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Abstract

Abundant behavioral evidence suggests that the ability to self-control is limited, and that any exertion of self-control will
increase the likelihood of subsequent self-control failures. Here we investigated the neural correlates underlying the
aftereffects of self-control on future control processes using functional magnetic resonance imaging (fMRI). An initial act of
self-control (suppressing emotions) impaired subsequent performance in a second task requiring control (Stroop task). On
the neural level, increased activity during emotion suppression was followed by a relative decrease in activity during the
Stroop task in a cluster in the right lateral prefrontal cortex (PFC) including the dorsolateral prefrontal cortex (DLPFC), an
area engaged in the effortful implementation of control. There was no reliable evidence for reduced activity in the medial
frontal cortex (MFC) including the anterior cingulate cortex (ACC), which is involved in conflict detection processes and has
previously also been implicated in self-control. Follow-up analyses showed that the detected cluster in the right lateral PFC
and an area in the MFC were involved in both the emotion suppression task and the Stroop task, but only the cluster in the
right lateral PFC showed reduced activation after emotion suppression during the Stroop task. Reduced activity in lateral
prefrontal areas relevant for the implementation of control may be a critical consequence of prior self-control exertion if the
respective areas are involved in both self-control tasks.
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Introduction

The ability to control one’s impulses, emotions, thoughts and

action tendencies is crucial for living in line with personal

standards and social norms. Failures in self-control contribute to

many social problems such as obesity, drug use, smoking,

alcoholism, or crime [1,2]. It is therefore of great interest to

understand the processes underlying self-control failures.

Self-control can be defined as the ability to interrupt and

override dominant response tendencies and replace them with

different responses that are in line with current goals, personal

standards, and social norms [3]. Behavioral evidence suggests that

the ability to repeatedly exert self-control over time may be limited

[4,5]. Similar results have been obtained for the recruitment of

executive functions [6] that subserve the various control processes

involved in self-control [7]. Akin to a muscle that is tired after

demands and fails to reach its highest level of performance, self-

control performance is impaired by preceding efforts at self-

control, even if these efforts have occurred in a different behavioral

domain. Thus, exerting self-control may lead to a state of

exhaustion, depletion or reduced motivation to control, which

augments the likelihood of subsequent self-control failures. For

example, after initial acts of self-control such as the control of

attention, thoughts, or emotions, individuals showed decrements in

control in that they reacted more aggressively to a provocation, ate

more of a tempting snack, engaged in riskier behavior, and

performed more poorly on executive function tasks [6,8–10].

Importantly, an initial exertion of self-control does not impair

performance on any subsequent task, but particularly on those

tasks requiring effort and control [11].

Despite abundant behavioral evidence for impairing aftereffects

of initial exertions of self-control [12], little is known about the

neural mechanisms underlying these aftereffects. Prior research

has investigated the neural correlates of self-control performance

in single self-control tasks, but few studies have examined brain

activity in two consecutive tasks and – in particular – the

aftereffects of brain activity during the first task on brain activity

during the second self-control task. The present study aimed at

filling this gap. Evidence for the neural correlates of the aftereffects

of self-control exertion would be valuable as it could shed light on

the processes associated with a use-dependent weakening of

control processes and thereby contribute more generally to theory

building on self-control and its failures.

Self-control efforts have consistently been associated with

increased activity in lateral prefrontal as well as medial frontal

areas [7,13–15]. These brain regions have been associated with

different subprocesses of self-control performance. The detection

of conflicts and errors as well as the recruitment of cognitive

control is supported by a region in the medial frontal cortex (MFC,
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the conflict-and-error-detection zone, including the dorsal part of

the anterior cingulate cortex, ACC) [16–18] and has been

considered an efficient and largely resource-independent process

[19]. In contrast, the implementation of control is considered

a resource-demanding process, which has been associated with

lateral prefrontal areas, in particular with the dorsolateral

prefrontal cortex (DLPFC) [19–21].

Relying on behavioral measures alone, it is difficult to

disentangle which of these processes are impaired after initial

self-control efforts: conflict detection, the implementation of

cognitive control, both, or none of these. In behavioral studies,

aftereffects of self-control primarily affected effortful, resource-

demanding processes [11,22]. Applied to the neural level, these

findings suggest decreased activity after self-control exertion than

after a task not requiring self-control in brain areas that are

typically engaged in the effortful implementation of control (e.g.,

the DLPFC), but less so in brain areas engaged in presumably

effortless processes such as conflict detection (e.g., the conflict-and-

error-detection zone in the MFC) [16].

Despite its popularity in behavioral (social) psychological

research [12], very few studies have directly investigated the

neural underpinnings of aftereffects of self-control. In a study using

electroencephalography (EEG), Inzlicht and colleagues [23]

reported that controlling one’s emotions reduced the error-related

negativity as a marker of ACC activity in a subsequent Stroop task

as compared to control participants. This result indicated an

impairment of the conflict-and-error-detection process and

suggested that the conflict-and-error-detection process may not

be as resource-independent as hypothesized on theoretical grounds

[19]. Aftereffects of self-control on lateral prefrontal areas involved

in the implementation of control were not examined in this study.

In addition, because no brain activity was recorded during the first

self-control task, it remains unknown whether or not the reduced

ACC activity during the Stroop task was preceded by increased

demands on the ACC during the preceding emotion suppression

task.

