Tropism

measured using the Trofile ESTA confirmed the RVA results in

16/18 positive tests (Table 3). In one case (CRF01_AE) the RVA

failed to detect a minority X4 strain, reflecting the low infectivity

of this recombinant, whereas in the second case (CRF02_AG), the

RVA detected the presence of low X4 variants which were

undetectable using the Trofile ESTA, potentially a consequence of

PCR selection due to the sample’s plasma viral load being near the

limit validated for the assay.

Characterization of Discordant Outcomes
Most discordant cases involved non-B subtypes for Geno2Phe-

no[coreceptor] (10%FPR) (5.6% discordant cases for subtype B,

Cohen kappa = 0.8591, versus 17.9% for non-B subtypes, Cohen

kappa = 0.5446), but not for webPSSM, for which 20.4% (Cohen

kappa = 0.3926) and 20.5% (Cohen kappa = 0.4734) discordant

cases were recorded for subtype B and for non-B subtypes
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Figure 2. Detection of minority CXCR4 and CCR5 using variants within mixed viral populations. Mixtures containing known proportions
of pNLAD8 and pNL4-3 (100:0, i.e. pure NLAD8, 99:1, 97.5:2.5, 95:5, 90:10, 80:20, 50:50, 20:80, 10:90, 5:95, 2.5:97.5, 1:99, 0:100, i.e. pure NL4-3) were
PCR-amplified and used to generate recombinant viruses. U87.CD4.CCR5 and U87.CD4.CXCR4 indicator cells were infected with serial 2-fold dilutions
(x-axis) of mixtures (z-axis) to determine the threshold for detection of minority variants. Infection was quantified 48 hours after infection by
measuring luciferase activity in cell lysates (y-axis). Black bars report infection of U87.CD4.CXCR4 cells and grey bars report infection of U87.CD4.CCR5
cells. Panels A and B report the same data, oriented to focus on NL4-3 minority variants (A) or on NLAD8 minority variants (B).
doi:10.1371/journal.pone.0060566.g002
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respectively (Table 2, Fig. 4). For Geno2Pheno[coreceptor], the

highest kappa values were recorded for subtypes G and B, and the

lowest value for CRF01_AE. For webPSSM, good kappa values

were recorded for subtypes C (using the webPSSM subtype C

matrix); using the subtype B X4/R5 matrix, good kappa values

were also seen for subtypes D, G, F and CRF01_AE, intermediate

for subtypes B, and poor for subtypes A1 and CRF02_AG

(Table 2). Of note, kappa values increased to 0.4752 for subtype B

when detection of X4 strains was compared rather than absolute

concordance (i.e. D/M and D/M, X4 and X4), probably

reflecting tuning of the algorithm for the detection of X4 strains.

The sensitivity and specificity of Geno2Pheno[coreceptor] and

PSSM with respect to the recombinant viral assay (setting the

phenotypic measure as ‘true’) was calculated: overall sensitivity

and specificity were 88.9% and 84.2% for Geno2Pheno[coreceptor]

(10% FPR cutoff) and 65.2% and 88.4% for webPSSM

(considering the ability to detect the presence of X4 variants)

(data not shown). For subtype B strains, sensitivity and specificity

were 100% and 92.7% respectively for Geno2Pheno[coreceptor]; for

webPSSM, sensitivity and sensitivity were 46.1% and 95.1%

respectively (data not shown). For non-B subtypes, sensitivity was

84.4% for Geno2Pheno[coreceptor] and 72.7% for webPSSM (data

not shown). Specificities ranged from 50% to 100% for

Geno2Pheno[coreceptor] and from 50 to 100% for webPSSM (data

not shown), in line with previous reports [53–57].

