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Abstract

The Cullin-4CDT2 E3 ubiquitin ligase plays an essential role in DNA replication origin licensing directing degradation of
several licensing factors at the G1/S transition in order to prevent DNA re-replication. Recently a RAD18-independent role of
Cullin-4CDT2 in PCNA monoubiquitylation has been proposed. In an effort to better understand the function of Cullin-4CDT2

E3 ubiquitin ligase in mammalian Post-Replication Repair during an unperturbed S-phase, we show that down-regulation of
Cullin-4CDT2 leads to two distinguishable independent phenotypes in human cells that unveil at least two independent roles
of Cullin-4CDT2 in S-phase. Apart from the re-replication preventing activity, we identified a non-canonical Cullin-4CDT2

complex, containing both CUL4A and CUL4B, associated to the COP9 signalosome, that controls a RAD18-dependent
damage avoidance pathway essential during an unperturbed S-phase. Indeed, we show that the non-canonical Cullin-4A/
4BCDT2 complex binds to RAD18 and it is required to modulate RAD18 protein levels onto chromatin and the consequent
dynamics of PCNA monoubiquitylation during a normal S-phase. This function prevents replication stress, ATR hyper-
signaling and, ultimately, apoptosis. A very similar PRR regulatory mechanism has been recently described for Spartan. Our
findings uncover a finely regulated process in mammalian cells involving Post-Replication Repair factors, COP9 signalosome
and a non-canonical Cullin4-based E3 ligase which is essential to tolerate spontaneous damage and for cell survival during
physiological DNA replication.
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Introduction

The maintenance of genome integrity is fundamental for cell

survival and controlled cell growth. Indeed, most cancer cells

exhibit genome instability, often arising from DNA replication

defects and faulty repair events [1,2].

Cullin-RING Ub ligases (CRLs) are the largest family of E3

ubiquitin ligases and they play a fundamental role in a variety of

cellular processes. Each CRL consists of a common core complex,

containing the Cullin scaffold subunit, the Rbx1 RING subunit

and an adaptor protein, that assembles to a substrate receptor

subunit that provides specificity to each CRL [3]. Increasing

evidence shows that variants of this canonical architecture exist,

extending the CRLs family complexity and functionality (for a

review see [4]). CRLs are divided in sub-families according to the

specific Cullin in the core complex. Members of the CRL4s family,

which contains the Cullin-4A or the Cullin-4B scaffold protein, are

important in the DNA Damage Response (DDR) [5,6]. CRL4A

and CRL4B have been reported to have some redundant functions

in DDR [7,8]. However, CUL4B plays also roles in the DDR that

are not shared with CUL4A [9]. Similarly, degradation of p27 and

p53 has been shown to depend solely on CUL4A [10,11]. Further

investigations are required to advance our knowledge on the

CUL4A and CUL4B relationship in DDR.

The COP9 signalosome (CSN) is an eight subunits protein

complex acting as a platform for CRL complexes and protein

kinases [12]. CSN has intrinsic de-neddylation and deubiquityla-

tion enzymatic activities, which regulate CRLs biogenesis and

function (for a review see [13,14]). Similarly to CRL4s, CSN has

been associated with several aspects of DDR [15,16]. Particularly,

UV irradiation causes CDT1 degradation due to CSN-mediated

CRL4CDT2 activation [7]. However, a possible involvement of

CSN in modulating CRL4CDT2 -dependent degradation of CDT1

at the G1/S transition, preventing DNA re-replication in an

unperturbed cell cycle, has not been described [10].

DNA replication must occur only once per cell cycle. This is

achieved by restricting origin firing to once per S-phase. Re-

initiation from even one single origin within the same cell cycle

may cause genome instability [17]; consequently, re-replication is

one of the most common early events in tumorigenesis [18,19,20].

Two main mechanisms contribute to preventing origin to fire

more than once per each cycle. One impedes re-loading of the

MCM2-7 helicase onto a G1-assembled post-replication complex,

preventing re-formation of an active pre-replication complex after

a specific origin has fired. This is achieved by coupling spatially

and temporally the selective ubiquitylation and degradation of

licensing factors by CRL4CDT2 (particularly CDT1, p21 and

SET8) to the loading of PCNA on chromatin as the origin fires (for
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a review see [21]). Indeed, CRL4CDT2 is able to mark for

destruction only the CDT1, p21 and SET8 population bound to

PCNA on chromatin [3,10,22,23,24,25,26,27,28]. Due to this

function in preventing DNA re-replication, CRL4CDT2 deregula-

tion leads to ATM-dependent checkpoint activation and correlates

with tumorigenesis [29,30].

A second mechanism avoids the reassembly of a new pre-

replication complex at an origin during S or G2. This is achieved

thanks to Skp2, a Cullin1-based ubiquitin E3 ligase, that keeps

CDT1 and SET8 protein levels very low in S and G2 despite

CDT1 and SET8 being expressed constantly throughout the cell

cycle [31,32].

During S-phase, DNA lesions are mostly tolerated through Post-

Replication Repair (PRR) mechanisms that allow lesions bypass

and completion of DNA replication (for a review see [33]). Studies

in yeast have indicated that PRR is essential for DNA replication

following exogenous DNA damage, but not during normal

replication [34]. PRR includes error-free recombination mecha-

nisms and error-prone processes mostly employing multiple

translesion DNA polymerases (for a review see [35,36]). PCNA

ubiquitylation (mono- or poly- ubiquitylation) acts as a molecular

switch to control the choice between these two PRR sub-pathways

[34]. RAD18 and RAD5, are the two major players in the yeast

PRR pathway, and code for the E3 ubiquitin ligases required for

PCNA monoubiquitylation and polyubiquitylation, respectively.

In mammalian cells the picture is more complex. A RAD18

homolog and two RAD5 homologs, HLTF and SHPRH, have

been identified in human cells (for a review see [37,38]).

Intriguingly, in response to different DNA damaging agents cells

differentially employ HLTF and SHPRH together with RAD18 to

modify PCNA and recruit lesion-specific translesion polymerases,

promoting error-free TLS [39]. A feed-forward loop, which

amplifies the chromatin-bound monoubiquitylated PCNA popu-

lation and consequently translesion DNA synthesis, has been

described very recently. Spartan, a protein that binds mono-

ubiquitylated PCNA, has been shown to be critical for obtaining a

large population of monoubiquitylated PCNA [40]. The molecular

details of such amplification loop have not been fully understood

yet.

A further layer of complexity is added by the observation that

CRL4CDT2 ubiquitin ligase can monoubiquitylate PCNA in vitro

and in vivo, functionally synergizing with RAD18 [41], but the

crosstalk between CRL4CDT2 and PRR factors are still unclear.

Indeed, how loss of the PRR regulatory function of CRL4CDT2

affects unperturbed S-phase progression in normal or cancer

human cells needs to be clarified.

