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Abstract

The small GTPase ADP ribosylation factor 6 (ARF6) mediates endocytosis and has in addition been shown to regulate neuron
differentiation. Here we investigated whether ARF6 promotes differentiation of Neuro-2a neuronal cells by modifying the
cellular lipid composition. We showed that knockdown of ARF6 by siRNA in Neuro-2a cells increased neuronal outgrowth as
expected. ARF6 knockdown also resulted in increased glucosylceramide levels and decreased sphingomyelin levels, but did
not affect the levels of ceramide or phospholipids. We speculated that the ARF6 knockdown-induced increase in
glucosylceramide was caused by an effect on glucosylceramide synthase and, in agreement, showed that ARF6 knockdown
increased the mRNA levels and activity of glucosylceramide synthase. Finally, we showed that incubation of Neuro-2a cells
with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP)
normalized the increased neuronal outgrowth induced by ARF6 knockdown. Our results thus show that ARF6 regulates
neuronal differentiation through an effect on glucosylceramide synthase and glucosylceramide levels.
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Introduction

Neuron development and differentiation are complex processes

that involve dynamic cell morphology changes. It has been

suggested that endosomal trafficking is crucial for actin cytoskel-

eton structure and neuronal cell differentiation [1]. One well-

known regulator of endosomal trafficking is the small GTPase

ADP ribosylation factor 6 (ARF6), which localizes to the plasma

membrane and endosomal compartments [2,3]. In addition,

ARF6 has been shown to play important roles in the regulation

of actin cytoskeleton and neuronal extension and branching

[4,5,6,7,8,9,10]. However, the link between ARF6-dependent

endocytosis and neuron differentiation remains unclear.

Endocytosis is also regulated by modulation of the lipid

composition of cellular membranes [11,12]. Alterations in lipid

composition provide a possible mechanism for regulating en-

dosomal cargo entry, as some proteins associate preferentially with

certain types of lipids, such as sphingolipids, phospholipids and

cholesterol. Interestingly, ARF6 has been shown to regulate

signaling of bioactive lipids in the plasma membrane [1,13].

In this study, we investigated whether ARF6-dependent neuron

differentiation is regulated by alterations in lipid composition. We

found that ARF6 knockdown resulted in increased glucosylcer-

amide content and glucosylceramide synthase activity in Neuro-2a

neuronal cells. Furthermore, we found that ARF6-dependent

neuron differentiation is regulated by the altered glucosylceramide

synthase activity in neuronal cells.

Materials and Methods

Cell culture and differentiation
Neuro-2a cells were purchased from the American Type

Culture Collection (ATCC, LGC Standards, Middlesex, UK).

Cells were cultured in DMEM with 10% serum and were

differentiated in medium without serum.

RT-PCR expression analyses
Total RNA was extracted with an RNeasy Kit (QIAGEN, Hilden,

Germany), and cDNA was synthesized with the high-capacity cDNA

Reverse Transcription Kit (Applied Biosystems, Foster City, CA).

mRNA expression of genes of interest was analyzed with TaqMan real-

time polymerase chain reaction in an ABI Prism 7900 HT Detection

System (Applied Biosystems) and normalized to b-actin. The following

TaqMan Gene Expression assays from Applied Biosystems were used:

GCS (Ugcg) Mm00495925_m1, beta-Actin Mm01205647_g1, Neu-

roD1 Mm01946604_s1, Rbfox3 Mm01248771_m1 and 36B4

Mm007725448_s1.

Transfection of siRNA and plasmids
Neuro-2a cells were cultured at 30% confluence and transfected

with 100 pmol/l target-specific or scrambled control siRNA

(50 nmol/l) using Lipofectamine RNAiMAX (Invitrogen, Carls-

bad, CA) according to the manufacturer’s protocol. The siRNAs

used were from Applied Biosystems (siARF6-1: sense AUCUGA-

CAUUUGACACGAATT, antisense UUCGUGUCAAUGUGA-
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GAUCA; siARF6-2: sense GCAAGACAACGAUCCUGUATT,

antisense UACAGGAUCGUUGUCUUGCCG).

Plasmids for ARF6-cyan fluorescent protein (CFP), T27N

ARF6-CFP and Q67L ARF6-CFP were purchased from Addgene

(Cambridge, MA). Neuro-2a cells were transfected with plasmids

at 70–80% confluence using jetPRIME (Polyplus-transfection,

Illkirch, France) according to the manufacturer’s instruction.

