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Abstract

Motivation: The precise prediction of protein domains, which are the structural, functional and evolutionary units of
proteins, has been a research focus in recent years. Although many methods have been presented for predicting protein
domains and boundaries, the accuracy of predictions could be improved.

Results: In this study we present a novel approach, DomHR, which is an accurate predictor of protein domain boundaries
based on a creative hinge region strategy. A hinge region was defined as a segment of amino acids that covers part of
a domain region and a boundary region. We developed a strategy to construct profiles of domain-hinge-boundary (DHB)
features generated by sequence-domain/hinge/boundary alignment against a database of known domain structures. The
DHB features had three elements: normalized domain, hinge, and boundary probabilities. The DHB features were used as
input to identify domain boundaries in a sequence. DomHR used a nonredundant dataset as the training set, the DHB and
predicted shape string as features, and a conditional random field as the classification algorithm. In predicted hinge regions,
a residue was determined to be a domain or a boundary according to a decision threshold. After decision thresholds were
optimized, DomHR was evaluated by cross-validation, large-scale prediction, independent test and CASP (Critical
Assessment of Techniques for Protein Structure Prediction) tests. All results confirmed that DomHR outperformed other
well-established, publicly available domain boundary predictors for prediction accuracy.
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Introduction

Protein domains are the structural, functional and evolutionary

units of proteins. A domain is a segment of a polypeptide chain

that can fold into a compact and stable three-dimensional

structure independently of other segments in the chain [1]. Most

domains are single continuous polypeptide segments, while a few

consist of several discontinuous segments. Small proteins often

consist of only a single domain, while many large proteins

comprise two or multiple structural domains [2]. Domains can

function independently or they can work with neighboring

domains in a harmonious way. Domains are the building blocks

of proteins in molecular evolution, allowing different arrangements

and reorganizations to create proteins of different functions.

Therefore, the exact identification of protein domains and their

boundaries is important not only for protein classification and the

study of protein structure, function, and evolution, but also for

drug discovery, disease treatments and genetic engineering.

Unfortunately, experimental methods for the identification of

protein domain boundaries are time consuming and labor

intensive. In addition, large numbers of protein sequences are

being generated. The speed of manual identification and

annotation of proteins lags behind the rate of sequence creation.

To fill this gap, a computational approach to domain identification

is highly desirable.

Identifying domains and boundaries requires a clear definition

of each; however, domain and boundaries are ambiguously

defined in the literatures [3,4,5,6,7]. Three main criteria were

used to decide if a protein structure should be parsed into smaller

domains and to determine the domain boundaries: geometrical

separation, symmetry, and recurrence in other structures [8].

However, domains assigned manually by visual inspection and

automatic domain-parsing programs were quite different [9]. Even

in SCOP and CATH, the two most commonly used databases of

protein structures, the definitions of domains vary, as does

hierarchic partitioning of the fold space on each level [10]. The

different definitions of domain from structural, functional and

evolutionary information have been used to develop many

methods of domain predictions.

Currently, studies about protein domain boundary prediction

are divided into two categories: those that use template-based

methods [11,12,13,14,15,16] and those that use ab-initio methods

[17,18,19,20,21,22]. Template-based methods generally use

alignment against a known domain database (such as CATH
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[11] or SCOP [23]) to predict domain boundaries. For example,

the sequence or secondary structures of a target sequence might be

aligned against the sequence or the secondary structures in

a domain classification database [24,25]. The performance of

template-based method is more accurate than other methods.

However, this performance is dependent on the homology

between the target and the known structures. The ab-initio

method has no such restrictions. Ab-initio methods generate

a learning model using machine learning technologies that use

a series of proteins for which information on residue properties is

known. In this strategy, artificial neural networks (ANN) [26] and

support vector machines (SVM) [27] are the most widely used

algorithms.

