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Abstract

Different brain regions sense and modulate the counterregulatory responses that can occur in response to declining plasma
glucose levels. The aim of this study was to determine if changes in regional cerebral blood flow (rCBF) during
hypoglycemia relative to euglycemia are similar for two imaging modalities–pulsed arterial spin labeling magnetic
resonance imaging (PASL-MRI) and positron emission tomography (PET). Nine healthy non-diabetic participants underwent
a hyperinsulinemic euglycemic (9263 mg/dL) – hypoglycemic (5361 mg/dL) clamp. Counterregulatory hormone levels
were collected at each of these glycemic levels and rCBF measurements within the previously described network of
hypoglycemia-responsive regions (thalamus, medial prefrontal cortex and globus pallidum) were obtained using PASL-MRI
and [15O] water PET. In response to hypoglycemia, rCBF was significantly increased in the thalamus, medial prefrontal
cortex, and globus pallidum compared to euglycemia for both PASL-MRI and PET methodologies. Both imaging techniques
found similar increases in rCBF in the thalamus, medial prefrontal cortex, and globus pallidum in response to hypoglycemia.
These brain regions may be involved in the physiologic and symptom responses to hypoglycemia. Compared to PET, PASL-
MRI may provide a less invasive, less expensive method for assessing changes in rCBF during hypoglycemia without
radiation exposure.
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Introduction

Hypoglycemia is a devastating problem for people with diabetes

and accounts for 6–10% of all deaths of people with Type 1

diabetes [1]. Recurrent hypoglycemia in diabetes occurs due to the

interplay between therapeutic hyperinsulinemia and compromised

counterregulatory and symptom responses to falling plasma

glucose levels. This can lead to hypoglycemia associated

autonomic failure (HAAF) and can cause a vicious cycle of

repeated hypoglycemia [2,3]. The exact mechanisms involved in

the normal physiologic responses to hypoglycemia as well as their

impairment in HAAF are not well known. A group of brain

regions with glucose-sensing cells has been hypothesized to be

involved [4]. These cells are unique in that they are able to

translate a fall in extracellular glucose into a change in

neurotransmitter or hormone release [5]. Thus, better delineation

of this hypoglycemic network and how it is integrated into the

hypoglycemic responses is key in order to develop novel

therapeutic interventions that prevent recurrent hypoglycemia or

improve hypoglycemia awareness in type 1 diabetes.

Changes in regional cerebral blood flow (rCBF) in response to

hypoglycemia have been assessed using [15O] water positron

emission tomography (PET) [4,6,7,8]. Regional increases in rCBF

may reflect increases in neuronal activity due to rises in synaptic

metabolic activity but not spike firing rate [9,10,11]. Observed

increases in synaptic activity in response to hypoglycemia, have

been reported using PET within a discrete network of inter-

connected brain regions that included the medial prefrontal

cortex, orbitoprefrontal cortex, globus pallidus, thalamus, and

periaqueductal grey matter [4]. These same regions are involved

in modulating visceral responses [12]. In addition, increased rCBF

has been observed in the dorsal midline thalamus during recurrent

hypoglycemia, accompanied by attenuated counterregulatory

responses due to HAAF [6]. While hypoglycemic changes in

rCBF have primarily been assessed by PET, this imaging

technique has significant limitations including the need for

a cyclotron, significant expense, and the injection of a radiolabeled

tracer thus limiting the number of studies that can be performed in

a particular subject and restricting studies to adults only. More

recently, non-invasive MRI methods have been developed to
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assess rCBF [13] and provide comparable CBF quantification

between PET and ASL; at least in euglycemia [14].

In the pulsed arterial spin labeling magnetic resonance imaging

(PASL-MRI) method, arterial blood water is magnetically labeled

just proximal to the region (slice) of interest. Water molecules

within this portion of arterial blood are labeled magnetically. This

‘paramagnetic tracer’ flows into a slice of interest and exchanges

with tissue water. The inflowing blood water alters tissue

magnetization. During this time, the ‘‘tag’’ image is obtained.