In another study using functional magnetic resonance imaging

(fMRI), Richeson et al. [24] observed stronger activity in the right

DLPFC in white volunteers while viewing black versus white male

faces, indicating stronger engagement of control processes for

black as compared to white faces. Individual differences in right

DLPFC activity during this task were taken as an indicator of self-

regulatory demands participants would face during an interaction

with a black individual. In a separate session, the degree of implicit

racial bias [25] predicted the impairment of cognitive control as

indicated by poorer performance in a Stroop task after a short

interracial interaction. Remarkably, the degree of activity in the

right DLPFC during the face-viewing task mediated this effect of

implicit racial bias on Stroop task performance. While this study

provides indirect support for the assumption of aftereffects of

DLPFC activity on subsequent self-control performance, a direct

comparison of brain activity during the face-viewing task (or the

interracial interaction) and the Stroop task was not conducted.

In the current study, we used fMRI to measure brain activity

during both an initial (emotion suppression) and a subsequent self-

control task (Stroop task, see Figure 1). Both suppressing emotions

and inhibiting dominant responses during a Stroop task require

increased activity in brain areas important for self-control [14,26].

Applying the muscle metaphor to the level of brain activity we

hypothesized that if a brain area involved in self-control is

commonly activated in both the first (emotion suppression) and the

second (Stroop) self-control task, then activity in this brain area

would be reduced in the second task if both tasks are completed

consecutively. This effect should be evident for brain areas

involved in the resource-demanding, effortful implementation of

control, such as the DLPFC [4,19]. Hypotheses involving conflict

detection in the medial frontal cortex including the ACC were less

clear. Theoretical models expect conflict detection to be an

efficient and resource-independent process [19], but previous

research [23] suggests that it may in fact be sensitive to aftereffects

of increased activity. To test these hypotheses, the right and left

lateral PFC as well as the MFC served as regions of interest (ROI)

and were functionally defined in an independent sample (see fMRI

methods).

Materials and Methods

Ethics Statement
The study was approved by the ethics committee of the Canton

of Zurich, Switzerland. Written informed consent was obtained

from all participants.

Participants and Design
Forty-two females naı̈ve to the Stroop task participated in the

study. We included only females because of the known gender-

effects in emotional processing and related brain activity [27] such

as differences in amygdala function during emotional experiences,

memory for emotional events and different responsiveness to

emotional material. We excluded one participant due to move-

ments greater than 3 mm during the fMRI measurement, one

because she did not follow instructions during the initial self-

control task, and one due to self-reported claustrophobia in-

terfering with adequate data acquisition in the narrow fMRI

scanner. In the final sample, there were 20 participants in the

suppression group and 19 participants in the control group. Mean

age of the final sample was 23.54 years (SD= 2.84). Participants

were randomly assigned to an emotion suppression group or

a control group. In addition, we recruited an additional group of

19 volunteers (Mage = 23.25, SD= 3.54) to define our prefrontal

regions of interest (see fMRI methods). All participants received

CHF 25/hour (approximately US $23).

Procedure
First, participants briefly practiced both the picture-viewing task

and the Stroop task outside the fMRI scanner to become familiar

with them. After practicing, participants were positioned in the

fMRI scanner. Their head was fixated in the coil using small

cushions, and they were told not to move their head. Next, they

performed both tasks while functional MR-images were acquired

followed by an anatomical scan. Outside the fMRI scanner,

participants filled in a questionnaire including several control

questions, the manipulation check, demographic data, and were

debriefed (see Figure 1a).

Materials and Measures
Picture-viewing task. Twenty-four neutral and 24 negative

pictures were taken from the International Affective Picture

System (1 = most negative/least arousing, 9 = most positive/most

arousing) [28]. The sets differed significantly in valence

(Mneg = 1.97, SDneg= 0.33, Mneu = 5.07, SDneu = 0.23, F(1,

46) = 1409.25, p,.001). In addition, negative pictures were

significantly more arousing than neutral pictures (Mneg = 5.85,

SDneg = 0.76, Mneu = 3.08, SDneu = 0.62, F(1, 46) = 190.99,

p,.001). Pictures of the same valence were randomized within

blocks of 4 pictures (6 neutral blocks, 6 negative blocks, 48 pictures

in total). The order of the blocks was also randomized, except that

two blocks of negatively valenced pictures always occurred at the

end of the task. Prior to every picture block, a fixation-cross

Neural Aftereffects of Self-Control
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appeared on the screen for 500 ms followed by the instruction

presented for 1.5 seconds (‘‘suppress’’ [unterdrücken] or ‘‘watch’’

[anschauen] depending on condition). Each picture was presented

for 7 seconds. The interblock-interval was 5 seconds. Similar to

previous research [12,29], participants in the suppression group

were instructed to suppress all emotions elicited by the pictures

and to control their facial reactions. In the control group,

participants were told that it was okay to allow emotions in

response to the pictures.

Stroop task. In each trial, a stimulus appeared in blue, red,

or yellow ink and participants were instructed to react to the ink

color and ignore the semantic meaning of the stimulus by pressing

one of three keys. In (in)congruent trials, the semantic meaning of

the word did (not) match the ink color. In neutral trials, ‘XXX’

appeared in one of the 3 colors. There were 120 congruent, 30

neutral, and 30 incongruent trials that were presented in a fixed

pseudo-random order. Stimuli remained on the screen until the

participant gave a response or until 1500 ms had passed followed

by a fixation cross. Each trial was 2200 ms long. There were 6

congruent trials immediately prior to and 6 congruent trials

immediately after the 180 critical trials. These 12 additional trials

were discarded. Errors on incongruent versus congruent trials as

well as incongruent versus neutral trials were analyzed as a function

of experimental condition (suppression vs. control).