For subtype B samples, Geno2Pheno[coreceptor] overestimated

X4 usage for all 3 discordant samples. In contrast, webPSSM

failed to detect CXCR4 usage for 7/11 samples (Table 3). Neither

viral load nor the presence of mixtures could account for failure to

detect X4 minor strains. For non-B subtypes, Geno2Pheno[cor-

eceptor] predicted CXCR4 usage while the phenotypic assay

identified strictly R5 strains in most cases, and particularly for

CRF01_AE (12/14 cases) and CRF02_AG (6/7) (Table 3). Such

skewing towards overestimating the presence of X4 minority

variants for these CRFs was maintained when the FPR cut-off was

shifted, although these observations did not reach statistical

significance using a Fisher’s exact test (p,0.05). Disagreement of

the phenotypically measured tropism with webPSSM was

observed chiefly for subtype A1 (40% disagreement) and

CRF01_AE (28.2% disagreement). For CRF01_AE, webPSSM

predicted CXCR4 usage while the phenotypic RVA reported

strictly R5 strains in 7/11 cases, and in 2/11 cases, CXCR4 usage

detected phenotypically was missed by webPSSM (Table 3). For

Figure 3. Distribution of PCR amplification success stratified by
viral load. The Env ectodomain was amplified from plasma viral RNA
by a one-step RT-PCR followed by an inner PCR. Five independent PCR
amplifications were pooled to minimize primer-related selection. 292
samples from patients infected with HIV subtypes A1, B, C, D, F, G,
CRF01_AE and CRF02_AG were included. Viral load ranged from 466 to
1,350,000 RNA copies/mL.
doi:10.1371/journal.pone.0060566.g003

Table 2. Distribution of samples, phenotyping and genotyping, and concordance between phenotypic and genotypic tropism.

Samples Env PCR RVA result
V3 loop
sequence

Pheno/
geno
paired
results Concordance of RVA with Cohen kappa values

Subtype N N % N % N %
G2P:
5%

G2P:
10%

G2P:
15%

G2P:
20% PSSM

G2P:
10% PSSM

PSSM
X4

A1 17 17 100.0% 17 100.0% 15 88.2% 15 93.3% 86.7% 73.3% 73.3% 60.0% 0.4444 0.1743 0.1509

B 73 62 84.9% 62 100.0% 54 87.1% 54 100.0% 94.4% 90.7% 88.9% 79.6% 0.8591 0.3926 0.4752

C 21 21 100.0% 21 100.0% 20 95.2% 20 90.0% 90.0% 85.0% 80.0% 90.0%* 0.6078 0.6190* 0.6078*

D 15 10 66.7% 10 100.0% 7 70.0% 7 85.7% 71.4% 71.4% 71.4% 85.7% 0.3636 0.6111 0.5882

F 15 7 46.7% 7 100.0% 6 85.7% 6 83.3% 83.3% 83.3% 66.7% 83.3% 0.5714 0.5714 0.5714

G 55 52 94.5% 44 84.6% 42 80.8% 40 100.0% 97.5% 95.0% 95.0% 87.5% 0.9180 0.5910 0.8268

CRF01_AE 42 40 95.2% 39 97.5% 40 100.0% 39 79.5% 64.1% 61.5% 61.5% 71.8% 0.3226 0.5153 0.5351

CRF02_AG 54 45 83.3% 32 71.1% 30 66.7% 29 82.8% 79.3% 72.4% 72.4% 79.3% 0.4494 0.0745 0.2077

All non-B 219 192 87.7% 170 88.5% 160 83.3% 156 88.5% 82.1% 77.6% 76.3% 79.5% 0.5446 0.4734 0.5411

Total 292 254 87.0% 232 91.3% 214 84.3% 210 91.4% 85.2% 81.0% 79.5% 79.5% 0.6252 0.4544 0.5240

Distribution of samples per subtype, successful Env PCR amplification, recombinant virus production and sequencing of the V3-loop, and results (concordance and
Cohen kappa values) for genotype/phenotype pairs are reported.
N: number of samples. G2P: Geno2Pheno(coreceptor). The percentage following G2P indicates the FPR cut-off. Distribution of samples per subtype, successful Env PCR
amplification, recombinant virus production and sequencing of the V3-loop, and results (concordance and Cohen kappa values) for genotype/phenotype pairs are
reported.
*For subtype C, concordance was determined and with webPSSM subtype C SINSI. Concordance with webPSSM X4/R5 was 75% and Cohen kappa values were poor
(20.0989 for full agreement and 20.1365 when detection of X4 strains was considered).
doi:10.1371/journal.pone.0060566.t002

Genotyping Tools Overestimate CXCR4-Usage for CRFs

PLOS ONE | www.plosone.org 7 May 2013 | Volume 8 | Issue 5 | e60566



Table 3. Detail of discordant results between RVA, ESTA, Geno2Pheno(coreceptor) and webPSSM.