This process is then repeated without labeling arterial blood to

create the ‘‘control’’ image. The difference between the ‘‘control’’

and ‘‘tag’’ image produces a perfusion image which reflects the

amount of arterial blood delivered to each voxel within the slice

within the transit time. PASL-MRI provides reproducible and

reliable quantitative CBF measurements across the brain. Com-

pared to PET, PASL-MRI is completely noninvasive, less

expensive, has no radiation exposure risk, is performed without

gadolinium, thus bypassing concerns regarding nephrogenic

systemic fibrosis in patients with significant renal insufficiency

and can be repeatedly performed on the same subject and on

subjects of any age with great ease [15]. However, this technique

has been used in only a limited number of clinical applications (i.e.

brain tumors, Alzheimer’s Disease or stroke) [16,17,18] and has

not been widely used to study hypoglycemia or HAAF [19,20].

The aim of this study was to determine, using a within subjects

study design, if PASL-MRI can detect a pattern of changes in

rCBF due to hypoglycemia similar to that previously-observed

with PET.

Research Design and Methods

Ethics Statement
The study was approved by the Washington University in Saint

Louis (WUSTL) Human Research Protection Office. Each

participant gave his or her written consent to participate in this

study. All clinical investigation was conducted according to the

principles expressed in the Declaration of Helsinki.

Subjects
Nine healthy adult individuals (4 women and 5 men) who were

mean 6SE age 29.762.6 years and mean body mass index (BMI)

24.261.1 kg/m2 were recruited through volunteers for health

program at (WUSTL). All subjects were right handed and in good

health, based on a medical history and physical examination.

None were taking medications (aside from an oral contraceptive)

that could affect rCBF or counterregulation. All had normal

fasting plasma glucose, creatinine and hematocrit. None of the

individuals had a personal or family history of diabetes in first

degree relatives. None had a personal history of significant

psychiatric, neurological, or cardiovascular conditions.

Experimental Design
Participants were studied in the morning after a 10-hour

overnight fast. They remained supine throughout the study. Two

intravenous catheters were inserted into arm veins (one for

infusion of insulin and dextrose and the other for injection of

radioactive isotope) and one intravenous catheter was inserted into

a dorsal hand vein that was kept in a ,55uC plexiglass box (for

arterialized venous sampling). All nine subjects underwent

a hyperinsulinemic (regular human insulin, Novo Nordisk,

Bagsværd, Denmark in a dose of 2.0 mU?kg21?min.21) eu-

glycemic (9263 mg/dL [5.1 mmol/L] ,2 hours) and then

hypoglycemic (5361 mg/dL [3.0 mmol/L]) x,2 hours) clamp

procedure using variable infusions of 20% dextrose based on

plasma glucose determinations (YSI Glucose Analyzer 2, Yellow

Springs Instruments, Yellow Springs, OH) every five minutes

(Figure 1). During the euglycemic period, two PASL-MRI

measurements of rCBF were obtained. In the second hour of

euglycemia, [15O]water PET measurements were performed four

times at 15 minute intervals. Hypoglycemia was then induced and

PET measurements were obtained four times at 15 minute

intervals. Two PASL-MRI measurements were obtained at the

end of the hypoglycemic clamp. Each participant was moved

between the PET and MRI scanners quickly while maintaining

hypoglycemic and euglycemic conditions. All scans were obtained

after the subject had reached at least 20 minutes of steady state at

the desired glycemic level. Every 30 minutes, arterialized venous

samples were drawn for analytes (glucose, insulin, glucagon,

epinephrine, norepinephrine) and blood pressures and heart rates

were recorded. Throughout the study cardiac function was

monitored using an electrocardiogram.

The severity of the hypoglycemic symptoms was determined

every 30 minutes during the euglycemic - hypoglycemic clamp

with a validated questionnaire [21]. Subjects were asked to score

(from 0, none, to 6, severe) six neurogenic (autonomic) symptoms

(heart pounding, shaky/tremulousness and nervous/anxious (ad-

renergic) and sweaty, hungry and tingling (cholinergic)) and six

neuroglycopenic symptoms (difficulty thinking/confused, tired/

drowsy, weak, warm, faint and dizzy) [21].

Analyte Measurements
Plasma glucose concentrations were measured with a glucose

oxidase method (YSI Glucose Analyzer, Yellow Springs Instru-

ments, Yellow Springs, OH). Plasma insulin concentrations were

measured with a two site chemiluminescent assay (Immulite 1000,

Siemens Corp, Los Angeles, CA). Counterregulatory hormones

including plasma epinephrine and norepinephrine were measured

with a single isotope derivative (radioenzymatic) method [22] and

plasma glucagon concentrations were measured with a radioim-

munoassay (Millipore, Temecula, CA).