Arousal ratings. In the picture-viewing task, participants

indicated their subjective arousal (large, medium, small) on a three-

point scale by pressing a button on a button box with their

dominant hand after each block. One participant failed to provide

arousal ratings.

Manipulation check. Participants answered two questions

indicative for exerted self-control on 7-point rating scales: ‘How

exhausting was it for you to follow the instructions during the

picture-viewing task?’ and ‘How much did you have to concen-

trate to follow the instructions during the picture-viewing task?’

(a= .94). The manipulation check was added later in the

experiment. The respective data are therefore only available for

the last 29 participants.

fMRI Methods and Procedures
Measurements were performed on a Philips Achieva 1.5 T

wholebody MR unit equipped with an eight-channel Philips

SENSE head coil. Functional time series were acquired with

a sensitivity encoded, single-shot echo-planar sequence (SENSE-

sshEPI) sensitive to BOLD contrast (T2* fast field echo with the

following acquisition parameters: TR (repetition time) = 3000 ms,

TE (echo time) = 45 ms, FOV (field of view) = 22 cm, acquisition

matrix = 80680, interpolated to 1286128, voxel size:

2.7562.7564 mm3, 32 contiguous axial slices without gaps and

SENSE acceleration factor R = 2.0). By using a midsagittal scout

image, 32 contiguous axial slices were placed tilted by 20u to the

anterior–posterior commissure plane covering the entire brain.

The first two acquisitions were discarded to allow for T1

saturation. The picture-viewing task as well as the Stroop task

consisted of 155 functional scans each. The tasks were measured in

two runs, separated by a short 1-min break. A projector displayed

stimuli on a screen in the scanner room, which subjects viewed

through a mirror mounted on top of the head coil. For each

subject, we also acquired high-resolution (0.866162 mm, 55

slices, TE = 15 ms, 3 averages) T1-weighted anatomical images.

Preprocessing was performed using SPM5 (Statistical Para-

metric Mapping; Wellcome Department of Cognitive Neurology,

London, U.K.; http://www.fil.ion.ucl.ac.uk/spm/) implemented

in Matlab 2009a. Volumes were slice-time corrected to the first

slice, realigned to the first acquired volume, normalized to each

individual T1 image, and smoothed using a 8 mm full-width-at-

half-maximum Gaussian kernel. A 128-sec-cutoff high-pass filter

was added to the confound partition of the design matrix to

account for low-frequency drifts, and a correction for intrinsic

autocorrelations was included in the analysis.

Figure 1. Overview of the experimental procedure and the behavioral results. (a) During the first task, the control group watched negative
and neutral pictures. The suppression group suppressed emotions while watching the same pictures. Both groups subsequently completed a Stroop
task. Brain imaging data was recorded during both tasks. (b) Participants in the emotion suppression group showed significantly stronger Stroop
interference effects than participants in the control group. (Errors on incongruent minus errors on congruent trials.) Error bars represent standard
errors of the mean (SE).
doi:10.1371/journal.pone.0060385.g001
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Statistical Analyses of the fMRI Data
All statistical analyses of fMRI data were performed using

standard procedures provided by SPM5.

First level analysis. In the picture-viewing task, evoked

hemodynamic responses to different stimulus categories (negative

pictures, neutral pictures) were modeled for each subject with

a box-car function corresponding to stimulus presentations

convolved with a canonical hemodynamic response function

within the context of a general linear model (GLM). In addition,

the button presses during the arousal ratings were modeled as

events using a delta (stick) function. Six movement parameters

from spatial realigning were included as regressors of no interest.

In a separate GLM model for the Stroop task, event-related

regressors were used to model the display of congruent words,

incongruent words and neutral ‘‘XXX’’ trials using a delta (stick)

function corresponding to stimulus presentations convolved with

a canonical hemodynamic response function within the context of

a GLM. Only correct trials for congruent words, incongruent

words and ‘‘XXX’’ trials were used in the respective regressors. All

error trials were modeled in a separate regressor of no interest,

together with the first 6 and the last 6 congruent trials that were

excluded on the behavioral level. In addition, six movement

parameters from spatial realigning were included as regressors of

no interest.

Second level analysis. In the two experimental groups

(suppression vs. control), a random-effect group analysis was

conducted on contrast images of the picture-viewing task (negative

vs. neutral images) and the Stroop task (incongruent vs. congruent

trials) from the individual analysis, comparing parameter estimates

in the suppress group against the estimates in the control group.

We used a factorial model with the two factors ‘type of task’

(picture-viewing vs. Stroop, within-subjects factor) and ‘experi-

mental group’ (suppression vs. control, between-subjects factor) in

SPM5. We calculated the interaction between the type of task

(picture-viewing vs. Stroop) and the experimental group (suppres-

sion vs. control) using directional t-contrasts. The interaction was

further analyzed using planned pair-wise contrasts between the

two experimental groups in each task separately. In addition, we

extracted the parameter estimates for each subject at the peak

voxel to visualize the interaction.