Here we report the existence of a non-canonical CSN-CRL4A/

4BCDT2 complex, and its genetic and biochemical interactions

with HLTF, SHPRH, RAD18 and PCNA. Such complex

regulates PCNA ubiquitylation, modulating RAD18 recruitment

to chromatin, similarly to what observed with Spartan; this helps

cells to cope with DNA replication stress during a normal S-phase

and to avoid apoptosis. Furthermore, our findings indicate that

PRR is critical for survival in undamaged human cells, identifying

PRR components as possible pharmacological targets to induce

apoptosis in cancer cells

Results

Depletion of CRL4CDT2 or CSN activates the DDR in S-
phase

Depletion of CRL4CDT2 subunits causes activation of markers

linked to either replication stress or DNA damage, along with a

cell cycle arrest in G2. This phenotype has been shown to depend,

at least in part, on the DNA re-replication caused by failure to

degrade replication origin licensing proteins [3,25,26,42]. The

available data do not exclude, though, the possibility that DDR

activation may be the composite result of deregulating more

independent mechanisms controlled by CRL4CDT2 in S-phase.

To investigate possible new roles of CRL4CDT2 during normal

S-phase and their influence on the DDR, we depleted CRL4CDT2

subunits in dividing cells. Because most of the mammalian-based

work on CUL4 E3 ligases rarely makes a functional distinction

between CUL4A and CUL4B, we down-regulated concomitantly

CUL4A and CUL4B isoforms (indicated as CUL4) using siRNA

(small interfering RNA). To support the data and to validate the

target specificity of our siRNAs, we down-regulated DDB1,

another CRL4 core complex subunit. Furthermore, since in many

cellular processes CSN is associated to and regulates the function

of members of the CRL4s family, we investigated a possible

involvement of CSN in modulating the DDR during a normal S-

phase. DDR activation was monitored by immunofluorescence

(IF) staining Ser-139-phosphorylated histone H2AX (cH2AX) and

53BP1 nuclear foci. Exponentially growing HeLa cells transfected

with a control siRNA against luciferase (siLUC) show a very weak

punctuate cH2AX staining while evident 53BP1 nuclear foci are

absent. On the contrary, cells depleted of either CRL4CDT2

subunits (CUL4 or DDB1) or CSN subunits (CSN2 or CSN5)

exhibit a strong cH2AX nuclear signal that is mostly organized in

discrete foci, and 53BP1 foci formation (Figure 1A). Cells positive

for 53BP1 were also positive for cH2AX and vice versa, and most

of 53BP1 foci colocalize with cH2AX foci (Figure 1A). The

phenotypes show different penetrance (number of cells positive for

53BP1 foci) and severity (number of 53BP1 foci per cell)

depending on depleted protein (Figure S1A). To confirm these

data, the total levels of cH2AX were also evaluated by

immunoblotting on the same samples from Figure 1A. Depletion

of any of the indicated proteins strongly induces H2AX

phosphorylation (Figure S1B).

The cell cycle distribution of exponentially growing HeLa cells

depleted for CRL4 core and CSN subunits, was estimated by

FACS analysis and compared to control cells (Figure 1B and

Figure S2A). In agreement with previous reports [15], our data

indicate that both CRL4 core complex and CSN depletion

activate the DDR markers and delay cell cycle progression,

causing an increase in the fraction of population with 4C DNA

content, indicative of G2-M cells and to the accumulation of cells

with greater than 4C DNA content (.4C in Figure 1B), which is

due to DNA re-replication. We observed a similar phenotype in

CDT2-depleted HeLa cells (Figure 1B and Figure S2A), suggesting

that the observed phenotypes are specifically due to downregula-

tion of the CRL4CDT2 ubiquitin ligase complex. To discriminate

whether cell populations that accumulate with 4C and .4C DNA

contents were in G2 or mitosis, DDB1-depleted cells were

immunostained for Ser10 phosphorylation of histone H3, a

mitotic marker. DDB1 depletion does not significantly increase

the percentage of mitotic cells (Figure S2B). Therefore we assume

that depletion of CRL4CDT2 and CSN likely causes cells with 4C

and .4C DNA content to accumulate in G2. Similar results were

confirmed in U2OS cells (Figure S3A and S3B).

In order to verify that DDR activation was due to dysfunctional

replication, HeLa cells synchronized in S-phase (as checked by

FACS analysis shown in Figure S2C) and depleted of either DDB1

or CDT2 show activation of the 53BP1 DDR marker by IF

(Figure 1C) similarly to what found in exponentially growing cells

depleted of the same proteins (Figure 1A).

CSN-CRL4A/4BCDT2 Prevents Replication Stress
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CSN-CRL4CDT2 plays both CDT1-dependent and CDT1-
independent functions in S-phase

During S-phase, CRL4CDT2 regulates origin licensing and

controls translesion DNA synthesis, regulating PCNA ubiquityla-

tion and DNA polymerase g stability [41,43]. We investigated the

contribution of these diverse functions to the activation of the

DDR in CRL4CDT2 depleted cells.

As shown in Figure 1, DDB1-depleted cells recapitulate the

phenotypes due to inactivation of CSN-CRL4CDT2. Moreover,

CDT1 protein levels are high in G1 phase and become reduced in

S and G2 phase. Inappropriate origin licensing following

CRL4CDT2 inactivation depends on the failure to degrade

CDT1 in S- and G2-phase, and to the consequent increase in

CDT1 level in S- and G2-phase (for a review see [21]). Indeed,

DDB1-depletion, despite causing .80% cells to accumulate in G2

(Figure 2A, see FACS profiles at the bottom), shows a strong

increase in CDT1 protein, much greater than the one observed in

control cells that proceed synchronously through G2 with an intact

CRL4CDT2 (Figure 2A; compare DDB1 and G2 samples).

Nevertheless, CDT1 protein level in DDB1-depleted cells appears

lower compared to the steady-state level of CDT1 into logarith-

mically growing control cells (Figure 2A; compare LUC and

DDB1 samples). Indeed, this may be explained by the fact that

logarithmically growing control HeLa cells show .85% cells in G1

phase where CDT1 levels are high and they are not under control

of the CRL4CDT2 activity. (Figure 2A, see FACS profiles at the

bottom). To analyze CDT1-independent CRL4CDT2 functions in

S-phase, we employed a DDB1- and CDT1- co-depletion protocol

that does not eliminate CDT1, but prevents its increase in S- and

G2-phase linked to DDB1 depletion. (Figure 2B). HeLa cells were

depleted for either DDB1 or CDT1 or both. Critical protein

factors were analyzed by immunoblot (Figure 2B). The distribution

of cells along the cell cycle in each depleted cell population was

determined by measuring BrdU incorporation and DNA content

by FACS analysis (Figure S4A). Relative values of cell sub-

populations containing 4C (G2 cells) and .4C (G2 cells with re-

replicated DNA) DNA content in Figure S4A were calculated and

represented as a vertical bar graph shown in Figure 2C. As

described above, DDB1-depletion causes cells to accumulate with

4C and .4CDNA content (Figure 2C, Bar DDB1). Interestingly,

concomitant CDT1 and DDB1 depletion decreases the re-

replication phenotype in HeLa and U2OS cells (.4C cells in

Figure 2C and Figure S7A). This result indicates that the .4C

phenotype observed after depletion of CRL4CDT2 is likely due to

deregulation of CDT1. On the other hand the G2-arrested cell

population with a 4C DNA content, which seem not to be

substantially affected by preventing CDT1 accumulation in DDB1

depleted cells, highlights origin licensing-independent functions of

CRL4CDT2 (4C cells in Figure 2C and Figure S7A).