Magnetic Resonance (MR) Imaging Acquisition
All MRI imaging was performed on a 1.5T Siemens Avanto

System (Erlangen, Germany) with a 12 channel radiofrequency

head coil. To enable computation of rCBF, a total of four

proximal inversion with control for off-resonance effects (PICORE

Q2) PASL-MRI perfusion scans (3 minutes in duration) were

collected with two at the initiation of euglycemia and two more at

the end of the hypoglycemic clamp. Scanning parameters were

TR = 2500 ms, TE = 13.0 ms, TI1 = 700 ms, TI2 = 1800 ms, flip

angle = 90u, 100 mm tag with a 10 mm gap between the tag and

the imaging slice, FOV = 256 mm, 4.064.068.0 mm voxels. A

total of 140 PASL-MRI frames (or 70 PASL-MRI pairs) were

analyzed for each subject. One high-resolution Tı-weighted

magnetization-prepared rapid gradient echo (MPRAGE)

[TR = 2400.0 ms, TE = 3.23 ms TI = 1000.0 ms, flip angle = 8u,
16161 mm voxels] structural scan was also obtained for

anatomical region definition and facilitate image alignment.

PET Scan Acquisition
General details of the [15O]water PET acquisition and analysis

methods have been previously reported in detail in prior

publications [6]. All PET images were acquired with a Siemens/

CTI (Knoxville, TN) EXACT HR+962 tomograph using the two-

dimensional mode (interslice septa extended). Subjects were

positioned in the scanner so that the entire brainstem was

included within the 15 cm axial field of view. A transmission scan

was collected at each scan session for PET data reconstruction.

CBF Responses to Hypoglycemia Using PASL and PET
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Four boluses of 50 mCi of [15O]water (1.85 GBq) were injected at

15 minute intervals [23,24,25] during euglycemia and repeated

during hypoglycemia and 40-second emission scans were collected

to measure relative rCBF.

MR Image Post-Processing
In order to evaluate the PASL-MRI data, we developed a suite

of in-house image processing utilities following previously estab-

lished best practices [26]. The two PASL-MRI image series for

each subject were cross-aligned and motion-corrected according to

a rigid body algorithm using a program developed in-house [27].

‘‘Tag’’ and ‘‘control’’ images were pairwise subtracted to obtain

mean perfusion images. CBF was calculated for each mean

perfusion image using the following formula [28,29].

f~
lDM

2aM0TI1 exp {TI2=T1að Þ

Where DM is a perfusion image calculated by pairwise subtraction

of label and control images, M0 represents the image intensity of

brain tissue at magnetic equilibrium, a represents the efficiency of

tag delivery, l is blood/tissue water partition coefficient, T1a is the

longitudinal relaxation time of blood, and TI1 and TI2 are the

time required to deliver the tag and the time required to collect the

image, respectively. The following values were used for this study:

a= 0.98, l= 0.9 mL/g, T1a = 1.6 s [29].

In order to use PASL-MRI and PET methodology to assess if

regional changes in rCBF occur in a-priori regions previously

reported to have increased synaptic activity during hypoglycemia,

each subject’s MPRAGE was segmented using FreeSurfer’s

segmentation and cortical reconstruction analysis software pack-

age (Freesurfer Version 5.1 developed at the Martinos Center,

Harvard University, Boston, MA; http://surfer.nmr.mgh.harvard.

edu) [30,31,32]. Our regional analysis primarily focused on

a network of brain areas [including the thalamus (thalamus

proper), medial prefrontal cortex (rostral anterior cingulate), right

orbital prefrontal cortex and globus pallidum] (Figure 2) that have

been shown to have increased blood flow during hypoglycemia

with PET [4]. Mean rCBF of each of these regions was obtained

for both glycemic conditions.

PET Scan Analyses
PET images were reconstructed using filtered back-projection

technique [33]. All individual PET images were co-registered

using standard technique [34] and normalized to a whole brain

CBF of 50 mL/100 g/min. For each participant, the PET scans

were registered to corresponding MPRAGE images using a vector-

gradient based method [35]. Images from each glycemic

conditions for individual subject were averaged to increase

statistical precision [36]. The same regional analysis approach as

the PASL-MRI data was used for PET CBF analysis.