ROI definition and significance threshold: To functionally

define regions of interest (ROIs) for the second-level analysis, we

recruited an independent sample of 19 participants who followed

the same procedure as the suppression and the control group with

the exception that they watched 12 blocks of only neutral pictures

before performing the identical Stroop task as participants in the

main study. To protect against false-positive activations, we used

a minimum cluster size as statistical threshold [30]. The non-

arbitrary voxel cluster size was determined using the software

AlphaSim [31]. On the basis of a Monte Carlo simulation (10000

iterations), clusters were considered significant at an overall whole

brain false-positive rate of 5% when exceeding k .28 voxels at an

individual voxel height threshold of p= .001. Based on the contrast

‘‘incongruent vs. congruent’’ trials in the Stroop task, we defined

three regions of interest: The right lateral PFC (k = 279 voxels,

peak activation at [47 17 32]; Z= 5.04), the left lateral PFC

(k = 607 voxels, peak activation at [241 33 20]; Z= 5.60; and the

MFC (k = 129 voxel, peak activation at [14 19 56]; Z= 4.92, see

Figure 2). The two lateral prefrontal regions included the following

anatomical regions (as defined by the AAL toolbox for SPM5 [32]:

38%/16% (right/left, respectively) of the region in the inferior

frontal gyrus (pars opercularis, BA 44), 24%/24% in the inferior

frontal gyrus (pars triangularis, BA 45), 17%/19% in the middle

frontal gyrus (BA 46, BA 9) and 16%/35% in the lateral precentral

gyrus (BA 6). The MFC region was located to 79% in the anterior

part of the supplementary motor area (pre-SMA; BA 6), 20% in

the superior frontal and medial frontal gyrus as well as the mid-

cingulate gyrus (BA 32). It thus encompassed large parts of the

conflict-and-error-detection zone [16]. For significance testing, we

combined the three regions to a single search mask (total number

of voxels: 1015 voxels, see Figure 2a–c).

Within this search volume, we used a significance threshold of

p,.05, corrected on the cluster level for multiple comparisons

using the software AlphaSim (minimum cluster size of k .7 voxels

at an individual voxel threshold of p= .001). For an exploratory

whole brain analysis, we used the same significance threshold as in

the ROI-definition group (minimum cluster size of k .28 voxels at

an individual voxel threshold of p= .001, see above).

Locations are indicated in coordinates of the Montreal

Neurological Institute (MNI). Anatomical labeling of clusters was

based on the AAL toolbox for SPM5 [32]. For identification of

Brodmann areas, we used the Talairch demon provided by

Lancaster and Fox (www.talairach.org) [33]. Transformation of

MNI to Talairach space was performed by a MATLAB tool

(icbm_spm2tal.m) [34,35] provided by the BrainMap Project at

the Research Imaging Institute of the University of Texas Health

Science Center San Antonio (brainmap.org).

Correlational Analyses
We extracted the parameter estimates for each subject for the

left and right lateral PFC as well as the medial prefrontal ROI in

the Stroop task to calculate correlations with Stroop performance

using SPSS. ROIs were defined by the independent ROI-

definition group. For each ROI, the first eigenvariate of all voxels

within the respective ROI was calculated. Parameter estimates

were extracted for each subject for the contrast ‘‘congruent vs.

incongruent trials’’.

Results

Manipulation Check
As expected, participants in the suppression group reported that

the picture viewing task was more exhausting for them and that

they had to concentrate harder (Msuppress = 3.63, SD= 1.99) than

participants in the control group (Mcontrol = 1.57, SD= 0.62;

t(27) = 3.72, p = .001, Cohen’s d= 1.40). Conversely, participants

in the suppression group subjectively rated the emotional pictures

as less arousing (Msuppress = 2.01, SD= 0.58) than participants in

the control group (Mcontrol = 2.89, SD= 0.14; t(36) = 6.53, p,.001,

Cohen’s d= 2.09).

Main Behavioral Results
Participants’ average response latency explained significant

variance in several analyses involving the Stroop task. We

therefore controlled for this variable in all analyses involving

error rates in the Stroop task (both behavioral and fMRI analyses).

All reported means are estimated marginal means controlling for

average response latency.

Consistent with prior findings, exertion of self-control in the

picture-viewing task (i.e. by suppressing one’s emotions) impaired

the subsequent performance in the Stroop task. Participants in the

suppression group had higher error rates in incongruent trials

(Msuppress = 11.15, SE= 1.35) as compared to participants in the

control group (Mcontrol = 5.57, SE= 1.38; F(1, 36) = 8.31, p = .007,

partial g2 = .187). No difference was observed for congruent trials

(Msuppress = 1.22, SE= 0.25, Mcontrol = 0.96, SE= 0.26; F(1,

36) = 0.54, p = .466, partial g2 = .015). The interaction between

the factors ‘group’ (suppression vs. control) and ‘trial type’

Neural Aftereffects of Self-Control
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(congruent vs. incongruent) was significant (mixed analysis of

covariance [ANCOVA], F(1, 36) = 7.99, p= .008, partial

g2 = .182; see Figure 1b). In addition, the analysis revealed the

classic Stroop interference effect of more errors on incongruent

than on congruent trials (F(1, 36) = 4.23, p= .047, partial

g2 = .105). The main effect of group was also significant (F(1,

36) = 8.08, p= .007, partial g2 = .183).

There was no effect of prior emotion suppression on error rates

in neutral trials in the Stroop task (Msuppress = 1.95, SE= 0.55,

Mcontrol = 2.71, SE= 0.57; F(1, 36) = 0.90, p = .349, partial

g2 = .024). When neutral trials were included in the analysis in

a 2 (group: suppression vs. control) 63 (trial type: congruent vs.

neutral vs. incongruent) mixed ANCOVA the group 6 trial type

interaction remained significant (F(1.21, 43.71) = 7.61, p= .006,

partial g2 = .175, Greenhouse-Geisser-corrected) as well as when

analyzing only neutral and incongruent trials (F(1, 36) = 8.25,

p= .007, partial g2 = .186). When additionally controlling for

arousal ratings, the reported interactions between experimental

group and trial type remained significant (all ps ,.05) indicating

that differences in error rates between experimental conditions

were not due to differences in experienced arousal.