Among these algorithms, Liu and Rost [28] used ANN with

evolutionary information, amino acid composition, predicted

secondary structure, predicted solvent accessibility, and amino

acid flexibility. The networks used by Nagarajan and Yona [29]

were merged with the information of multiple sequence alignments

analysis and position-specific physiochemical properties of amino

acids and predicted secondary structures. PPRODO [30] used

information from a position-specific scoring matrix (PSSM)

generated by PSI-BLAST [31] in an ANN. DOMpro [3] applied

a 1D recursive neural network to incorporate evolutionary

information in the form of profiles, and predicted secondary

structure and solvent accessibility. Ye et al. [32] used a back-

propagation ANN method with various sequence profiles, based

on chemical, physical, and statistical properties. Yoo et al. [33]

used an improved general regression network model trained by the

information of a PSSM, an interdomain linker index, secondary

structure, and solvent accessibility.

In recent years, SVM has been used by DomainDiscovery [34]

to predict domain boundaries with sequence information including

a PSSM, a secondary structure, solvent accessibility information

and an interdomain linker index. DomSVR [35] predicted

domain boundaries using SVR starting from the protein sequence

alone and using only profiles generated from an AAindex database

[36]. DROP [4] developed an SVM to predict domain linkers

using 25 optimal features selected from a set of 3000 features

including PSSMs and over 2000 physicochemical properties via

a random forest algorithm. DoBo [5] used the classification

capability of SVM to improve protein domain boundary pre-

diction using evolutionary domain boundary signals embedded in

homologous proteins. Cai et al. [37] employed a random forest

algorithm, maximum relevance minimum redundancy, and in-

cremental feature selection, incorporating the sequence conserva-

tion, residual disorder, secondary structure propensity, and solvent

accessibility to predict domains.

Here, we present a novel approach, DomHR, which is an

accurate predictor of protein domain boundaries based on

a creative hinge region strategy. DomHR uses a nonredundant

dataset as the training set, domain-hinge-boundary (DHB) and

predicted shape strings as features, and a conditional random field

as the classification algorithm. In predicted hinge regions, a residue

is determined as domain or boundary according to the decision

threshold. DomHR is a hybrid method such as DOMAC [38] or

method proposed by Walsh [39]. After the decision thresholds

were optimized, DomHR was tested in cross validation, large-scale

prediction, independent test and CASP tests.

Materials and Methods

Datasets
Three datasets (S628, S3845 and S1508) and one database

(B25936) were used in this study. S628 was extracted from Cheng’s

package [5], in which the sequence identity of each pair of protein

chains was less than 25%, the domain number of the proteins

agreed in both SCOP (v 1.75) and CATH (v3.3.0), and any

protein whose length was less than 90 residues was removed. This

resulted in a final dataset containing 628 protein sequences, of

which 186 were multidomain proteins and 442 were single-

domain proteins. The domain definitions were those provided by

CATH.

The key database with sequence and domain/boundary in-

formation was derived from the annotated domains in the CATH

and PDB (Protein Data Bank) [40]. First, 138,550 IDs of protein

sequences were collected from CATH version 3.5.0, and the

corresponding sequences were extracted from PDB. These

sequences were sorted according to the number of domains and

the lengths of boundaries in descending order. Sequences with

more domains and longer boundaries were easy retained after

redundant sequences were removed. Next, PISCES [41] was

carried out to reduce sequence redundancy in the data by ensuring

that sequence identity was limited at 99% and short sequences

(,40 residues) were filtered out. The remaining database (B25936)

contained 25,936 entries in which sequences and DHB in-

formation were joined. Data redundancy was further reduced

using PISCES at 25% sequence identity, resulting in 5353 entries.

Among these, 3845 entries that appeared in both CATH 3.4.0 and

CATH 3.5.0 were collected as the training set (S3845). The

remaining entries (1508) were collected as the independent testing

set (S1508), in which each sequence was assigned a domain

definition by CATH 3.5.0.

Domain Boundary Definitions
Similar with the different definitions of domain, as mentioned

above, domain boundary definitions also vary. Zou [7] defines

a domain boundary as the residues between SCOP domains.

DROP [4] defines a domain linker as a loop region separating two

structural domains without a-helices or b-strands. DOMpro [3]

defines residues within 20 amino acids of a domain boundary as

domain boundary residues, with all other residues considered as

nonboundary residues. David [6] broadened the boundary

definition to a neighborhood of 10 amino acids. Cheng [5]

recognized the first and the end residues of a domain and the

linker as domain boundaries.