HIV-1 subtype RVA result
Trofile
result G2P webPSSM Discordance

5% cutoff 10% cutoff 15%cutoff 20% cutoff FPR G2P PSSM

A1 R5 R5 R5 X4 X4 X4 6.8 X4 G2P 10% PSSM

A1 R5 N/A R5 X4 X4 X4 8.5 D/M G2P 10% PSSM

A1 R5 R5 R5 R5 X4 X4 10.5 X4 G2P 15% PSSM

A1 R5 N/A R5 R5 R5 R5 42.2 D/M agree PSSM

A1 R5 N/A R5 R5 R5 R5 40.3 X4 agree PSSM

A1 R5 N/A R5 R5 R5 R5 22.6 D/M agree PSSM

B R5 R5 R5 X4 X4 X4 6.7 R5 G2P 10% agree

B R5 failed R5 X4 X4 X4 6.8 R5 G2P 10% agree

B R5 N/A R5 R5 X4 X4 13.8 R5 G2P 15% agree

B R5 N/A R5 R5 X4 X4 10.5 R5 G2P 15% agree

B R5 N/A R5 R5 R5 X4 17.6 R5 G2P 20% agree

B R5 R5 R5 X4 X4 X4 6.9 R5 G2P 10% agree

B D/M D/M X4 X4 X4 X4 4.6 R5 agree PSSM

B R5 N/A R5 R5 R5 R5 26.2 D/M agree PSSM

B X4 N/A X4 X4 X4 X4 0.7 D/M agree PSSM partial

B R5 N/A R5 R5 R5 R5 72.8 D/M agree PSSM

B X4 N/A X4 X4 X4 X4 3.7 R5 agree PSSM

B X4 N/A X4 X4 X4 X4 3.8 D/M agree PSSM partial

B X4 N/A X4 X4 X4 X4 4.7 R5 agree PSSM

B X4 N/A X4 X4 X4 X4 3.8 R5 agree PSSM

B X4 N/A X4 X4 X4 X4 3.7 R5 agree PSSM

B X4 N/A X4 X4 X4 X4 3.8 R5 agree PSSM

B X4 N/A X4 X4 X4 X4 3.8 R5 agree PSSM

C D/M N/A R5 X4 X4 X4 6.9 R5 G2P 5% agree

C R5 R5 R5 X4 X4 X4 9.6 R5 G2P 10% agree

C R5 N/A R5 R5 X4 X4 10.9 X4 G2P 15% PSSM

C R5 N/A R5 R5 R5 X4 17.9 R5 G2P 20% agree

C D/M N/A R5 R5 R5 R5 28.8 R5 G2P 5% PSSM

D R5 R5 X4 X4 X4 X4 4.7 X4 G2P 5% PSSM

D R5 R5 R5 X4 X4 X4 6.8 R5 G2P 10% agree

G R5 N/A R5 X4 X4 X4 5 R5 G2P 10% agree

G R5 N/A R5 R5 X4 X4 13.2 R5 G2P 15% agree

G D/M N/A R5 X4 X4 X4 6.8 R5 G2P 5% PSSM

G D/M N/A X4 X4 X4 X4 1.3 X4 agree PSSM partial

G D/M N/A X4 X4 X4 X4 1.7 X4 agree PSSM partial

G D/M N/A X4 X4 X4 X4 1.1 X4 agree PSSM partial

G R5 N/A R5 R5 R5 R5 26.9 D/M agree PSSM

F D/M N/A R5 X4 X4 X4 6.9 D/M G2P 5% agree

F R5 N/A R5 R5 X4 X4 14.4 R5 G2P 15% agree

F R5 N/A R5 R5 R5 X4 17.5 R5 G2P 20% agree

F D/M N/A X4 X4 X4 X4 1.7 R5 agree PSSM

AE R5 R5 R5 X4 X4 X4 5.3 R5 G2P 10% agree

AE R5 N/A R5 X4 X4 X4 7.9 D/M G2P 10% PSSM

AE R5 N/A X4 X4 X4 X4 1.8 X4 G2P 5% PSSM

AE R5 N/A X4 X4 X4 X4 2.7 D/M G2P 5% PSSM

AE R5 D/M X4 X4 X4 X4 1.8 X4 G2P 5% PSSM

AE D/M N/A X4 X4 X4 X4 1.7 X4 agree PSSM partial

AE R5 N/A R5 X4 X4 X4 9.6 R5 G2P 10% agree
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Table 3. Cont.