DDB1-depleted cells exhibit higher levels of B1 cyclin, a G2/M

specific marker; the increased Thr14 CDC2 phosphorylation

(pCDC2) together with the concomitant decrease in Ser10 histone

H3 phosphorylation (pH3) (Figure 2B), indicate that DDB1-

depleted cells are arrested in G2, confirming the results shown in

Figure 1. As we have described above (Figure 2A), G2-arrested

cells are normally expected to have extremely low CDT1 levels.

However, DDB1-depleted cells, despite being mostly in G2

(Figure 2C), show a strong CDT1 signal (Figure 2B). Similarly,

cells depleted of either CUL4A, or CUL4B or CSN show an

increase in CDT1 protein levels (Figure S4B and S4C).

To gain insight into the molecular mechanism controlling the

G2 arrest, we checked phosphorylation of checkpoint factors

(Figure 2B). ATM-Ser1981 phosphorylation (pATM) is very strong

in DDB1-depleted cells likely due to the formation of DSBs,

detectable by Comet assay (Figure S5), that are induced by re-

replication [20,42]. Similarly, the ATM substrate H2AX is

phosphorylated on Ser139 (cH2AX), and CHK1 is strongly

phosphorylated on Ser317 (pChk1). On the other hand, CHK2-

Thr68 phosphorylation does not change in DDB1-depleted cells

both in HeLa and U2OS cells (data not shown). Also CSN

subunits depletion activates CHK1 and H2AX similarly to what

observed for DDB1 depletion (Figure S6), confirming that by

knocking down DDB1 we are looking at the effects of the CSN-

CRL4CDT2 axis inactivation.

Parallel with the loss of the .4C cell sub-population (Figure 2C,

Bar DDB1 CDT1), inhibiting CDT1 accumulation in DDB1-

depleted cells prevents ATM activation and cH2AX formation;

interestingly, CHK1 phosphorylation is still evident in these cells

(Figure 2B, column DDB1 CDT1 and Figure S7B). Remarkably,

notwithstanding an inactive ATM-dependent checkpoint, the G2

arrest is not affected by the knock-down of CDT1 in both DDB1-

depleted HeLa or U2OS cells (Figure 2B and Figure S7A).

Altogether, these data suggest the existence of a CDT1-indepen-

dent (origin licensing-independent) function of CRL4CDT2, whose

inactivation causes a G2 cell cycle arrest through an ATM-

independent mechanism, which may rely on CHK1.

Treatment of DDB1- CDT1-codepleted cells with caffeine [44]

prevents CHK1 phosphorylation and the accumulation of G2-

arrested cells (Figure 2B and 2C; Figure S4A), suggesting the

involvement of ATR. Indeed, ATR knockdown in DDB1-depleted

cells, opposite to CDT1 knockdown in DDB1-depleted (Figure 2C,

column DDB1 CDT1), reduces the 4C DNA content sub-

population without affecting the .4C sub-population (Figure 2D).

Immunostaining of exponentially growing DDB1-depleted cells

with anti-RPA and anti-pATM antibodies reveals two types of cell

populations by immunofluorescence. Indeed, some cells show

exclusively RPA foci, while other cells show RPA foci co-localizing

with pATM. The representative field reported in Figure S8A

shows DDB1-depleted cells where one cell (white arrow) exhibits

several pATM foci many of which co-localize with RPA, and one

cell (yellow arrow) with several RPA-positive but no pATM foci. It

should be noticed that the morphology of the RPA foci is different

in the two cell types, since those co-localizing with pATM have

generally a larger size. The fraction of cells only positive for RPA

foci, and that positive for both pATM and RPA are quantified in

Figure S8B. These data suggest that cells where depletion of

DDB1 affects origin licensing accumulate DNA damage and are

characterized by pATM and RPA positive foci. On the other

hand, in cells where DDB1 depletion only causes an origin

licensing-independent effect, ATM is not activated and only RPA

foci are detectable. Together with the data presented above, these

observations suggest that the origin licensing -independent

Figure 1. CSN-CRL4CDT2-depletion causes DDR activation and DNA re-replication. Exponentially growing HeLa cells depleted for the
indicated proteins were harvested for further analysis. (A) Cells were fixed and stained with antibodies to H2AX phospho-S139 (cH2AX) and 53BP1;
the nucleus was counterstained with DAPI. A fluorescent image of a representative nucleus is shown. (B) Cell cycle distribution was analyzed by flow
cytometry monitoring the DNA content. For each representative FACS diagram, the percentage of cells in the various cell cycle phases was calculated
and displayed as relative value chart. (C) S-phase synchronized HeLa cells depleted for the indicated proteins were fixed and stained with 53BP1
antibodies; the nucleus was counterstained with DAPI. Fluorescent images of two representative nuclei for each sample are shown.
doi:10.1371/journal.pone.0060000.g001
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function of DDB1 may impinge on replication fork progression.

Indeed, replication forks stalling leads to uncoupling of helicase

and DNA polymerase activities and accumulation of single-

stranded DNA (ssDNA) coated with RPA, which triggers an ATR-

dependent response [45,46].

CRL4CDT2 is required for progression through S-phase
As shown above, depletion of DDB1 in cycling cells causes re-

replication, which activates an ATM-dependent signaling, but

disrupts also an independent process leading to activation of ATR

(Figure 2C and Figure 3A ‘‘AS’’). Another approach to investigate

this CDT1-independent pathway and to confirm that CRL4CDT2

may play a role in S-phase also after origin firing, is to set up a

DDB1 depletion protocol that allows CRL4CDT2 downregulation

after it has promoted CDT1 removal from chromatin, so that re-

replication is not induced. HeLa cells were synchronized in early

S-phase by a double thymidine block (DTB) [47]; downregulation

of DDB1 was achieved by treating cells with siRNA five hours

before the second thymidine addition, so that DDB1 down-

regulation occurs when the majority of the cells are indeed in early

S-phase and CDT1 at origins has already been degraded by

CRL4CDT2 (Figure 3A, scheme at the top). Using this experimen-

tal strategy, Figure 3A confirms that 5 hrs after the release from

DTB, when cells have completed S-phase and entered G2 as

shown by the elevated levels of cyclin B1, CDT1 levels are low and

DDB1 depletion does not cause an increase in CDT1 compared to

the control (compare ‘‘AS’’ and ‘‘S’’). These results are consistent

with previous work suggesting that during S-phase and G2-phase,

CDT1 levels are also controlled by CUL1 [31,32].