One could argue that error rates on incongruent trials were in

fact not increased for the suppression group, but for some reason

decreased for the control group as compared to normal

Figure 2. Regions of interest (ROI) used to identify effects of self-control exertion on prefrontal brain activity, superimposed on
a coronal (a) or sagittal slice (b–c) of an anatomical template image. The three ROIs were functionally defined by the brain activation during
the Stroop task (incongruent minus congruent trials; thresholded at p= .001, uncorrected, minimum cluster size k .28) in an independent sample of
19 healthy women who watched only neutral pictures before performing on the Stroop task. Blue: right lateral prefrontal cortex (lateral PFC); green:
left lateral PFC; red: medial frontal cortex (MFC). (d) Overlap of activation during suppression of emotions during picture-viewing (yellow) with regions
of interests obtained during the Stroop task (blue). Overlap is mainly observed in the right lateral prefrontal cortex and in the medial prefrontal cortex
(red). Regions of activation are displayed with a minimum cluster size of k .28 at an individual voxel threshold of p= .001 in both analyses,
superimposed on a coronal slice of an anatomical template image.
doi:10.1371/journal.pone.0060385.g002
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circumstances. To rule out this possibility we compared the

experimental groups with the independently recruited ROI

definition group who had only seen neutral pictures before the

Stroop task. Error rates were comparable for congruent trials

across groups (Mcontrol = 0.92, SE= 0.24, MROI_def = 0.77,

SE= 0.24, Msuppression = 1.20, SE= 0.23), but the suppression

group had higher error rates on incongruent trials (Mcontrol = 5.97,

SE= 1.29, MROI_def = 7.17, SE= 1.31, Msuppression = 11.46,

SE= 1.27), resulting in a significant interaction between experi-

mental group and trial type (F(2, 54) = 4.52, p= .015, partial

g2 = .143). Thus, as expected, participants who had exerted self-

control in the picture-viewing task showed impaired performance

during the subsequent Stroop task during the difficult incongruent

trials, but not during easier congruent and neutral trials.

Response latencies showed the regular Stroop interference effect

between congruent and incongruent trials (F(1, 37) = 94.81,

p,.001, partial g2 = .719), but no interaction with the exper-

imental group (F(1, 37) ,1, p = .584, partial g2 = .008). Stroop

interference effects (incongruent-congruent) based on errors and

based on latencies were reliably correlated (r= .50, p= .001).

fMRI Data
According to the hypothesis, a brain area would be sensitive to

aftereffects of self-control if it was more engaged by participants

exerting self-control in the picture-viewing task (emotion suppres-

sion, contrast: negative vs. neutral pictures), but less engaged in the

subsequent self-control task (Stroop, contrast: incongruent vs.

congruent trials) relative to participants in the control group. Such

a finding would suggest that participants who had previously

exerted self-control were less able or less willing than participants

in the control group to recruit the respective brain area in the

Stroop task. Statistically, this hypothesis translates into an

interaction between the type of task (picture-viewing vs. Stroop,

within participants) and the experimental group (suppression vs.

control, between participants). As region of interest (ROI), we used

a functionally defined mask of prefrontal activation during the

Stroop task (containing the left and right lateral PFC as well as the

medial prefrontal cortex) obtained from the independent control

group (see methods section ‘‘ROI definition’’).

When examining the contrast incongruent versus congruent

trials in the Stroop task, we observed a trend for an interaction

between type of task and experimental group within the search

volume in the right lateral PFC ([50 22 28] (MNI coordinates),

Zmax = 3.53, k = 6, p= 0.065, corrected for multiple comparison

within the ROI). This trend was theoretically predicted, but failed

to reach conventional limits of significance. However, using

neutral trials (‘‘xxx’’) instead of congruent trials (i.e. employing the

contrast ‘incongruent-neutral’), a similar and highly significant

interaction was revealed in the exact same location in the right

lateral PFC ([50 22 28]; Zmax = 3.63, k = 22, p= .004, see Figure 3

and Table 1). The more pronounced interaction effect in the

analysis using neutral trials is possibly due to a more precise

estimation of the BOLD response for neutral trials (mean inter-

stimulus interval of the 30 neutral trials: 13.2 s) as compared to the

much more frequently occurring congruent trials (mean inter-

stimulus interval of the 120 congruent trials: 3.3 s). The peak

activation of the interaction is located in the right middle frontal

gyrus (BA 9, DLPFC), and the cluster extends to the right inferior

frontal gyrus (BA 9/BA 45, see Figure 3a–c). As illustrated in

Figure 3d, in the picture-viewing task, participants who were asked

to suppress their emotions activated the right lateral PFC more

strongly than the control group. By contrast, in the Stroop task, the

suppression group failed to reach the same level of activation in the

right lateral PFC as the control group did, overall resulting in

a significant interaction. In the overall interaction analysis, no

significant cluster was observed in the MFC or in the left lateral

PFC. Controlling for possible differences in emotional arousal by

adding arousal ratings as a covariate basically did not alter the

results (e.g., interaction in the right lateral PFC, [50 22 28],

Zmax = 3.65; k = 6, p = .065 for congruent trials; [50 22 28],

Zmax = 3.93; k = 14, p = .014 for neutral trials). The exploratory

whole brain analysis revealed no further significant clusters of

activation in the interaction analysis (all uncorrected ps ..001 and

k ,29).