HIV-1 subtype RVA result
Trofile
result G2P webPSSM Discordance

5% cutoff 10% cutoff 15%cutoff 20% cutoff FPR G2P PSSM

AE R5 N/A R5 X4 X4 X4 5.7 R5 G2P 10% agree

AE R5 N/A R5 X4 X4 X4 5.7 R5 G2P 10% agree

AE D/M N/A R5 X4 X4 X4 8.7 D/M G2P 10% agree

AE R5 N/A R5 X4 X4 X4 5 D/M G2P 10% PSSM

AE R5 N/A R5 R5 X4 X4 10.5 R5 G2P 15% agree

AE R5 N/A R5 R5 X4 X4 10.5 R5 G2P 15% agree

AE R5 N/A R5 R5 X4 X4 12 R5 G2P 15% agree

AE R5 N/A X4 X4 X4 X4 4.1 D/M G2P 5% PSSM

AE D/M N/A R5 R5 R5 R5 77.2 R5 G2P 5% PSSM

AE R5 N/A X4 X4 X4 X4 4.7 X4 G2P 5% PSSM

AE D/M N/A R5 R5 X4 X4 10.5 R5 G2P 5–10% PSSM

AE D/M N/A X4 X4 X4 X4 1.7 X4 agree PSSM partial

AG R5 R5 R5 X4 X4 X4 6.4 R5 G2P 10% agree

AG R5 R5 R5 X4 X4 X4 9.6 R5 G2P 10% agree

AG R5 N/A R5 R5 X4 X4 13.8 R5 G2P 15% agree

AG R5 R5 R5 R5 X4 X4 10.2 R5 G2P 15% agree

AG R5 R5 X4 X4 X4 X4 4.8 R5 G2P 5% agree

AG R5 N/A X4 X4 X4 X4 2.6 R5 G2P 5% agree

AG R5 N/A R5 X4 X4 X4 6.8 R5 G2P 10% agree

AG D/M R5 R5 R5 R5 R5 40.7 R5 G2P 5% PSSM

AG D/M N/A R5 X4 X4 X4 5.8 R5 G2P 5% PSSM

AG/G R5 R5 R5 R5 X4 X4 10.1 R5 G2P 15% agree

AG D/M N/A X4 X4 X4 X4 1.7 R5 agree PSSM

AG D/M N/A X4 X4 X4 X4 0.5 X4 agree PSSM partial

AG R5 N/A R5 R5 R5 R5 39.6 D/M agree PSSM

AG D/M N/A X4 X4 X4 X4 5.3 R5 agree PSSM

G2P: Geno2Pheno; FPR: False Positive Rate; D/M: dual mixed N/A = sample was not analyzed; PSSM ‘partial’ refers to samples for which webPSSM agrees with the
phenotypic result for the detection of X4 variants, but not on the presence or absence of CCR5-using variants.
doi:10.1371/journal.pone.0060566.t003

Figure 4. Concordance between tropism measured phenotypically and inferred genotypically using the Geno2pheno(coreceptor) and
webPSSM algorithms. (A) Concordance for subtype B (black bars) and non-B subtype (grey bars) strains with Geno2Pheno (G2P) at different FPR
cutoffs and webPSSM. (B) Concordance with Geno2pheno(coreceptor) with a FPR set at 10% (black bars) and webPSSM (grey bars) for different HIV-1
subtypes. The webPSSM X4/R5 matrix was used for all subtypes, except for subtype C, for which the subtype C SI/NSI matrix was used.
doi:10.1371/journal.pone.0060566.g004
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subtype A1, CXCR4 usage was overestimated in all cases (6/6

discordant cases) (Table 3).