Figure 3A also shows that 5 hrs after DTB release, siLUC-

treated control cells were in G2, as indicated by the elevated levels

of cyclin B1, while CHK1 and H2AX were not phosphorylated

(Figure 3A, ‘‘S’’). On the other hand, DDB1-depleted cells, while

showing similar G2-phase markers, activate CHK1 without

phosphorylating the ATM target H2AX (Figure 3A, ‘‘S’’). These

results demonstrate that loss of DDB1 function leads to cH2AX

formation only in asynchronous cells and not in S-phase cells,

where only CHK1 is phosphorylated (lanes 2, 4; Figure 3A),

confirming that disruption of the CDT1-independent function of

CRL4CDT2 during S-phase causes activation of an ATM-

independent DDR response.

To characterize this CDT1-independent role of CRL4CDT2

during S-phase, we monitored BrdU incorporation at different

time-points following DTB release. At time 0, when cells are

arrested by DTB, both control cells (siLUC) and DDB1-depleted

cells (siDDB1) do not incorporate BrdU and are mainly in early S-

phase (Figure 3B). 1 hr following DTB release, most of the BrdU

incorporating siLUC cells were in mid S-phase with a small

proportion of cells in early S-phase (28%), while DDB1-depleted

cells were delayed (45% still in early S). 4.5 hrs after DTB release,

the majority of control cells are in G2 and do not incorporate

BrdU, and approximately 33% of the cells are still in late S-phase

and actively replicating. At the same time point a higher

percentage (46%) of DDB1-depleted cells are still incorporating

BrdU, and are spread over middle and late S-phase (Figure 3B).

These data indicate that DDB1 depletion affects a timely

progression of replication forks during S-phase.

CRL4ACDT2 and CRL4BCDT2 interact with each other and
CSN to carry out non-redundant functions In S-phase

Generally, CRL4 complexes containing CUL4A are considered

to have overlapping functions with CRL4 complexes containing

CUL4B. If CUL4A and CUL4B are part of independent

complexes with overlapping function, depletion of either CUL4A

alone or CUL4B alone, are not expected to cause any major

phenotype, while concomitant depletion of both should have an

effect. The observation that depletion of either CUL4A or CUL4B

prevents degradation of CDT1 (Figure S4B) suggests that the two

proteins do not have redundant functions in the degradation of

CDT1. This is consistent with the two proteins working in the

same linear pathway, or with CUL4A and CUL4B participating to

the same CRL4CDT2 complex, which may have a non-canonical

architecture. Consistently, RNA interference in U2OS cells shows

that each single CUL4A and CUL4B siRNA induces a 4C and

.4C G2 arrest of comparable penetrance. The double siRNAs

show a higher penetrance, likely due to the double amount of

siRNAs used (Figure 4A). These genetic data may suggest the

presence of a single CRL4 complex containing both CUL4A and

CUL4B (CRL4A/4BCDT2) whose depletion causes the phenotype

described.

To support these data with biochemical evidence, HeLa cells

were synchronized by DTB, transfected with a control vector or a

vector expressing myc-tagged CUL4B, collected in mid S-phase

and total protein lysates analyzed by coimmunoprecipitation (co-

IP) assays. Anti-CUL4A antibodies immunoprecipitate endoge-

nous CUL4A and co-IP endogenous CUL4B; anti-myc antibodies

immunoprecipitate myc-tagged CUL4B and co-IP endogenous

CUL4A and CUL4B (Figure 4B). An anti-CDT2 Ab, but not a

control rabbit serum, immunoprecipitates CDT2 and co-IP

endogenous CUL4A and CUL4B, and exogenous myc-CUL4B

(Figure 4C). The resistance of such interactions to ethidium

bromide excludes they may be mediated by DNA (Figure 4 and

not shown). Thus, genetic and biochemical data suggest collec-

tively the possible existence of a complex containing CUL4A,

CUL4B and CDT2.

A subset of CRLs are assembled to, and regulated by, CSN

[48]. We have observed that CSN depletion induces the same

phenotype observed for CRL4CDT2 subunits depletion, suggesting

that CRL4CDT2 may be physically complexed to CSN. Indeed, a

CDT2 antibody (Ab) co-IP CSN5 and a CSN5 Ab selectively co-

IP HMW-CDT2 (Figure 4D), suggesting a more complex

organization of CRL4CDT2.

PRR and CRL4A/4BCDT2 cooperate in preventing
apoptosis due to incomplete DNA replication

We noticed that loss of the CDT1-independent function of

CRL4A/4BCDT2 in exponentially growing cells induces an

Figure 2. CRL4CDT2 has a CDT1-independent function during S-phase. (A) HeLa cells were harvested 48 hrs after the last transfection cycle
with control (siLUC) or DDB1 (siDDB1) siRNAs. For G2 control, aphidicolin was used to block HeLa cells at the G1/S border. Cells were release from the
aphidicolin block and harvested after 6 hours. Each cells sample was divided by two and analyzed both by by immunoblotting with the indicated
antibody (top panel) and by FACS (lower panel). (B) HeLa cells were transfected with the indicated siRNAs (6 caffeine) and harvested for further
analysis. Total protein extracts were resolved by SDS-PAGE and immunoblotted with the indicated antibodies. * indicates not specific bands. (C) Cell
cycle distribution was analyzed by flow cytometry monitoring BrdU incorporation and DNA content in Figure S4A. 4C and .4C cell populations were
calculated as percentage over the total and graphically represented as bars. (D) Cell cycle distribution of HeLa cells transfected with either siATR or
siDDB1 or both were analyzed by BrdU incorporation and DNA content using flow cytometry. ATM and DDB1 depletions were assessed by western
blot.
doi:10.1371/journal.pone.0060000.g002
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Figure 3. DDB1 depletion causes replication stress. (A) Total protein extracts of HeLa cells depleted with the indicated siRNAs were
fractionated by SDS-PAGE and immunoblotted with the indicated antibody. AS (asynchronous) indicates exponentially growing cell total protein
extracts. S (synchronous) indicates total protein extracts from HeLa cells harvested 5 hours after releasing from a DTB. The experimental set up is
summarized above the immunoblot. (B) HeLa cells were transfected with control or siDDB1 during DTB. Cells were labeled with BrdU and harvested
at the indicated time points following DTB. Cells were immunostained with anti-BrdU antibody and DNA content was monitored by flow cytometry
using propidium iodide staining. A representative FACS profile of three independent experiments with similar results is shown. Percentage of cells
incorporating BrdU in early S-phase (1 hr) or late S-phase (4.5 hrs) was calculated. A minor population of permanently arrested G2 cells was detected
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increase in detached cells over mock, a possible indication of

apoptosis (not shown). Indeed, 48 hrs after siRNA transfection,

CDT2-depletion or concurrent CDT2- and CDT1-depletion

induce apoptosis, as detected using an Ab recognizing both full

length and caspase3-cleaved PARP1 (DPARP1) (Figure 5A and

Figure S9A). The DPARP1 signal appears stronger when CDT2

and CDT1 are simultaneously depleted, this may suggest that the

apoptotic phenotype is induced prevalently by inactivation of the

CDT1-independent function of CRL4A/4BCDT2, or that CDT1

and CDT2 have a synthetic effect. Previous work suggested that

CRL4CDT2 is required for error-prone bypass of UV-induced

DNA lesions [41]. We hypothesized that the CDT1-independent

function of CRL4CDT2 described above and required for proper S-

phase progression may be linked to its role in PRR during normal

DNA replication. To test this hypothesis we checked whether

depletion of RAD18 or HLTF would also lead to an apoptotic

phenotype. Depletion of RAD18, HLTF or both in HeLa or

U2OS cells generates apoptotic DPARP1, and an increase in cell

mortality over mock depleted cells estimated ,70%, ,25% and

,50%, respectively (Figure 5B, Figure S9B and S9C).