In this study, the domain boundary was defined as the

nondomain residue defined by CATH and the N- and C-terminal

residues of a domain (Figure 1). In addition, when two domains

were connected to each other, we defined two consecutive

contacted residues as boundary elements. Thus the start and end

residues of a domain always were defined as boundaries. This

definition slightly increased the numbers of boundaries. However,

this was expected to be useful for domain identification, especially

when two domains were connected.

Definition of Hinge Region
Recently, binary classification has tended to be framed as

a three-class problem. Cheng [5] defined false boundaries, near

boundaries, and away boundaries, and constructed two predictors

to identify domain boundaries. Zhou [42] defined ordered

residues, and short and long disordered regions in his predictor,

and reduced the three-state model to a two-state prediction.

In this study, we defined a hinge region as containing 2*R (for

example, R= 10) residues that are centrally located at the N- and

C-terminus of a domain and bidirectionally extended into the

domain and the boundary R residues (Figure 1). An additional

hinge region could improve the imbalance between the positive

and negative data without removing any residues. In a hinge

Identifying Domain Boundaries in Proteins

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e60559



region, where predicted errors often occur, we analyzed and

adjusted decision thresholds to improve the performance of the

predictor (see below).

Profiles of Domain, Hinge and Boundary
The novel technology in this study was DHB profiles. The DHB

feature was generated by sequence-domain/hinge/boundary

alignment. For a query, sequence alignment was carried out first

against B25936 using PSI-BLAST [31] (the parameters were set

as: Number of iterations = 2; other parameters set as default) to

find sequences homologous to the target sequence. Matched

piecewise local sequences were then selected according to e-values

below a given threshold (E-value#1e–1). All selected sequences

were subsequently ranked by e-value in ascending order, reserving

the top S (default S = 10) of these sorted sequences, which

contained rich evolution information. (If the number of selected

sequences was less than S, all selected sequences were kept). The

DHB elements in the matched unions were scored in three boxes

that contained the profiles of three-state (DHB) information. The

boxes constituted DHB profiles of the original sequence. The

profile was clearly the frequency of the DHB elements, with three

elements for each amino acid in the sequences. For the position p

of an amino acid in the target, the normalized s profile

(s=domain, hinge or boundary) was counted as

DHBp
s ~

X
L
A(p,s)=

X
s

X
L
A(p,s) ð1Þ

where p was the position of the amino acid in the target sequence

and s was one of the three DHB states. A(p,s) equaled 1 when the

state of the p amino acid in the matched sequences was s. L was the

number of matched sequences. In the denominator, the summa-

tion was carried out for three states.

The DHB of each amino acid had three elements: domain,

hinge and boundary profiles. The DHB was a distinctive PSSM-

like profile composed after alignment, with rich DHB information.

Finally, the DHB was used as a feature to identify boundary

regions in sequences.

DomHR Architecture
The architecture of DomHR is shown in Figure 2. DomHR

used two kinds of input: DHB profiles and predicted shape strings,

for four total features. Three digital type features represented the

DHB profile, which were obtained by BLAST alignment against

B25936 and containing the homologous information of domain,

hinge and boundary regions. One character type feature

represented the predicted shape string, which is a sequence of

particular shape symbols, one per residue, represented by a one-

dimensional structural alphabet The shape string was initially

proposed by Ison et al. [43] by clustering W/Y torsion angle pairs

of protein backbones in a Ramachandran space into eight distinct

regions, and assigning these clusters as eight symbols to describe

the protein backbone. The real-value of protein backbone torsion

angle has been predicted by Real-SPINE [44]. Shape string is

a useful feature that has been applied by many studies such as for

b-turn [45] and c-turn prediction [46]. The shape string of a target

protein sequence in this study was predicted by DSP (a protein

shape string and its profile prediction server) [47].