Transfection efficiency (determined by CFP by using fluorescent

microscopy) was around 50%.

Quantification of outgrowth of Neuro-2a cells
The neuronal outgrowth was assessed in Neuro-2a cells that

were cultured in DMEM with 10% serum. Long outgrowths from

Neuro-2a cells were defined as having a length at least double that

of the cell diameter. Randomly selected micrographs of 100–300

cells from 4 different experiments were analyzed for percentage of

cells with outgrowth or long outgrowth.

Figure 1. ARF6 is important for the differentiation of Neuro-2a cells. (A–D) Neuro-2a cells were transfected with control (c) or ARF6 siRNA in
medium with 10% FCS and analyzed after 48 h. (A) ARF6 protein levels in cell lysate after siRNA treatment. (B) Representative micrographs showing
neuronal outgrowth from Neuro-2a cells after knockdown of ARF6 using siRNA. Bar size, 40 mm. (C) Quantification of neuronal outgrowth from
Neuro-2a cells after knockdown of ARF6 using siRNA. (D) mRNA expression of differentiation markers NeuroD1 and Rbfox3 in RNA extracted from
Neuro-2a cells (n = 2 for control and n = 6, 3 combined siRNAs, **P,0.01 vs control) (E) Representative micrographs showing long outgrowth from
Neuro-2a cells transfected with green fluorescent protein (GFP), wildtype ARF6, dominant-negative T27N ARF6 or dominant-active Q67L ARF6 and
analyzed after 48 h. Bar size, 20 mm. (F) Quantification of long outgrowth from Neuro-2a cells transfected with green fluorescent protein (GFP),
wildtype ARF6, dominant-negative T27N ARF6 or dominant-active Q67L ARF6 and analyzed after 48 h. n = 4 per group, ***P,0.001 vs control/GFP.
doi:10.1371/journal.pone.0060118.g001
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Lipid analysis
Lipids were extracted from Neuro-2a cells using the Folch procedure

[14]. Heptadecanoyl (C17:0)-containing internal standards of phos-

phatidylcholine, sphingomyelin, and ceramide and dodecanoyl

(C12:0)-containing glucosylceramide were added during the extraction.

The extract was evaporated using nitrogen, reconstituted in

chloroform:methanol (2:1) and stored at 220uC until further analysis.

Phosphatidylcholine, phosphatidylethanolamine, phosphatidyl-

serine and sphingomyelin were quantified as described [15] using

direct infusion on a QTRAP 5500H mass spectrometer (ABSciex,

Toronto, Canada) equipped with the chip-based nanoESI source

TriVersa NanoMate (Advion Biosciences, Ithaca, NJ). Mass

spectrometry data files were processed using Lipid ProfilerTM

[16]. The lipids were quantified using their respective internal

standard and normalized against the cellular protein content.

Ceramide and glucosylceramide were analyzed using straight-

phase HPLC coupled to a Quattro Premier XE triple quadrupole

mass spectrometer (Waters, Milford, MA). The lipids were

separated using a Sunfire 15062.1 silica column with 3 mm

particles (Waters). The mobile phase A was isohexane:isopropanol

(95:5) and the mobile phase B was isohexane:isopropanol:50 m-

mol/l ammonium formate in water (25:65:10). The gradient went

from 100% A (held for 1 min) to 100% B in 5 min. After 4 min at

100% B, the gradient returned to 100% A and the column was

equilibrated for 3 min. Thus, the total runtime was 13 min. The

flow rate was 500 ml/min. A postcolumn flow of methanol:iso-

propanol (1:1) at 100 ml/min was used to ensure optimal

ionization of the lipids in the ion source. Samples were injected in

mobile phase A. Ceramide and glucosylceramide were detected

using multiple reaction monitoring, quantified using external

standards and normalized against their respective internal

standard and the cellular protein content.