To determine the relationship between the anti-apoptotic roles

of CRL4CDT2 and of RAD18/HLTF, we analyzed apoptotic

markers in cells concomitantly depleted of either CDT2 and

RAD18 or CDT2 and HLTF. Depletion of CDT2 in either

RAD18- or HLTF-depleted cells does not exacerbate their

apoptotic phenotype suggesting that CDT2 and RAD18 may

operate together in preventing apoptosis (Figure 5C).

The apoptotic phenotype of cells depleted for PRR factors likely

derive from problems arising during a normal S-phase. This was

confirmed by the observation that cells depleted for RAD18,

HLTF or both showed a G2 accumulation supporting the notion

of a failure in proper completion of DNA replication (Figure 5D).

in DDB1-depleted cells and was not considered in quantifications (delimitated by rectangle). G1 indicates cells with DNA content 2C; G2 indicates cells
with DNA content 4C.
doi:10.1371/journal.pone.0060000.g003

Figure 4. CSN-CRL4CDT2 contains both CUL4A and CUL4B in S-phase. (A) Cell cycle distribution of HeLa cells transfected with the indicated
siRNAs was analyzed by DNA content flow cytometry detection. A representative FACS profile is shown. Percentage of cells in G2 with a 4C or .4C
DNA content were calculate by Cell Quest software. (B) (C) (D) HeLa cells were synchronized by DTB and, where indicated, transfected with myc
control or myc-CUL4B vectors in between the two thymidine blocks. Cells were harvested at 2.5 hrs after DTB release and total cell protein extracts
were prepared. Cell lysate was subjected to immunoprecipitation with serum as control or with the indicated antibodies. Immunoprecipitates and
cells lysates were immunoblotted with the indicated antibodies. (D) Both low and high exposure films are shown. HMW is High Molecular weight;
LMW is low molecular weight.
doi:10.1371/journal.pone.0060000.g004
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CRL4CDT2 interacts with RAD18 during normal S-phase
progression and modulates its recruitment to chromatin

After UV-induced DNA damage, CRL4CDT2 was shown to

modulate PRR controlling a RAD18-independent PCNA mono-

ubiquitylation [41]. We investigated the mechanism through

which CRL4CDT2 cooperates with PRR factors during a normal

S-phase.

In exponentially growing (AS) HeLa cells, ubiquitylated PCNA

is barely detectable provided that the deubiquitylating enzyme

USP1 [49] is downregulated (Figure 6A, lanes 1–2), while

ubiquitylation is evident after induction of exogenous DNA

damage by UV exposure (Figure 6A, lanes 3–4). Differently from

what observed in logarithmically growing cells, PCNA ubiquityla-

tion in USP1-depleted cells is clearly detectable during an

unperturbed S-phase (S). In these conditions, PCNA is mono-

ubiquitylated in mid S-phase following DTB release and this

modification is greatly reduced by depletion of CDT2 (Figure 6A,

compare lanes 5 and 6). RAD18 depletion prevents PCNA

monoubiquitylation (Figure 6A, lane 7), as previously reported

[50]. We also noted that two forms of CDT2 (HMW- and LMW)

are detectable in mid S-phase cells, and treatment with a siRNA

against the CDT2 coding sequence depletes cells of both HMW-

and LMW-CDT2, confirming that they are indeed CDT2

isoforms (Figure 6A, panel S, lines 5, 6, and Figure 4C).

These results may suggest that either CRL4A/4BCDT2 modu-

lates RAD18-dependent PCNA ubiquitylation, in agreement with

our genetic data indicating that CRL4A/4BCDT2 and RAD18/

HLTF function together during S-phase, or that RAD18 and

CRL4A/4BCDT2 additively control PCNA ubiquitylation.

In order to assess whether CDT2 is physically associated to the

RAD18/HLTF and the RAD18/SHPRH complexes, protein-

protein interactions were analyzed by coimmunoprecipitation

experiments using total protein extracts from HeLa cells that were

synchronized in mid S-phase [39]. Immunoprecipitation of CDT2

co-immunoprecipitates RAD18 and both HLTF and SHPRH;

immunoprecipitation of HLTF co-immunoprecipitates RAD18

and CDT2 but, as expected, not SHPRH (Figure 6B). Indeed, it

has reported that binding of HLTF and SHPRH to RAD18 are

mutually exclusive [39]. These results indicate that CDT2 binds to

both the RAD18/HLTF complex and the RAD18/SHPRH

Figure 5. CRL4A/4BCDT2 is functionally linked to RAD18 and HLTF in S-phase. (A, B, C) HeLa cells were subjected to three rounds of
transfection with the indicated siRNAs. Both detached and adherent cells were harvested 48 hours after the last round. Total protein lysates were
analyzed by immunoblotting with the indicated antibodies. D indicates caspase3-cleaved PARP1 fragment. (u) indicates a background band. (D) Cell
cycle distribution of HeLa cells transfected with the indicated siRNAs was determined by DNA content flow cytometry detection. Number of cells in
each cell cycle phase was quantified. Relative values were represented as bars. Each bar represent the average of three independent experiments and
the error bars represent the SDs.
doi:10.1371/journal.pone.0060000.g005
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complex in S-phase. Given that we did not observe an increase of

the steady-state levels of RAD18 when we knocked down CDT2

(Figure 6A and 6C), it is unlikely that CRL4A/4BCDT2 marks

RAD18 for degradation. Remarkably, downregulation of

CRL4A/4BCDT2 in HeLa cells synchronized in mid S-phase led

to a reduction in the amount of chromatin-bound RAD18

(Figure 6C), which appears to be independent of the degradative

activity of the proteasome, since addition of the MG132

proteasome inhibitor does not affect the decrease in chromatin-

bound RAD18 after CDT2 depletion (Figure 6D). Interestingly,

we noticed that RAD18 depletion shifts the ratio between HMW-

and LMW- CDT2 compared to the control (Figure 6A, compare

line 6 to line 7), indicating a further layer of complexity in the

relationship between CDT2 and RAD18. Altogether, our findings

suggest that CRL4A/4BCDT2 may facilitate binding of RAD18-

containing complexes to chromatin.