Overall, both Geno2Pheno[coreceptor] and webPSSM overesti-

mate the presence of X4 viruses for CRF01_AE. A similar trend

was also observed for Geno2Pheno[coreceptor] in the case of

CRF02_AG and for webPSSM in the case of subtype A1,while

webPSSM underestimates the presence of X4 for subtype B.

Taken together, these results point to an inadequacy of the

genotypic prediction algorithms in correctly inferring tropism for

some subtypes CRF01_AE and CRF02_AG, and for subtype A1

in the case of webPSSM.

Discussion

In this study, the performance of an in-house Env-recombinant

viral assay for determining viral tropism was evaluated in

comparison to genotypic prediction using 2 widely used algo-

rithms, Geno2Pheno[coreceptor] [38] and webPSSM [39] on a

majority of non-B subtypes. Overall, we found good concordance

between our phenotypic assay and these algorithms, as reflected by

85.2% concordance of the phenotype with Geno2Pheno[coreceptor]

and 79.5% with webPSSM and relative kappa values of 0.6252

and 0.4544 respectively. The highest genotypic/phenotypic

concordance was generally found for subtypes G, B and C strains,

whereas, despite improved rules, substantial discordances involved

non-B subtypes and CRFs. This is in line with previous studies

reporting the performance of genotypic tools, mainly webPSSM

(X4/R5 and SINSI matrices), Wetcat, Geno2Pheno[coreceptor] or

the 11/25 rule, compared to the Phenoscript test or to the Trofile

phenotypic assay [53,58,59] measuring the sensitivity and

specificity of these algorithms to detect the presence of X4 strains.

In order to compare our findings with previous reports which

evaluated the reliability of different genotypic prediction tools for

detecting X4 strains, sensitivity and specificity of these algorithms

with respect to the recombinant viral assay were calculated,

although this approach presents the intrinsic drawback of setting

the phenotypic assay as the standard. We found overall good

sensitivities with Geno2Pheno and webPSSM, similar to previous

reports on the sensitivity and specificity ranges of different

bioinformatics tools for subtype B and some non-B strains [53–

58]. Of note however, despite similar conclusions, concordance of

different genotypic prediction tools with phenotypic assays did not

always agree on which algorithm performed best, probably

reflecting differences in the panel of viruses and of subtypes

included, primer selection, and subsequent comparison with

different phenotypic assays targeting the full Env or just the V1–

V3 portion. Although the purpose of this study was not to compare

the performance of different bioinformatics tools for detecting X4

minority variants but rather to validate our in-house RVA, our

findings confirm the high reliability of genotypic prediction tools

for detecting the tropism of subtype B strains [53,54,56], but also

highlight incongruent results for many non-B strains. This has

been addressed by webPSSM by developing a specific matrix for

subtype C. Concordance of webPSSM with phenotypic results

increased from 75% using the webPSSM X4/R5 matrix (based on

subtype B) (data not shown) to 90% using the webPSSM subtype C

matrix; likewise Cohen kappa values shifted from negative (data

not shown) to .0.6 using both algorithms respectively. Therefore,

it is important to consider subtype when assessing the presence of

X4 strains in the clinical context prior to maraviroc prescription.

Our findings strongly argue in favor of using multiple genotypic

prediction tools and to consider maintaining phenotypic testing for

those subtypes for which coreceptor usage determination using

genotypic tests features low concordance with phenotypic mea-

sures, and for which prediction algorithms have not been tuned

specifically, i.e. non-B, and non-C subtypes.

In this study, genotypic prediction featured the highest

discordance with CRF01_AE and CRF02_AG and subtype A1.

Of note, Geno2Pheno[coreceptor] and webPSSM did not always

predict the same tropism, as previously reported [60]. Geno2Phe-

no[coreceptor] tended to overestimate the presence of CXCR4 usage

(Table 3), while WebPSSM overestimated CXCR4-usage for

subtype A1, but not for subtype B or CRF01_AE and CRF02_AG

(Table 3). It may be important to keep in mind that when mixtures

are present in the V3-loop, all possible combinations are

genotyped, and the algorithm provides a tropism prediction for

each possible clone. In this scenario, webPSSM would infer

tropism for sequences that do not exist in the viral population,

eventually leading to an overestimation of dual tropic variants,

whereas the phenotypic assays only measures existing strains.