The CRFs (Conditional Random Fields) was used for modeling

and prediction. CRFs offer several advantages over other machine

learning methods, including the ability to relax strong indepen-

dence assumptions made in those models and avoid the

fundamental limitation of maximum entropy Markov models

and other discriminative Markov models based on directed

graphical models; these can be biased towards states with few

successor states [48] (See Text S1). CRFs also solve the label bias

problem in a principled way, and they are faster than many other

machine learning methods. In our approach, CRFs were used to

model and predict without a slide window of sequences. We used

a Unigram template that considered four upward variables and

four downward variables in a row, and then all column variables

were traversed. All modeling parameters were set to default. We

Figure 1. Definitions of domain boundaries and hinge regions. The red represents boundary, the green represents domain. A residue
assigned to the boundary is coded with ‘‘10; A residue assigned to the hinge region is coded with ‘‘20; otherwise, ‘‘00. A hinge region contains 2*R (for
example, R = 10) residues that are centrally located at the N- and C-terminus of a domain and bidirectionally extended into the domain and the
boundary R residues.
doi:10.1371/journal.pone.0060559.g001
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used the CRF++ binary package for MS-Windows (CRF++0.54 is

available at: http://crfpp.sourceforge.net/). The environment for

training and testing was a Windows 7 64-bit operating system with

Intel Core 2 Quad CPU and RAM 6 GB.

Measuring Performance
To evaluate predictor performance, we used multiple measure-

ments that are seldom used in the literature for predicting protein

domain boundaries, for a comprehensive assessment. We used

sensitivity [Sn=TP/(TP+FN)], specificity [Sp=TN/(TN+FP)],
accuracy [Ac= (TP+TN)/(TP+FN+TN+FP)], Matthews’s correla-

tion coefficient (MCC), weighted score (Sw), and area under the

receiver operating characteristic (ROC) curve (AUC)

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p ð2Þ

Sw~SNzSP{1: ð3Þ

where TP, FP, TN, and FN denote true positives, false positives,

true negatives and false negatives; Sw and MCC ranged between -

1 and 1 where 1 represented a perfect prediction and -1

represented a completely incorrect prediction. The statistical

significance of the evaluation scores was determined by boot-

strapping: 80% of the targets were randomly selected 1000 times,

and the standard error of the scores was calculated.

Results and Discussion

Determining the Hinge Region Size
In this study, S628 was used to demonstrate the novel DHB

feature that was generated using a BLAST tool modified from PSI-

BLAST by aligning a query against B25936. Because B25936 was

derived from a large and diverse database, when the BLAST

function was performed, any sequence in B25936 with an exact

match in S628 was discarded for fairness. To determine applicable

size of the hinge region we assessed prediction performances

dependent on hinge region size (Table 1) (See Table S1, S2).

Residues in the predicted hinge region were determined to be

classified into domain or boundary according to a decision

Figure 2. The flowchart of the DomHR. DSP (a protein shape string and its profile prediction server) and PSI-BLAST are carried out to generate
predicted shape string features and DHR features. B25936 is constructed from CATH3.5.0 and domain, hinge region and boundary information.
doi:10.1371/journal.pone.0060559.g002
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threshold (see below). When R was set to 10, the Sw achieved the

maximum, Sn was balanced with Sp, and AUC is also good. In

our study, the size of the hinge region was always set as 10 for

balance.

Validation of Features
A good feature greatly improves the accuracy of a predictor. To

validate and select an optimal combination of features, 10 fold

cross-validation tests were performed on S628. We randomly

divided the S628 dataset into 10 subsets on average. One subset

was used as a testing set, while the other nine subsets were merged

into a training set. Table 2 shows the effects of different

combination of features (See Table S3, S4). Since only DHB led

to 0.69 for Sn, 0.88 for Sp, and 0.86 for Ac, 0.88 for AUC, DHB

appeared to be an excellent feature when compared with reported

features. We tested combinations of features such as predicted

shape string (SST), predicted second structure (ss, 3-class

secondary structure predicted by SPSSMPred [49]), profile of

shape string (SSTP), profile of second structure (ssp), and PSSM.

These often appear in the literature and were confirmed improve

the prediction of protein structure and function. The DHB feature

was combined with each and the effect was assessed. Table 2

shows that the SST was an effective companion feature for DHB,

increasing Sn by 13% while Sp was reduced by 1% and all other

measurement values increased. Although the results were same

good when all features were used, too many features require

additional computational time. Therefore, we selected only two

features (DHB+SST) for our predictor.