Discussion

In this paper we describe a new regulatory mechanism that

modulates TLS DNA synthesis during a normal S-phase, possibly

Figure 6. CRL4A/4BCDT2 modulates RAD18 binding to chromatin and PCNA monoubiquitylation. (A) HeLa cell total protein lysates were
resolved by SDS-PAGE and immunoblotted with the indicated antibodies; (AS) exponentially growing HeLa cells transfected with the indicate siRNAs,
mock or UV-irradiated; (S) HeLa cells were synchronized in mid-S-phase after transfection with the indicated siRNAs as in Figure 3A. HMW and LMW
indicates respectively slow and high migrating CDT2; Ub1 indicates mono-ubiquitin-PCNA; u indicates a not specific band. (B) HeLa cells were
synchronized in mid-S-phase, protein-protein cross-linked and harvested. Total cell protein extract was prepared. Cell lysate was subjected to
immunoprecipitation with serum as control or with the indicated antibodies. Total cells lysate (input,10%) and immunoprecipitates were
immunoblotted with the indicated antibodies (C) (D) HeLa cells were transfected with the indicated siRNAs as in Figure 3A, synchronized and
harvested in mid-S-phase. Total protein extract were fractionated into soluble and chromatin-bound fractions, resolved by SDS-PAGE and
immunoblotted with the indicated antibodies (D) MG132 was added for two hours prior to harvesting where indicated.
doi:10.1371/journal.pone.0060000.g006
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as a consequence of spontaneous DNA damage sensed by

replication forks. A large complex consisting of CRL4CDT2 and

containing both CUL4A and CUL4B regulates the recruitment of

RAD18 to chromatin and controls PCNA monoubiquitylation.

CRL4CDT2 is important for proper S-phase completion in
an unperturbed cell cycle

CRL4CDT2 promotes degradation of factors involved in

replication origins licensing, particularly CDT1, once the origin

has been fired. This activity is important to prevent reassembly of

a potential pre-replication complex; indeed inactivation of

CRL4CDT2 leads to re-replication within the same cell cycle (for

a review see [21]). A second role for CRL4CDT2, independent

form CDT1, was hypothesized but never investigated [42].We

show that after origins have been fired, and after origin–bound

CDT1 degradation has been completed, inactivation of

CRL4CDT2 does not result in further changes in the residual

CDT1 levels, but affects DNA replication by slowing down S

phase progression and by triggering a checkpoint, likely dependent

on ATR. These observations suggest that during DNA replication,

after origin firing, CRL4CDT2 may have other targets, exerting a

CDT1-independent function.

Inactivation of CRL4CDT2 in exponentially growing cells has

been previously shown to leads to a DDR activation phenotype

[22,42]. Our data suggest that this is likely due to the combination

of two independent checkpoint pathways. Indeed, DNA re-

replication caused by failure to degrade CDT1 after CRL4CDT2

inactivation causes DSBs and triggers an ATM- CHK1- depen-

dent G2 checkpoint, which is p53 independent. On the other

hand, impairment of the CDT1-independent CRL4CDT2 function

leads to replication stress and to a G2 arrest, which is ATR-

CHK1- dependent and distinct from the pathway induced by

DNA re-replication (Figure 7A)

Accordingly with the idea that DNA re-replication is a cancer

inducer [29], we also show that cells with overreplicated DNA

induced by CRL4A/4BCDT2 inactivation escape apoptosis.

The CRL4CDT2 complex contains both CUL4A and CUL4B
Having outlined a new relevant role of CRL4CDT2 during

normal S-phase progression, we investigated the involvement of

CUL4A and CUL4B in this activity. We found that in S-phase

CUL4A and CUL4B act, genetically, within the same pathway.

This observation expands the current view that two physically

independent CUL4 ubiquitin ligases complexes, one with CUL4A

and the other with CUL4B, exist and have overlapping substrates

and functions. The genetic data, together with a detailed co-IP

analysis, suggest that a complex containing both CUL4A and

CUL4B, which we indicate as CRL4A/4BCDT2, carries out two

functions in S-phase: preventing DNA re-replication and tolerat-

ing spontaneous DNA damage. There are two potential mecha-

nisms for CUL4A-CUL4B dimerization: substrate receptor

subunit-mediated dimerization and Nedd8-cullin linkage

[51,52,53]. We do not know whether CUL4A and CUL4B

directly dimerize in CRL4A/4BCDT2 or whether a CRL4ACDT2

complex binds to a CRL4BCDT2 complex through CDT2

dimerization. Further biochemical studies will be required to

address this question. Nevertheless, complex formation and

subunit dimerization may represent a new regulatory mechanism

of CRL4A/4B CDT2 activity during replication.

CSN regulates the CRL4A/4B CDT2 activity during DNA
replication

Our data provide insights on the role of the CSN complex in

regulating CRL4A/4B CDT2 activities during S-phase, helping to

clarify controversial reports on its involvement in modulating

CDT1 stability after DNA damage [7,10]. We show that CSN is

physically associated to CRL4A/4BCDT2 in S-phase. Moreover,

CSN regulates origin licensing, targeting CDT1 for degradation at

the G1/S transition; indeed loss of CSN function induces DDR

activation, G2 arrest and promotes re-replication similarly to what

observed by depleting CRL4A/4BCDT2 subunits.

CRL4CDT2 regulates binding of RAD18 ubiquitin ligase to
chromatin and modulates PCNA ubiquitylation

Previous reports indicated that CRL4CDT2 has an important

role in promoting PRR during replication of a UV damaged

template [41], where CRL4CDT2 is responsible for PCNA

monoubiquitylation in a RAD18-independent pathway [41]. We

hypothesized that the CDT1-independent function of CRL4CDT2,

may be involved in modulating PRR also during a normal S-

phase, in the absence of exogenously induced UV damage.

Indeed, we show that during S-phase CRL4CDT2 physically

interacts with PRR factors (i.e. RAD18, HLTF, SHPRH). In our

experimental conditions, CDT2 depletion greatly reduces the

RAD18-dependent S-phase specific monoubiquitylation of PCNA.

The hypothesis that CRL4CDT2 may control PRR through its

interaction with RAD18 is further supported by the observation

that, while CDT2 depletion does not affect the steady-state level of

RAD18, as previously reported [41], it decreases the levels of

chromatin-bound RAD18 in S-phase, likely through the capacity

of chromatin-bound CDT2 to interact with RAD18/HLTF and

the RAD18/SHPRH complexes.

CRL4CDT2 activity is coupled to DNA synthesis through its

binding to PCNA. PCNA-bound CRL4CDT2 oversees the

degradation of licensing factors at replication origins

[3,25,26,42], acts in the resolution of replication forks stalled at

topo I-DNA complexes [9] and, in the C. elegans embryo, controls

the removal of pol g from replication forks after TLS [43]. These

data suggest a model in which CRL4CDT2 moves along with

PCNA during replication fork progression to act as a molecular

machine committed to resolve sources of replication stress. The

existence of a feed-forward loop that amplifies the response leading

to PCNA ubiquitylation has been described very recently [40]. A

key player in this regulatory circuit is Spartan, which binds

monoubiquitylated PCNA and, by modulating RAD18 function,

enhances PCNA ubiquitylation and promotes TLS. Our findings,

showing a very similar role for CRL4A/4BCDT2, integrate this

model and suggest that CRL4A/4BCDT2, through protein-protein

interactions, enhances the binding of RAD18 to selected sites

where replication may be problematic, and amplifies the

formation of monoubiquitylated PCNA to facilitate replication

via TLS (Figure 7B).