Voxel-wise Analysis of rCBF in PET and PASL-MRI
To allow between-subject voxel-wise comparison of PET and

PASL-MRI, each subject’s MPRAGE data were warped to the

1988 Talairach atlas [37]. In order to eliminate anatomical

differences as a possible confound in our analysis, a common atlas

space was computed through an affine cross-registration of the

Talairach-conformed structural scans from each individual subject

[38]. For this analysis, the second PASL-MRI scan was aligned to

Figure 1. Schematic diagram of experimental protocol. Counterregulatory hormone levels, hypoglycemic symptom scores and rCBF
measurements were obtained during the hyperinsulinemic euglycemic – hypoglycemic clamp. rCBF measurements were obtained using PASL-MRI
and [15O]water PET for healthy individuals (n=9).
doi:10.1371/journal.pone.0060085.g001

CBF Responses to Hypoglycemia Using PASL and PET
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the first PASL-MRI scan. The PASL-MRI scans were aligned to

a study-specific derived atlas. Each computed rCBF map (whether

PET or PASL-MRI) was transformed to this study-specific atlas

space after rCBF computation [26]. A voxel-wise comparison of

rCBF for the two conditions (euglycemia vs. hypoglycemia) was

carried out separately for PET and PASL-MRI.

Statistical Analysis
rCBF and relevant systemic variables were compared across

conditions (during euglycemia vs. during hypoglycemia) using

a paired t-test. P values less than 0.05 were considered significant.

Hypoglycemia and euglycemia rCBF measures were expressed as

means and SE. Coefficient of variation (COV) for each imaging

method was calculated by computing the average SD of the rCBF

from a particular region of interest (ROI) and dividing it by the

mean of the rCBF from that area.

Results

Counterregulatory Hormone and Symptom Responses
During the hypoglycemic clamp plasma epinephrine responses

(3064 vs 348637 pg/mL, p,0.0001), plasma glucagon (4063 vs

9163 pg/mL, p = 0.001), and cortisol (1061 vs 2162 mg/dL,

p = 0.001) levels were significantly increased compared to eu-

glycemia. Insulin levels during euglycemia were 16064 vs 15965

during hypoglycemia (p = 0.6). Hypoglycemic symptom scores

significantly increased during hypoglycemia (260.4 vs 962,

p = 0.005) (Table 1).

Regional Cerebral Blood Flow
During hypoglycemia, rCBF significantly increased within

many ROIs for both PET and PASL-MRI (Figure 3). A significant

increase in rCBF was confirmed in the thalamus (p = 0.003,

p = 0.02), medial prefrontal cortex (p = 0.03, p = 0.01) and globus

pallidum (p = 0.001, p = 0.01) during hypoglycemia compared to

euglycemia for both PET and PASL-MRI respectively (Figure 4).

The coefficient of variation across the ROI for PET was 6% and

12% for PASL-MRI, which are comparable between the two

methods.

A Voxel-wise analysis of the brain using FreeSurfer’s general

linear model tool was utilized to assess if certain brain regions were

significantly increased for hypoglycemia for both methods. The

only region that survived a multiple comparison analysis by both

PASL-MRI and PET was the thalamus.

Discussion

A fall in blood glucose level below ,80 mg/dL induces a rapid

counterregulatory response to restore euglycemia. This process

involves the activation of peripheral and central glucose-sensing

units involved in the physiological control of counterregulation.

The mechanisms by which some patients with diabetes develop

impaired responses to hypoglycemia remain unclear. A better

understanding of these changes and the brain regions involved in

the central integration of these responses, might allow targeted

therapies aimed at preventing the loss of these responses in HAAF,

and allow diabetic patients safer glycemic control. Our findings

demonstrate that acute hypoglycemia activates the thalamus, the

medial prefrontal cortex and the globus pallidum, as has

previously been shown in studies using [15O]water PET [4].