Our hypothesis that a brain area is sensitive to aftereffects of

self-control relies on the assumption that there is an overlap

between prefrontal brain areas activated during emotion suppres-

sion and during the Stroop task. We tested this assumption by

inclusively masking the activation during the picture-viewing task

of the suppression group with the prefrontal ROIs representing

activation during the Stroop task in an independent sample. The

analysis indeed revealed that the suppression group showed

increased activation in the right lateral PFC ([47 8 28],

Zmax = 4.04; k = 37, p = .001) and the MFC ([28 14 60],

Zmax = 4.17; k = 44, p,.001), which overlapped with the prefrontal

activation in the Stroop task of the ROI-definition group

(Figure 2d). The right lateral PFC activation was located in the

inferior frontal gyrus (pars opercularis, BA 44, 57.6%; pars

triangularis, BA 45, 27.5%) and overlapped with the observed

interaction between task type and experimental group reported in

the previous section. The activation in the medial prefrontal cortex

was located in the bilateral supplementary motor area (BA 6) in

the conflict-and-error-detection zone [16]. In a similar analysis

involving activity during the picture-viewing task of the control

group not suppressing emotions instead of the suppression group,

no overlapping activation between the picture-viewing task and

the Stroop task was observed. Thus, in spite of overlapping

activation between emotion suppression and Stroop performance

in both the medial frontal cortex as well as the right lateral

prefrontal cortex, only the right lateral prefrontal cortex was

sensitive for aftereffects of prior self-control exertion as revealed by

the reported significant interaction between task type and

experimental group.

When analyzing the difference between experimental groups in

each task separately, the whole brain analysis of the picture-

viewing task revealed a significant cluster of activation in the

medial frontal gyrus/pre-SMA, which was more strongly activated

in the suppression group as compared to the control group (see

Table 2). Two further clusters in the right lateral PFC as well as

one in the left lateral PFC were more strongly activated in the

suppression as compared to the control group at a more lenient

threshold. All three of these clusters were located in the middle

frontal gyrus (BA 9: [36 41 32], Zmax = 4.07; k = 13, [44 19 40],

Zmax = 3.66; k = 6; and [241 47 16], Zmax = 3.58; k = 6; all ps

,.001, uncorrected). However, because these clusters did not pass

our predefined cluster threshold for the whole brain analysis, we

do not further consider these results. In the Stroop task, no

suprathreshold clusters were observed for the ‘‘congruent vs.

incongruent’’ contrast. For the ‘‘neutral (‘‘xxx’’) vs. incongruent’’

contrast, one cluster in the left occipital lobe and one cluster in the

precuneus were significantly less activated in the suppression group

than in the control group (see Table 2).

Correlational Analyses
On an exploratory basis, we calculated bivariate correlations

between Stroop performance and mean brain activity extracted

from the three ROIs during the Stroop task separately for each

experimental group (see Table 3). We did not have a priori
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hypotheses about the strength and direction of these correlations,

but we considered these data sufficiently interesting and potentially

useful for readers to present them here.

Correlations differed remarkably between experimental groups.

In the suppression group, more activity in the left and right lateral

PFC was significantly associated with better Stroop performance

(i.e. smaller Stroop interference effects; rrLPFC = -.59, p= .009;

Figure 3. Aftereffects of self-control exertion on brain activity in the right lateral prefrontal cortex. (a–c) More activity in participants
suppressing emotions during the picture-viewing task relative to control participants was followed by relatively less activity during the Stroop task in
a cluster located in the right middle frontal gyrus (BA 9), extending into the inferior frontal gyrus (BA 9/45). t-values of the interaction contrast are
color coded and displayed at a threshold of p= .005 (uncorrected) superimposed on a coronal (a), axial (b) and sagittal (c) slice of an anatomical
template image. (d) Parameter estimates (arbitrary units) of the averaged activity of the right lateral PFC cluster for the experimental groups.
Parameter estimates are extracted as first eigenvariate of all activated voxels in the cluster. Means 6 SE are indicated.
doi:10.1371/journal.pone.0060385.g003
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rlLPFC = -.51, p= .020). The direction of the relationship was the

same for the MFC ROI, but this correlation was not significant

(rMFC = -.29, p= .208). By contrast, in the control group greater

activity was associated with greater Stroop interference effects, and

this relationship was significant for the left lateral PFC ROI

(rlLPFC = .55, p= .016). The direction of the relationship was the

same for the right lateral PFC ROI and the MFC ROI, but these

correlations were not significant (rrLPFC = .28, p= .253; rMFC = .25,

p= .304). All correlations with p,.05 remained significant after

correction for multiple comparisons based on the Bonferroni-

Holm procedure [36]. The difference in correlations between the

suppression and the control group was significant for the right and

left lateral PFC ROIs (zrLPFC = 2.66, p= .008; zlLPFC = 3.39,

p,.001, all analyses two-tailed). Running these analyses based

on the contrast ‘‘neutral vs. incongruent trials’’ (for both Stroop

performance and parameter estimates) revealed a similar pattern

of correlations.

Discussion

Our data provides evidence for a role of the right lateral PFC in

the aftereffects of self-control on subsequent control attempts.

Participants who had recruited the right lateral PFC while

suppressing their emotions in the picture-viewing task committed

more errors and showed less activity in the same area during

a subsequent attempt at self-control in the Stroop task relative to

participants in a control condition who had recruited this area not

as strongly during the first task. In addition, two brain areas were

particularly strongly involved during both the emotion suppression

task (as indicated by the suppression group) and the Stroop task (as

indicated by an independent sample). One of these areas was in

the right lateral PFC including the cluster showing the above-

described pattern of strong recruitment in the emotion suppression

task and relatively reduced subsequent activation during the

Stroop task. The second overlapping area was located in the MFC,

Table 1. Results within the functionally defined prefrontal search volume for the interaction between activity during the picture-
viewing and the Stroop task for different types of analyses.