Inactivation of the CSN-CRL4A/4BCDT2, RAD18, HLTF

pathway reduces cell survival and promote apoptosis, suggesting

that PRR may be considered as a potential target for cancer

therapy.

Materials and Methods

Cell Culture
HeLa and U2OS (ATCC HTB-96) cell lines were cultured in

DMEM containing 10% FBS, penicillin, streptomycin and L-

Glutammine and kept at 37uC in a humidified atmosphere with

5% CO2.
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Antibodies
Antibodies anti-pChk1 (Ser317), anti-RPA70 and anti-53BP1

were from Cell Signaling Technology, anti-Chk1 and anti-Actin,

anti-DDB1, anti-CSN5, anti-CUL4B from Sigma, anti-CSN2 and

PCNA from Calbiochem and anti-BrdU was obtained from BD

Biosciences; anti-ATM, anti-pCdc2 (Tyr14), anti-CDT2, anti-H3,

anti-pH3 (Ser10) and ATR, cyclin B1 (CycB1) from AbCam; anti-

cH2AX clone JBW301, anti-H2AX, anti-pATM (Ser1981) were

purchased from Upstate, anti-PARP (H-250), anti-CDT1(H-300),

anti-cyclin A (H-432) were from Santa Cruz Biotechnology, anti-

CUL4A was from Rockland; USP1 was a gift from Fanconi

Anemia Foundation.

UV and drugs treatment
Caffeine (Sigma) was used at 5 mM for 24 hrs. For UV

irradiation, medium was removed, cells were washed once with

PBS, and then irradiated with UV Stratalinker (predominantly

254 nm) at a final dose of 50 J/m2. Subsequently, the medium was

Figure 7. CSN-CRL4A/4BCDT2 functions in S-phase. CSN-CRL4A/4BCDT2 is required in two different steps of the DNA replication during a normal
cell cycle. (A) At the G1/S transition CSN-CRL4A/4BCDT2 is required to prevent DNA origins re-firing by means of a variety of molecular mechanisms.
Failure to do so causes DNA re-replication, DSBs and ATM signaling activation. Eventually, DSBs are repaired and cells with re-replicated DNA re-enter
the cell cycle and divide. Mitosis of cells with re-replicated DNA causes chromosomal aberrations that may drive tumorigenesis. Following origins
firing, replication-linked DNA damage activates regulative loops between the ATR- dependent checkpoint and PRR. Inactivation of this pathway
causes permanent replication stress, ATR hyper-signaling and eventually apoptosis. The relevance of this pathway makes it a pharmacological target
to potentially induce replication stress and apoptosis in cancer cells. (B) CSN-CRL4A/4BCDT2 regulates RAD18 recruitment to chromatin, possible in
cooperation with Spartan, in a feed-forward loop leading to the amplification of PCNA ubiquitylation and consequent error-free and error-prone TLS.
CSN-CRL4A/4BCDT2 may also contributes to the amplification of PCNA ubiquitylation by directly mono-ubiquitylating PCNA.
doi:10.1371/journal.pone.0060000.g007
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added back to the cells and the cells returned to culture conditions

for 1 h. To inhibit the proteasome activity, MG-132 (Sigma) was

added at 100 mM two hours prior to harvesting.

Protein depletion and Double Thymidine Block (DTB)
For exponentially growing, cells were seeded at low density in

plates and subjected to serial cycles of siRNA transfection; 48 h

after the last transfection, cells were harvested for western blotting

analysis, immunofluorescence and FACS analysis. For G1/S-phase

synchronization, HeLa cells were subjected to Double Thymidine

Block (DTB) as following: thymidine (Sigma), at a final concen-

tration of 2 mM, was added to a low density plated cell culture for

19 hrs. Cells were then washed 3 times with DMEM followed by a

9 hrs release. 2 mM Thymidine was added back for 16 hrs; 5 hrs

before the second thymidine addition, liposome complexed

siRNAs were added. Cells were then released for the indicated

period of time. siRNA were purchased from MWG and

Lipofectamine 2000 Transfection Reagent from Invitrogen.

FACS analysis
Cells were harvested and washed in PBS, fixed in 70% ice cold

EtOH and either stained with propidium iodide (PI) at room

temperature or processed for anti-BrdU or for anti-pH3 (Ser10)

(with AlexaFluor 488 as secondary antibody) immunolabeling to

determine S-phase, M phase and re-replicating cells. FACS

analysis were performed on a BD FACScan and quantified with

Cell Quest software (BD Bioscience). 104 events were acquired and

the same number is visualized in the PI histograms while 50% of

the total events are shown in the BrdU/PI Dot Plot.

Immunoprecipitation
HeLa cells were synchronized in mid S-phase by DTB as

described. Total cell lysates were prepared by solubilizing cells in

LYSIS BF (420 mM NaCl, 50 mM Tris-HCl pH 7.5, 1% NP-

40.5 mM MgCl2, phosphatase and protease inhibitors). After

extraction, Lysates were diluted to 150 mM NaCl. 0.5–0.8 mg of

protein extract were used for each immunoprecipitation. To co-

immunoprecipitate CDT2 with PRR factors from chromatin, the

protocol described in [39] , which requires protein-protein cross-

link, was employed. Immunoprecipitates were analysed by 4–20%

SDS-PAGE.

Whole cell extraction and subcellular fractionation
analysis

For total protein extracts analysis, cells were lysed in 1% SDS

sample buffer (62.5 mM Tris-HCl, pH 6.8, 2% wt/vol SDS, 10%

glycerol, 50 mM DTT, 0.01% wt/vol bromophenol blue), heated

at 95uC for 5 min, sonicated 10 sec, and high speed supernatant

was analysed by 4–20% SDS-PAGE. For Chromatin fraction

analysis cells were processed as previously reported in [54]

Immunofluorescence
Cells depleted of the indicated proteins, were seeded on a

coverslip. At the indicated time point, cells on coverslips were

washed once in PBS, fixed 20 min with 2% paraformaldhyde

(PFA) in PBS and permeabilized with ice cold PBS containing

0.2% Triton X-100 for 5 min (for detection of RPA foci positive

cells permeabilization was performed before fixation). Blocking

was performed in 10% BSA in PBS for 30 min and subsequently

replaced with primary antibody diluted in PBS with 0.1%

TWEEN 20 (PBST 0.1) for 2 h at room temperature. Coverslips

were washed three times in PBST 0.1 for 10 min and secondary

antibody diluted in PBST 0.1 was added (anti-mouse AlexaFluor

488 and anti-rabbit AlexaFluor 594); nuclei were counterstained

with DAPI. Cells were rinsed in PBST 0.1 three times for 10 min

and mounted using ProLong Gold (Invitrogen).

Images were taken using a Leica DMRA2 Microscope with a

1006 objective and a ViCo microscope with a 606 or 1006
magnification objective (Nikon).