Although this phenomenon does not account for mistakenly

assigned coreceptor usage, (e.g. strict X4 rather than strict R5), it

could explain the improved kappa values recorded for some

subtypes when the reliability in detecting the presence of CXCR4-

using variants is compared. Such an improvement was particularly

marked for subtypes B, G and CRF02_AG (Table 2).

Poor specificity has previously been reported for tropism

prediction of subtype D strains by Geno2Pheno[coreceptor] [46]

and for CRF02_AG [19,45], for which specific determinants have

been described to improve the algorithm. We therefore subjected

our samples to the rules provided by Raymond [45] and those

proposed shortly after by Esbjörnsson [19] for CRF02_AG: the

Raymond rules, which combine the 11/25 rule and the net charge

rule (R/K at position 11 and/or K at position 25, or R at position

25+ net charge $+5 or the net charge $+6) [45,61] resulted in 7

discordant cases (20.7%) (3 R5 samples scored as X4 and 3 X4

samples scored as R5) and the Esbjörnsson rule (net charge $ +5

and total charged AA $8) [19] in 10 discordances (34.5%) (4

missed X4 calls and 6 X4 calls for R5 viruses). Therefore, the

Raymond rules slightly improved concordance of genotypic

prediction with phenotypic measure for CRF02_AG compared

to Geno2Pheno[coreceptor] and webPSSM while the Esbjornsson

rules further increased false positive X4 calls on our samples.

While this manuscript was under revision, Raymond et al.

reported similarly low sensitivity and specificity of Geno2Pheno[-

coreceptor] (10% FPR cutoff) for CRF01_AE, and proposed a new

rule combining the 11/25 rule and disruption of the potential N-

glycosylation site PNG (N6NT8) within the V3-loop [62]. Using a

similar approach, we found that in our samples, the presence of a

positively charged AA (K or R) at positions 11 or 25 was relatively

rare (R/K at position 11 in 6/40 sequences and K at position 25

in one sequence), but reliably translated into CXCR4 usage

measured phenotypically. Position 11 hosted a S in 30/40

sequences and a G in 3/40 sequences; position 25 displayed a

negatively charged AA (D or E) in 35 sequences. The total number

of positively charged AA, total net charge, or total charge, which

was generally high (.+5), did not provide further support for

sorting CXCR4-using strains in our samples, in agreement with

the findings reported by Raymond et al. [62]. In 6/8 phenotyp-

ically X4 strains in which positions 11 and 25 were not positively

charged, the PNG (N6NT8) was (or was likely to be, due to

mixtures) disrupted and the net charge was $+4, as reported by

Raymond et al. [62]. The Raymond rules improved concordance

of the phenotypic test with genotypic prediction from 61.4% with

Geno2Pheno[coreceptor] and 71.8% with webPSSM to 87.2% (34/

39) for this CRF. Nonetheless, with these rules (11 K/R and/or

25 K or disrupted PNG+net charge$+4 [62]) in 2/25 cases,

phenotypically R5 samples were scored as X4 and 2/14
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phenotypically X4 samples were predicted to be R5, suggesting

that other criteria apply to this CRF and larger scale studies

combining phenotypic testing to genotypic tuning combining the

11/25 rule to the PNG and to charge will be needed to further

improve sensitivity and specificity of prediction tools. We cannot

exclude that in our study, the use of bulk sequences may impact

the reliability of prediction rules, whereas the rules by Raymond

were partially based on clonal samples, where the relative weight

of each position is absolute rather than being relative to its

proportion within the quasispecies.

Three technical reasons could account for discordant results

between genotypic prediction and phenotypically determined

tropism: PCR selection, a bias/selection arising from the

recombination step of the RVA, inadequately inferred tropism

by genotypic tools, consequent to subtype-related specificities not

taken into account by the algorithm, either within the V3 loop or

in other regions of Env. To minimize a potential impact of PCR

selection, 5 independent PCR reactions were pooled and the same

amplicon used to produce recombinant viruses was sequenced.