Impact on Performance by Adjusting the Decision
Threshold
S628 was used to demonstrate the hinge region strategy. The

definition of the new hinge region improved the imbalance

problem, and the ratio of the number of boundary residues to the

number of domain residues changed from 1:15 to 0.14:1:4.80 for

boundary:hinge:domain. Thus, a two-class problem was trans-

formed to a three-class problem.

Second, because the hinge region was defined to overlap parts

of the domain and boundary regions, we determined the residues

in the predicted hinge regions to be either domain or boundary

according to a decision threshold that assigned a residue to the

boundary or to the domain. The distributions of the probabilities

at each residue position in the hinge region are provided in Figure

S1. The results of adjusting decision thresholds are in Figure 3.

When the decision threshold was 0.4, we achieved a maximum

Sw, which was used as the criterion for optimization of the

decision threshold.

Third, another feasible adjustment of decision threshold focused

on the predicted domain regions. The decision threshold of the

predicted domain regions could be adjusted to optimize sensitivity

and specificity (Figure 4). If a probability of a residue was greater

than a given threshold, the residue would be determined as

domain; otherwise it would belong to the boundary. The Sw was

at maximum when the decision threshold was 0.75.

Finally, we combined the adjustments in the predicted hinge

and domain regions. The results showed no significant improve-

ment, so the adjustments of the decision thresholds in the hinge

and domain regions were both effective and could be used flexibly.

According to our results, adjusting the hinge probability did not

substantially affect Sw greatly, however this worked well in blind

testing. The adjustment of the domain probability greatly

improved Sn and Sp. When the test was similar to the training,

Sw achieved or approximated the maximum. However, when the

blind testing was very different from the training, the optimized

decision threshold based on the training did not guarantee the

maximum Sw.

To summarize, the hinge region strategy proposed in this study

had three central features: (i) definition; (ii) DHB feature; and (iii)

adjusting the decision threshold. The hinge region strategy is an

innovative technology that was confirmed to improve protein

domain boundary identification.

Validations of Large-scale Predictions
To understand the performance of the DomHR on large-scale

prediction, we carried out a 10 fold cross-validation on S3845, an

ensemble nonredundant set of CATH 3.4.0. The features used

were DHB and predicted shape string, with a decision threshold of

0.4 in the predicted hinge region optimized based on the S628.

S3845 was used as training set and S1508 as the independent

testing set. Any sequence in B25936 with an exact match in S1508

was discarded for fairness. The results are in Table 3 (See Table

S5, S6). The accurate performances confirmed that our predictor

was outstanding even with large-scale validation. For S3845, we

achieved an Sn of 0.80 and an Sp of 0.88. For S1508, we achieved

an Sn of 0.77 and an Sp of 0.89. Table 3 also shows the results of

one-domain, two-domain and multi-domain sequences contained

in S1508. We achieved an Sn of 0.80 and an Sp of 0.91 for one-

domain sequences, an Sn of 0.77 and an Sp of 0.89 for two-

domain sequences, and an Sn of 0.71 and an Sp of 0.86 for

multidomain sequences. These demonstrated that our approach

had a strong ability to predict multidomain boundaries. All

predicted results of S1508 are listed in Table S7.

Two difficulties hindered comparison of our approach with

previous studies. One is the small number of comprehensive

assessments of published approaches. The other is that the datasets

used were different, and lacked large-scale results. We compared

DomHR with DoBo [5], and based on S628 and 10 fold cross-

validation, our Sn of 0.82 was 8% higher than that of DoBo at

0.74. Because DoBo stated that ‘‘a predicted domain boundary is

Table 1. Effects of size of hinge region on performance.

R value Sn Sp MCC Ac Sw AUC

8 0.78 0.90 0.46 0.90 0.67 0.90

10 0.81 0.87 0.43 0.86 0.68 0.89

15 0.84 0.80 0.37 0.81 0.65 0.88

doi:10.1371/journal.pone.0060559.t001

Table 2. Performance comparison with different features on
S628.