These regions mediate autonomic responses to various visceral

stimuli and may facilitate mechanisms due to hypoglycemia

[39,40,41,42]. Although our study does not allow us to examine

whether the changes seen in rCBF lead to the specific hormonal

changes, based on prior studies, the thalamus has connections to

the hypothalamus that can regulate the sympathoadrenal outflow

during hypoglycemia, and its activation seem to be independent of

awareness and be involved primarily with counterregulatory

responses to hypoglycemia [7]. Meanwhile, the medial prefrontal

cortex seems to be involved in counterregulation [8] and

symptomatic awareness of hypoglycemia, and its activation during

acute hypoglycemia may be caused by hypoglycemia per se, rather

than by counterregulation [43]. Further studies are needed to

outline the hierarchy of activation of brain regions and its

association with hypoglycemic physiological and behavioral

responses.

That we only found significant increases in rCBF in the

thalamus using a voxel wise approach by both ASL and PET, does

not mean that the increases in rCBF in the other regions found in

the regional analysis are incorrect. A voxel-wise whole brain

analysis is less sensitive in detecting changes in a priori identified

Figure 2. Free Surfer regions of interest. Free Surfer maps of ROI used for this analysis. A) Sagittal (top) B) Axial (bottom) view of Freesurfer ROIs.
Blue: globus pallidum, Green: caudate, Dark Green: lateral prefrontal cortex, Magenta: medial prefrontal cortex.
doi:10.1371/journal.pone.0060085.g002
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regions due to correction for multiple comparisons and a factor of

multiple thresholding across the entire brain space.

Although PASL-MRI has been already used in hypoglycemia

studies [19,20], this study documents that PASL-MRI is a reliable

method that can be used to study activation of the hypoglycemia

network in a noninvasive manner since our work is the first to

compare this technique to the gold standard in both conditions.

PASL-MRI has several advantages, including that it is a less

invasive and expensive method compared to PET, it does not

require placement of an arterial line or any radiation exposure,

and the scanning time can be shorter so that successive rCBF maps

using PASL-MRI can be acquired on the same subject. These

significant advantages encourage extension of this noninvasive

imaging methodology to future pediatric studies (where less

invasive methodologies are preferred) as well as to other studies

of healthy and diabetic individuals, which seek to study

hypoglycemia-associated recruitment of brain regions and other

hypoglycemia-associated physiological responses more broadly.

Being able to study children, particularly diabetic children, offers

better opportunities to understand the early loss of counter-

regulatory response in recurrent hypoglycemia by allowing us to

follow the full course of diabetes. However, limitations exist for

PASL-MRI. It can only be performed on patients that can tolerate

MRI and have no braces or metal implants that wouldn’t limit the

implementation of this technique. This technique also requires

a very high signal-to noise ratio and cannot accurately map either

low (,10 mL/100 g/minute) or high (.150 mL/100 g/minute)

rCBF states [13].

The most important finding of our work is the consistent

increase in rCBF due to hypoglycemia in the same regions across

both imaging methods. Our work suggests that there is presence of

a cerebral network involved in the hypoglycemic responses and

Table 1. Mean (6SE) plasma glucose and counterregulatory hormones at baseline and at time of CBF acquisition for euglycemic
and hypoglycemic clamp phases and peak levels during each phase.

EUGLYCEMIA HYPOGLYCEMIA

Mean at
Baseline

Mean during CBF
acquisition Peak value Mean at Baseline

Mean during CBF
acquisition Peak value

Glucose (mg/dl) 9161 9263 101 5461 5361 58

Insulin 1061 16064 244 158616 15965 238

Epinephrine (pg/ml) 2568 3064 95 353626 348637 517

Glucagon (pg/ml) 5967 4063 62 85611 9163 169

Cortisol (mg/dl) 961 1061 17 1762 2162 42

Symptoms 160.3 260.4 4 962 962 22

doi:10.1371/journal.pone.0060085.t001

Figure 3. Qualitative cerebral blood flow during hypoglycemia and euglycemia in PET and PASL-MRI. Axial images showing the mean
difference (CBF hypoglycemia – CBF euglycemia) maps from nine subjects for A) positron emission tomography (PET) and B) pulse arterial spin
labeling magnetic resonance imaging (PASL-MRI). Yellow/orange represents increased and blue represents decreased blood flow during the
hypoglycemic relative to euglycemic session. Similar increases in CBF for hypoglycemia were seen for both methods within the thalamus.
doi:10.1371/journal.pone.0060085.g003
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demonstrates the ability to use this novel MRI method in a reliable

manner to study these responses.
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