Nonetheless, whereas comparison of the Env-RVA and genotypic

prediction by Geno2Pheno and webPSSM were based on the use

of the same PCR pool, the Trofile ESTA was performed using an

independent plasma tube and different PCR primers, eventually

translating into PCR selection. Hence, it is not possible to exclude

that failure to pick-up X4 minority variants by the RVA (1

CRF01_AE) or by the Trofile ESTA (1 CRF02_AG), reflect PCR

selection, particularly in the case of poorly infectious recombinant

or pseudotyped particles. Selection during the recombination step

was ruled out as the V3-loop sequences from viral supernatants

(after the recombination step) were identical to the parental PCR

amplicon that served to produce recombinant viruses. When

assessed, tropism of CRF01_AE and CRF02_AG strains assessed

using the Trofile ESTA matched the phenotype determined by the

RVA and disagreed with the Geno2Pheno[coreceptor] prediction in

all but two cases (Table 3). The Trofile ESTA was chosen among

all available tropism phenotypic tests because it is a high sensitivity

and specificity single cycle pseudovirus assay [30]. Lastly, repeat

experiments in the presence of CCR5 and CXCR4 inhibitors

confirmed the phenotypic results, strongly indicating that the

Geno2Pheno[coreceptor] and webPSSM algorithms require more

specific improvements for some subtypes, particularly CRF01_AE

and CRF02_AG, and that the RVA described here reliably

indicates coreceptor usage. It is known that the V3-loop is not the

sole Env determinant of HIV-1 co-receptor usage. Sequence

changes within the V1, V2 and C4 regions of gp120 [13,63–67], as

well as the level of glycosylation [68–70] can also profoundly

impact coreceptor usage. In this study, it is not possible to rule out

that some discordant results arise from the comparison of

coreceptor usage predictions based on the V3-loop sequence only

to a phenotypic assay taking into account the whole Env

ectodomain.

Various commercial and non-commercial phenotypic assays

have been developed over the last 10 years to measure tropism.

These are based on different approaches to produce recombinant

viruses, including homologous recombination, pseudotyping, or a

combination of both; they target different parts of Env, ranging

from the V1–V3 region only (e.g. Phenoscript [34], PhenXR [71])

to the full Env (e.g. ESTA [30]); the producer and the target cells,

as well as the readout (virally-encoded luciferase or GFP reporter

gene (e.g. ESTA [30], TTT [35], the Virco Assay [32], two non-

commercial assays utilizing recombinant particles and pseudovir-

ions respectively [33,72], and the RVA presented here), or target

cell line containing a LTR-b-Galactosidase reporter which is

activated upon infection (e.g. Phenoscript [34], PhenXR [71])

further distinguish these tests. These are recorded in Table 1. The

RVA presented here mostly resembles the TTT assay in the design

of the backbone, production of recombinant viral particles through

homologous recombination and location of Luciferase reporter in

the place of Nef [35]. The TTT showed high performance in

terms of Env amplification and production of recombinant viruses,

particularly for subtypes that were difficult to amplify using our

primers (D and F), likely due to primer location. The TTT group

also selected one U87-CD4.CXCR4 cell clone with high

expression of CXCR4 to increase the limit of detection of X4

minority variants [35]. In our design, we verified the expression of

CXCR4 and only maintained cells in culture for a limited number

of passages. To ensure the lower limit of detection of X4 strains

was maintained, we tested the performance of the RVA using

serial dilutions and systematically discarded experiments where the

lower threshold of infection of U87.CD4.CXCR4 cells by NL4-3

did not reach 100,000 RLU (Fig. 2). It would be interesting to

compare the performance of different phenotypic assays using a

large panel of samples, although this could not be performed here

because of insufficient plasma from the sample to allow

independent testing and repeat experiments in different laborato-

ries.

Taken together, the findings reported here strongly support the

need for further large-scale studies to improve prediction models

and/or to appeal to more than one algorithm when non-B

subtypes are involved. The use of phenotypic measurements could

nevertheless be required in cases where different algorithms point

to potential difficulties in inferring the correct tropism. Such a

confirmation is important in the clinical set-up as a false prediction

of X4 variants may lead to exclusion of patients who could have

benefited from prescription of CCR5 inhibitors while false

prediction of R5 only variants may lead to selection and

reemergence of X4-strains under maraviroc pressure (Baatz et al.,

2011; Kuhmann and Hartley, 2008; Pugach et al., 2007; Westby

et al., 2007).
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