Figure 2. ARF6 knockdown increases glucosylceramide levels
and decreases sphingomyelin levels in Neuro-2a cells. Neuro-2a
cells were transfected with control (c) or ARF6 siRNA in medium with
10% FCS and lipids were extracted after 48 h. (A) Cellular levels of
ceramides (Cer), sphingomyelin (SM) and glucosylceramide (GC) and (B)
phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phos-
phatidylserine (PS) were analyzed as described in the methods section.
n = 4 per group, **P,0.01, ***P,0.001 vs control.
doi:10.1371/journal.pone.0060118.g002

Figure 3. ARF6 knockdown increases cellular glucosylceramide
levels through increased glucosylceramide synthase activity in
Neuro-2a cells. (A) Schematic overview of the sphingolipid synthesis
pathway. (B–D) Neuro-2a cells were transfected with control (c) or ARF6
siRNA in medium with 10% FCS and analyzed after 48 h. (B) mRNA
expression of glucosylceramide synthase (GCS) in RNA extracted from
Neuro-2a cells (n = 6 per group). (C) Representative image of a TLC plate
from a GCS activity assay showing increased levels of synthesized NBD-
glucosylceramide in Neuro-2a cells transfected with ARF6 siRNA. (D)
Quantification of increased glucosylceramide synthase activity after
ARF6 knockdown (n = 4 per group). *P,0.05, **P,0.01, ***P,0.001 vs
control.
doi:10.1371/journal.pone.0060118.g003
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Glucosylceramide synthase activity
The activity of glucosylceramide synthase was measured by

following the conversion of fluorescently labeled ceramide 6-N-[7-

nitrobenz-2-oxa-1,3-diazol-4-yl] aminocaproyl-sphingosine (NBD C6-

ceramide) to NBD C6-glucosylceramide in cells, as described [17,18].

In brief, cells were washed three times with Hank’s balanced salt

solution (GIBCO, Invitrogen, Carlsbad, CA) and then incubated with

5 mmol/l NBD C6-ceramides with 5 mmol/l BSA at 4uC for 3 h. The

cells were harvested and the lipids were extracted using chloroform:-

methanol 2:1. The lipids were separated by thin layer chromatography

(TLC) (chloroform:methanol:ammonium 65:35:5) and the fluorescent

NBD-glucosylceramide was measured and quantified using fluorescent

image acquisition system Fusion FX7 (Peqlab, Sarisbury Green, UK).

Statistics
Data are presented as mean 6 s.e.m. Statistical significance was

determined with Student’s t test or one-way ANOVA with Dunnett’s

post-hoc test.

Results and Discussion

ARF6 knockdown stimulates differentiation of Neuro-2a
cells

It has previously been observed that inactivation of ARF6 by

overexpression of a GAP or a dominant-negative ARF6 promotes

neuron differentiation, as shown by increased neuronal outgrowth,

in various neuronal cell systems [9,19]. Furthermore, activation of

ARF6 by expression of the dominant-active ARF6-Q67L

decreases the neuronal outgrowth [6,8,10,19].

In this study, we used Neuro-2a neuronal cells and knocked

down ARF6 with siRNA to study the effects on neuron

differentiation (Figure 1). We found that 48 hours after transfec-

tion with ARF6 siRNA, ARF6 protein was almost totally abolished

(Figure 1A) and ARF6-deficient cells displayed significantly

increased neuronal outgrowth (Figure 1B–C). In addition, the

mRNA expression of the differentiation marker NeuroD1, which

has been shown to be increased following neuronal differentiation

[20], was upregulated (Figure 1D). In agreement with previous

reports, overexpression of mutant constructs in Neuro-2a cells

confirmed that inactivation of ARF6 (T27N-ARF6) increased

neuronal outgrowth and activation of ARF6 (Q67L-ARF6)

decreased neuronal outgrowth in our model system (Figure 1E–

F). Our results show that ARF6 inactivation using siRNA in

Neuro-2a cells is a valid cellular system to investigate ARF6-

dependent neuron differentiation and that it is as effective as using

dominant negative constructs. Thus, we can avoid using plasmid

constructs for the lipidomics analysis since we have previously

experienced that overexpression using DNA plasmids may cause

an inflammatory response and thereby affect the lipidome (data

not shown).

ARF6 knockdown increases glucosylceramide levels and
decreases sphingomyelin levels in Neuro-2a cells

To investigate whether ARF6 knockdown affects the lipid

composition of Neuro-2a cells, we performed a lipidomics analysis

of Neuro-2a cells transfected with control or ARF6 siRNA.