MNI (mm)

BA kE x y z Zmax p

Analysis I: incongruent vs. congruent trials

Picture-viewing: Suppression.control Stroop: Suppression,control

Middle/inferior frontal gyrus R 9/45 6 50 22 28 3.53 .065

Inverse contrast No suprathreshold clusters

Analysis II: incongruent vs. neutral trials

Picture-viewing: Suppression.control Stroop: Suppression,control

Inferior/middle frontal gyrus R 9/45 22 50 22 28 3.81 .004**

Inverse contrast No suprathreshold clusters

Note. BA: Brodmann area; R/L: right/left hemisphere; kE: number of voxels; Zmax: Z-value at the peak activation of the cluster. Analysis thresholded at p,.001
(uncorrected) inside the prefrontal ROI. Cluster-level corrected p-values are indicated (**: p,.01). The search volume was functionally defined in an independent sample
performing the Stroop task. It encompasses two activated clusters in the left and right lateral prefrontal cortices (including the inferior and middle frontal gyrus and the
lateral precentral gyrus) as well as one activated cluster in the medial frontal cortex (supplementary motor area and superior frontal gyrus).
doi:10.1371/journal.pone.0060385.t001

Table 2. Results of the exploratory whole brain analysis for each task separately.

MNI (mm)

BA kE x y z Zmax p

Analysis IAPS task: negative vs. neutral pictures

Suppression.control

Medial frontal gyrus/pre-SMA 6/8 39 0 25 44 3.98 .013*

Inverse contrast No suprathreshold clusters

Analysis Stroop I: incongruent vs. congruent trials

Suppression.control No suprathreshold clusters

Inverse contrast No suprathreshold clusters

Analysis Stroop II: incongruent vs. neutral trials

Suppression.control No suprathreshold clusters

Inverse contrast

Occipital lobe 17 37 219 283 4 4.35 .016*

Precuneus 30 31 8 252 16 4.35 .034*

Note. BA: Brodmann area; R/L: right/left hemisphere; kE: number of voxels; Zmax: Z-value at the peak activation of the cluster. Analysis thresholded at p,.001
(uncorrected) in a minimum of kE .28 adjacent voxels. Cluster-level corrected p-values are indicated (*: p,.05).
doi:10.1371/journal.pone.0060385.t002
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but did not show a similar pattern of aftereffects of self-control

exertion. Together, these results suggest that one way initial self-

control efforts may impact on subsequent attempts at self-control is

by impairing the later implementation of control through the right

lateral PFC.

A large number of studies implicate the lateral PFC, particularly

the DLPFC, in self-control activities such as inhibition, thought

and emotion suppression [13,14,17,21,26]. Evidence for a causal

role of the DLPFC in self-control is corroborated by studies

temporarily compromising the efficient functioning of this brain

area using low-frequency repetitive transcranial magnetic stimu-

lation (rTMS) [37]. In these studies, the application of rTMS on

the right DLPFC decreased the subsequent ability to control self-

interested impulses in the context of economic game paradigms

[38]. While low frequency rTMS produces a transient reduction in

cortical excitability for several minutes, in the present study the

activation of the right lateral PFC during self-control had

functionally equivalent effects by distorting the efficient function-

ing of this brain area in a subsequent attempt at self-control.

In contrast to the right lateral PFC, we found no reliable

evidence for a similar pattern of reduced activity in the MFC ROI

after emotion suppression even though part of this ROI was

strongly involved in the emotion suppression task and the Stroop

task (as indicated by an independent sample). This suggests that in

the present study the conflict-and-error-detection process was less

affected by the repeated exertion of self-control during emotion

suppression and the Stroop task than the right lateral PFC. This

result is consistent with the theoretical assumption that the

conflict-and-error-detection process is largely automatic and

resource-independent [19], but inconsistent with an EEG study

in which the error-related negativity as a marker for ACC activity

in the MFC was reduced in a Stroop task after the exertion of self-

control [23]. The present study considerably extends this latter

study in that it measured brain activity during both the first and the

subsequent self-control task, thereby allowing to test the more

specific hypothesis of neural aftereffects of self-control exertion as

a function of strong involvement of a brain area in both tasks. In

addition, using fMRI we were able to identify the reduced activity

in the right lateral PFC, an analysis less feasible with EEG as EEG

has a much lower spatial resolution as compared to fMRI.

It is worth discussing the pattern of the observed interaction

between the type of task (picture-viewing vs. Stroop) and

experimental group (suppression vs. control) in some detail (cf.

Figure 3). During the picture-viewing task, participants in the

suppression group were explicitly instructed to exert control and

suppress all emotions that would arise in response to the pictures

they saw. It is therefore plausible that these participants recruited

brain areas commonly involved in emotion suppression more

strongly (e.g., the right lateral PFC) [14,39,40] than participants

who saw the same pictures but were not instructed to suppress

their emotions. By contrast, for the Stroop task all participants

received identical instructions, and participants of both groups

activated the right lateral PFC during this task, which clearly

requires the control of dominant response tendencies. Neverthe-

less, participants in the suppression condition failed to recruit the

right lateral PFC to the same extent as participants in the control

condition.

It might be argued that a change in right lateral PFC activity

from the first to the second task is mainly seen in the control

participants, whereas the participants in the suppression group

remained on the same level in the first and second task (see

Figure 3). However, it is important to keep in mind that the right

lateral PFC activity in the control participants reflected the

‘normal’ situation: No right lateral PFC activity during passive

picture-viewing, strong right lateral PFC activity during the Stroop

task. When the right lateral PFC had been activated during

picture-viewing due to efforts to suppress emotions, then the

subsequent activity in the right lateral PFC was reduced relative to

the ‘normal’ level of activity observed in the control participants.