Combination of features Sn Sp MCC Ac Sw AUC

DHB 0.69 0.88 0.38 0.86 0.57 0.88

DHB+SST 0.82 0.87 0.45 0.87 0.69 0.89

DHB+ss 0.69 0.88 0.37 0.86 0.56 0.88

DHB+SSTP 0.81 0.87 0.44 0.87 0.68 0.88

DHB+ssp 0.69 0.88 0.38 0.86 0.57 0.88

DHB+PSSM 0.71 0.87 0.38 0.86 0.59 0.89

DHB+SST+SSTP+
ss+ssp+PSSM

0.82 0.86 0.43 0.86 0.68 0.89

doi:10.1371/journal.pone.0060559.t002
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regarded as correct when the predicted boundary fully or partially

overlaps the true (official) boundary within a margin of tolerance

of 620 residues,’’ the Sp of DoBo should be low.

In addition, we compared DomHR with DomSSEA [24] which

was a fast alignment-based domain prediction method. The

reseacher found that DomSSEA correctly identified the number of

domains in 72% of all proteins tested, and correctly identified 24%

of all domain boundaries within 620 residues of the boundaries

annotated in CATH [28]. So our Ac of 87% was far higher than

DomSSEA.

For large-scale prediction, we compared DomHR with Cai [37]

for about 1508 entries vs. 1299 entries. Our Sn of 0.77 was 13%

higher than Cai’s of 0.64, and our Sp of 0.89 was 8% higher than

Cai’s 0.81. Other evaluation values of our approach were also

better than Cai’s.

Improving the accuracy in predicting multidomain boundaries

is a challenging task because the accuracy usually is considerably

less than 40% [35]. We assessed the performances of DomHR on

single-domain, two-domain, and multidomain sequences in the

S1508 set (Table 3), and the results showed that our approach was

a balanced predictor with an excellent ability to predict single-

domain, two-domain and multidomain boundaries. The Sn of

0.71 indicated unprecedented accuracy in multidomain boundary

prediction.

Figure 3. The performances in S628 by adjusting the different threshold values. The residues in the predicted hinge regions are
determined to be either domain or boundary according to a decision threshold. If the probability on hinge regions of the residue was greater than
a given threshold, the residue would be determined as boundary; otherwise it would belong to the domain.
doi:10.1371/journal.pone.0060559.g003

Figure 4. The performances in S628 by only adjusting threshold values of negative set. If the probability on domain regions of a residue
was greater than a given threshold, the residue would be determined as domain; otherwise it would belong to the boundary.
doi:10.1371/journal.pone.0060559.g004
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Prediction of CASP 9
CASP 9 is a challenging subset for domain boundary prediction.

Zhou [42] had good results using an optimized decision

threshold based on the CASP 8 set to predict regions of protein

disorder. We carried out DomHR on a blind test of CASP 9, using

CASP 8 set as training set. DHB feature and predicted shape

string were used as features, and any sequence in B25936 with an

exact match in CASP 9 was discarded for fairness. The domain

region decision threshold was optimized based on the S628 (0.75).

The results are in Table 4 (See Table S8, S9). The Sn was 0.73, Sp

was 0.59 and Sw was 0.33. Comparison with published results

indicated the accuracy of prediction of CASP 9. DoBo evaluated

only 14 targets in CASP 9, with a result of an Sn of 0.70. Results

were Sn of 0.52 in PPRODO and Sn of 0.14 in DOMPro. This

demonstrated the effectiveness of our approach.

Because most single domains in CASP 9 were discontinuous, as

multidomain sequences, predicting single domains was as difficult

as predicting multiple domains. The difference in prediction

accuracy between single-domain and multidomain proteins was

not large. For the multidomain CASP 9, the Sn from DoBo was

0.68, while our Sn was 0.70.

In this study, CASP 9 was considered to be a blind test, so we

did not adjust the decision threshold according the performance of

the CASP 9 prediction to achieve a reasonable Sn and Sp. Because

the decision threshold optimization was based on S628, the

specificities in Table 4 were lower than the sensitivities. This

indicated more research needs to be done in this field. All

predicted results of CASP 9 are available in Table S10.