Interestingly, we showed that ARF6 knockdown resulted in

significantly increased levels of glucosylceramide and significantly

decreased levels of sphingomyelin but did not change ceramide

levels (Figure 2A). Levels of phosphatidylcholine, phosphatidyl-

ethanolamine and phosphatidylserine were unaltered by ARF6

knockdown (Figure 2B).

Our results indicate that ARF6 is a regulator of the sphingolipid

composition of Neuro-2A cells. Numerous studies have shown that

glucosphingolipids, especially gangliosides, are important for

neuron differentiation and development. The ganglioside GM1,

for example, has been shown to promote neuron outgrowth in

both primary neurons and neuronal cell lines [21,22,23,24]. In

addition, syndromes in humans with disturbed glucosphingolipid

expression and metabolism, such as lysosomal storage disease, are

linked to brain dysfunction [24,25].

ARF6 knockdown increases glucosylceramide synthase
mRNA and activity

Glucosylceramide and sphingomyelin are synthesized from

ceramide in the Golgi apparatus (Figure 3A) [26,27]. Because

ceramide levels were unchanged by ARF6 knockdown, we

speculated that the shift in the relative levels of sphingomyelin

and glucosylceramide could be caused by an effect of ARF6

knockdown on glucosylceramide synthase. In agreement with our

Figure 4. ARF6-dependent neuronal differentiation is normal-
ized after inhibition of glucosylceramide synthase. (A) Quanti-
fication of long outgrowth from Neuro-2a cells transfected with control
or ARF6 siRNA in medium with 10% FCS for 48 h and then
differentiated for 24 h in medium without serum in the absence or
presence of D-PDMP (10 mmol/l). n = 4 per group, ***P,0.001 vs
control; {{{P,0.001 vs absence of D-PDMP. (B) Cellular levels of
ceramides (Cer), sphingomyelin (SM) and glucosylceramide (GC). n = 4–5
per group, **P,0.01 vs control, ***P,0.001 vs control.
doi:10.1371/journal.pone.0060118.g004
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hypothesis, we observed significantly increased mRNA expression

of glucosylceramide synthase in Neuro-2a cells transfected with

ARF6 siRNA (Figure 3B). In addition, we tested whether

glucosylceramide synthase activity was affected by ARF6 knock-

down by following the synthesis of glucosylceramide from

fluorescently labeled NBD-C6-ceramide. Importantly, we found

that glucosylceramide synthase activity was increased by 80–100%

after ARF6 knockdown (Figure 3C–D).

Increased glucosylceramide synthase activity will promote the

conversion of ceramide to glucosylceramide. Our results thus

indicate that glucosylceramide synthase activity is important for

the ARF6-regulated modification of sphingolipid levels in Neuro-

2a cells.

ARF6 regulates neuron differentiation through
glucosylceramide synthase activity

Finally, we tested if ARF6 regulates differentiation of Neuro-2a

cells through an effect on glucosylceramide synthase. We knocked

down ARF6 for 48 h to stimulate neuronal outgrowth and then

incubated the cells in the presence or absence of the glucosylcer-

amide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-

morpholino-1-propanol (D-PDMP) for 20 h. As expected, the

number of cells with long outgrowths increased significantly

following ARF6 knockdown (Figure 4A). Interestingly, this

increased neuronal outgrowth was normalized after incubation

with D-PDMP (Figure 4A). Lipid analysis revealed that D-PDMP

almost totally abolished glucosylceramide accumulation in Neuro-

2a cells (Figure 4B) as expected. In contrast, ceramide and

sphingomyelin levels increased after D-PDMP treatment

(Figure 4B). Our results clearly indicate that ARF6 regulates

neuronal differentiation through effects on glucosylceramide

synthase activity.

The lipid composition of neuronal membranes has been shown

to be important for actin structure and endosomal trafficking [1].

Indeed, glucosylceramide synthase activity has been suggested to

be involved in the differentiation of neuronal cells and D-PDMP

has previously been shown to inhibit the outgrowth of Neuro-2a

cells and rat pheochromocytoma PC12 cells [21,28,29]. D-PDMP

may affect neuronal differentiation by depleting the levels of

glucosylceramides or their products gangliosides in neuronal

membranes.

In conclusion, our results indicate that ARF6 regulates neuronal

differentiation through modulation of glucosylceramide levels.
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