Thus, changes in right lateral PFC activity should always be

interpreted in relation to the control group.

In exploratory analyses, correlations between mean activities in

the lateral prefrontal ROIs during the Stroop task with Stroop

performance differed remarkably between experimental groups. In

the suppression group, increased activity in the left and right

lateral PFC ROIs during the Stroop task was associated with

better Stroop performance, as could be intuitively expected. In the

control group, this trend was reversed for the left lateral PFC ROI:

More activity in this ROI was associated with poorer Stroop

performance. This finding is puzzling for at least two reasons.

First, a large research literature suggests that more prefrontal

activity is associated with better performance in executive control

tasks including the Stroop task [7,26,41,42]. Second, the analyses

are based on mean activity in the complete ROIs of considerable

size (krLPFC = 279, klLPFC = 607, kMFC = 129 voxels). The results of

the correlational analyses are thought provoking, but should be

interpreted with caution until they have been replicated in

a different sample.

Although the right DLPFC has been prominently implicated in

self-control efforts, we do not claim that aftereffects of self-control

will consistently and exclusively affect this brain area in future

investigations using different experimental manipulations and

dependent variables. Due to the scarce empirical evidence to date,

it is too early to make strong predictions, but based on our initial

findings, we speculate that more generally those brain areas will be

affected by aftereffects of self-control that are strongly involved in

both self-control tasks. Recent evidence shows that beyond

a common core, many self-control tasks differ in various respects

[43], likely involving quite different brain areas. Thus, a combina-

tion of tasks that strongly engages, for example, the right DLPFC

Table 3. Bivariate correlations between Stroop interference effects and mean brain activity in the three regions of interest (ROI)
during the Stroop task.

Right lateral PFC ROI Left lateral FPC ROI MFC ROI

Stroop interference in suppression group 2.59* (p= .009) 2.51* (p= .020) 2.29 (p= .208)

Stroop interference in control group .28 (p= .253) .55* (p= .016) .25 (p= .304)

Note. *: significant after Bonferroni-Holm correction for multiple comparisons [36]. Stroop interference effects are calculated as errors on incongruent trials minus errors
on congruent trials, residualized by average response latency. Brain activity during the Stroop task is calculated as the difference between incongruent vs. congruent
trials. We extracted the parameter estimates for each subject for the left and right lateral PFC as well as the medial prefrontal ROI as first eigenvariate of all voxels in the
respective ROI.
doi:10.1371/journal.pone.0060385.t003
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in one task, but not in the other, may not reveal the same pattern

as in the current study. Other brain areas that have been

implicated in various self-control tasks and are thus likely

candidates for aftereffects of self-control exertion include, among

others, the left DLPFC [44] and the right ventrolateral prefrontal

cortex [45]. Thus, similar effects on the behavioral level (a first task

impairing performance on the second) may be associated with

different effects on the neural level (reduced activation of varying

brain areas implicated in self-control across studies). The present

study revealed that despite being strongly involved in both self-

control tasks, an area in the MFC did not show aftereffects of prior

self-control exertion. An intriguing challenge for future research

will be to test the robustness of this finding and – if robust – to

reveal the processes that explain why one brain area is sensitive to

this kind of aftereffects of self-control exertion and another brain

area is not. Taken one step further, it is even possible that the same

brain area is sensitive to aftereffects under some, but not under

other circumstances, depending on how psychologically effortful

the respective behavioral tasks are and how much they impact on

the motivation to control one’s responses.

Beyond the mere demonstration of areas affected by aftereffects

of self-control exertion, it will be particularly challenging for future

research to clearly identify the processes that are in turn affected

by these aftereffects, such as the impaired recruitment of control to

solve response conflicts. In addition, recent research suggests that

lateral prefrontal areas are actively engaged in down-regulating

activity in subcortical brain areas associated with impulses and

craving (e.g., the ventral striatum) [46]. Thus, one crucial

consequence of aftereffects of self-control may not only be the

weakening of prefrontal control per se, but also the in turn

enhanced activity in reward-related subcortical areas in response

to a temptation, as strong activity in these areas increases the

likelihood of self-control failures [7,47].

Much of the behavioral research on the aftereffects of self-

control exertion built on the assumption of a limited physiological

resource that is reduced through the exertion of self-control and is

later lacking for a subsequent successful self-control performance.

The nature of this resource remains elusive. Some evidence

suggested that the availability of glucose was one important factor

[48,49], but this assumption has been severely challenged [50–54].

Beyond a physiological understanding of the resource, mounting

evidence underlines the important role of psychological processes

such as the belief that the ability to exert control is limited, or the

motivation to control [55–57]. For example, initial self-control

efforts decrease the motivation to further exert control [58], but

given appropriate incentives, individuals are well capable of

counteracting deleterious aftereffects of self-control [59]. An

intriguing question is how these psychological processes translate

into changes in brain activity. Providing a possible explanation for

the results of the present study, a reduced motivation to control

may lead to less effort in subsequent self-control tasks, resulting in

a decreased activation of task-relevant brain areas. Increased

motivation to overcome these deficits could compensate reductions

in brain activity or even recruit additional brain areas to achieve

satisfactory levels of performance. These issues illustrate the great

array of open questions with regard to the neural processes

involved in self-control and its failures. Understanding these

processes is an effort that has only just begun.
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