Web Servers
We have created a DomHR server for scientific users on our

local infrastructure. This is available at http://cal.tongji.edu.cn/

domain/. The DomHR server predicts protein domain boundary

for query sequence(s), and results are provided in the form of a web

page and/or an e-mail.

Conclusion
In this work, we proposed a hybrid method, DomHR, to

accurately predict domain boundaries in proteins based on

a creative hinge region strategy. DomHR was tested in cross-

validation, large-scale prediction, independent tests, and CASP

tests. All results confirmed that DomHR outperformed well-

established publicly available domain boundary predictors for

accuracy of prediction. The kernel technology is a hinge region

strategy that generates an effective feature: a DHB feature by

alignment. For the idea, it came from the fact that the most

predicted errors existed in the connecting regions of domains and

boundaries. We considered firstly the new defined hinge region

would reduce the imbalance of dataset. Then, the proposed DHB

feature can accurately predict the hinge regions. At the last, the

adjustments of the decision thresholds of the predicted hinge

regions were local adjustments, which could help to optimize the

performance of the predictor. However, similar to other

alignment-based methods, the performance of DomHR requires

homology information obtained when the alignment is carried out.

The most distinct characteristic of DomHR was that only four

features were used during modeling and prediction. This number

is much lower than previous methods. A few features and high

accuracy make our approach competitive with state-of-the-art

domain boundary predictors. We propose that as more structures

of proteins are determined, obtaining homology information will

become easier. We also believe this strategy benefits other

predictions of protein structure and function.

Supporting Information

Figure S1 The distributions of the probabilities at each
residue position in the hinge region. The negative values on
the abscissa refer to residue positions in the hinge region close to

domain region, and the positive values on the abscissa refer to

residue positions in the hinge region close to boundary region. The

values on the ordinate refer to average probability at each residue

position in the hinge region. The probabilities at residue positions

close to boundary region are generally higher than those close to

domain region.

(TIF)

Table S1 Effects of size of hinge region on performance
(TP, FN, TN and FP).

(DOCX)

Table S2 Effects of size of hinge region on performance
(including SE).

(DOCX)

Table S3 Performance comparison with different fea-
tures on S628 (TP, FN, TN and FP).

(DOCX)

Table S4 Performance comparison with different fea-
tures on S628 (including SE).

(DOCX)

Table S5 Performance on large-scale prediction (TP,
FN, TN and FP).

(DOCX)

Table S6 Performance on large-scale prediction (in-
cluding SE).

(DOCX)

Table S7 All predicted results of S1508.

(XLSX)

Table 3. Performance on large-scale prediction.

Test dataset Sn Sp MCC Ac Sw AUC

S3845a 0.80 0.88 0.45 0.88 0.69 0.91

S1508b 0.77 0.89 0.45 0.88 0.66 0.91

1-domainc 0.80 0.91 0.51 0.90 0.70 0.92

2-domainc 0.77 0.89 0.46 0.89 0.66 0.91

m-domainc 0.71 0.86 0.35 0.85 0.57 0.88

a:ten-fold cross-validation of 3845 entries.
b:independent test (1508 entries) by training on the entire S3845.
c:sequences inS1508.
doi:10.1371/journal.pone.0060559.t003

Table 4. Performance on CASP9 trained on CASP8.

Test dataset Sn Sp MCC Ac Sw AUC

CASP9 0.73 0.59 0.20 0.60 0.33 0.75

1-domaind 0.75 0.63 0.24 0.64 0.37 0.77

m-domaind 0.70 0.57 0.16 0.59 0.28 0.71

d:sequences in CASP 9.
doi:10.1371/journal.pone.0060559.t004
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Table S8 Performance on CASP9 trained on CASP8 (TP,
FN, TN and FP).

(DOCX)

Table S9 Performance on CASP9 trained on CASP8
(including SE).

(DOCX)

Table S10 All predicted results of CASP 9.

(XLSX)

Text S1 Detailed descriptions of CRF (Conditional
Random Fields) methodology.
(DOCX)
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