53BP1 foci positive cells were counted randomly over the whole

coverslip and at least 150 cells were scored for each treatment. The

number of foci per cell was scored using ImageJ software

(threshold = 35, pixel‘2 = 5-infinity, circularity = 0.00–1.00) and

at least 50 cells were analyzed for each siRNA transfected sample.

Comet assay
The alkaline comet assay was performed according to the

Trevigen Kit Manual; briefly, after 309 in alkaline solution, The

electrophoresis was carried out in alkaline solution at 1 V/cm for

30 min at 4uC. Images were obtained using a Zeiss Axioskop and

subsequently analyzed with Comet Score Software (TriTeck

Corporation), giving the different parameters of the images.

Cytotoxicity assay and apoptosis
Cells were seeded in 96 well plate and analyzed at the indicated

time points following the last siRNA transfection cycle. CytoTox

96H Non-Radioactive Citotoxicity Assay (Promega) was used to

quantify the ratio of live and dead cells by measuring LDH into

attached cells (live cells) over LDH release into medium culture

(dead cells). The procedure was performed following manufacturer

instructions.

Protein extracts used to evaluate the contribution of apoptosis

by PARP1 and on cell mortality were prepared as follows.

Detached cells in the culture media and trypsinized attached cells

were pooled and harvested. The pellet was then lysed in 1% SDS

sample buffer (62.5 mM Tris-HCl, pH 6.8, 2% wt/vol SDS, 10%

glycerol, 50 mM DTT, 0.01% wt/vol bromophenol blue),

sonicated 10 sec, and heated to 95uC for 5 min.

Supporting Information

Figure S1 CSN-CRL4s depletion induces 53BP1 foci
with different penetrance and severity and an increase
in cH2AX. (A) HeLa cells were treated and analyzed by IF as in

Figure 1A. For each independent experiment cells were scored as

positive for 53BP1 foci if containing .5 foci. At least 50 cells per

independent experiment were scored. Number of 53BP1 foci per

cell were also counted. In the left panel it is graphically displayed

the percentage of 53BP1 foci positive cells. In the right panel the

mean of 53BP1 foci number per cell is graphically displayed as

bar. Data represent mean +S.D. of three independent experi-

ments. (B) Aliquots of the same HeLa cell populations in Figure 1A

were harvested and cell lysates were resolved by SDS-PAGE and

immunoblotted with the indicated antibodies.

(TIF)

Figure S2 CSN-CRL4CDT2 depletion induces cell cycle
block in G2 phase and re-replication. (A) HeLa cells were

depleted of the indicated proteins and cell cycle distribution was

analyzed by DNA content flow cytometry detection following

propidium iodide staining. A representative FACS profile of many

independent experiments with similar results is shown. (B) HeLa

cells transfected with the indicate siRNAs were fixed and stained

with anti–Ser10-phospho-H3 primary antibody, Alexa 488-

conjugated secondary antibody, and PI. Cells were analyzed by

FACS. The mitotic cells in square are positive for phospho-H3. (C)

HeLa cells synchronized by DTB in mid S-phase and analyzed for
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IF in Figure 1C, were checked for cell cycle phase by FACS

analysis and for protein depletion by immunoblotting.

(TIF)

Figure S3 Either DDB1- or CDT2-depleted U2OS cells
show DDR activation and cell cycle delay. U2OS cells

depleted of the indicated proteins were harvested for further

analysis. (A) Cells were fixed and stained with antibodies to H2AX

phospho-S139 (cH2AX) and 53BP1; the nucleus was counter-

stained with DAPI. A fluorescent image of a representative nucleus

is shown. A Cell sample was employed to check protein depletion

by immunoblotting. (B) The cell cycle distribution was analyzed by

DNA content flow cytometry detection following propidium iodide

staining. A representative FACS profile with percentage of cells in

each cell cycle phase of three independent experiments with

similar results is shown.

(TIF)

Figure S4 CSN-CRL4CDT2 has CDT1-dependent and
CDT1-independent functions. (A) HeLa cells were transfected

with the indicated siRNAs (6 caffeine). Cell cycle distribution was

analyzed by BrdU incorporation and DNA content flow cytometry

detection. (B) 48 hrs following the last transfection cycle with

control (siLUC), CUL4A (siCUL4A), CUL4B (siCUL4B) or both

CUL4A and CUL4B (siCUL4) siRNAs, HeLa cells were harvested

and processed for SDS-PAGE. Immunoblotting was performed

with the indicated antibodies. (C) 48 hrs following the last

transfection cycle with control (siLUC) and CSN5 (siCSN5)

siRNAs, HeLa cells were harvested and processed for SDS-PAGE.

Immunoblotting was performed with the indicated antibodies.

(TIF)

Figure S5 DDB1-depleted cells show DSBs. Alkaline

comet assay on control and DDB1-depleted HeLa cells. A

graphical representation of the mean percentage of cells with tail

moment .3 as DNA damage parameter is shown. Mean value

and error were calculated on three independent experiments.

(TIF)

Figure S6 CSN depletion activates checkpoints. HeLa

cells were harvested 48 hrs after the last transfection cycle with

control (siLUC) or both CSN2 and CSN5 siRNA (siCSN). Total

protein lysates were fractionated by SDS-PAGE and immuno-

blotted with the indicated antibody.

(TIF)

Figure S7 DDB1-depleted U2OS cells show a CDT1-
dependent and a CDT1-independent delay in G2. U2OS

cells were harvested 48 hrs after the last transfection cycle with

control (siLUC), DDB1 (siDDB1) or both DDB1 and CDT1

(siDDB1+siCDT1) siRNAs and subjected to further analysis (A)

Cell cycle distribution was analyzed by BrdU incorporation and

DNA content flow cytometry detection. In the upper panel is

shown a dual parameter dot plot of PI versus BrdU-Alexa 488. In

the lower panel is shown a histogram display of DNA content

versus counts. (B) Total protein extracts were fractionated by SDS-

PAGE and immunoblotted with the indicated antibody.

(TIF)

Figure S8 DDB1-depletd cells are a mix population of
both ATM and RPA colocalizing foci cells and RPA only
foci cells. U2OS cells were transfected with control or siDDB1.

Fixed cells were stained with the indicated antibodies. Nuclei were

stained by DAPI. (A) A fluorescent picture of a representative

microscopic field is shown. The white arrow indicates cells with

both pATM and RPA signal. The yellow arrow indicates cells with

RPA signal. (B) Cells with RPA only foci and RPA +pATM foci

were counted and represented as bar graph. Mean value and error

were calculated on three independent experiments. At least 50

cells per independent experiment were scored.

(TIF)

Figure S9 Inactivation of either HLTF/RAD18 or
CRL4CDT2 induces cell mortality. (A) and (B) U2OS cells

were transfected with the indicated siRNAs and both detached

and adherent cells were harvested. Total protein lysates were

analyzed by immunoblotting with the indicated antibodies. D
indicates caspase3-cleaved PARP1 fragment. * indicates a

background band. (C) HeLa cells were transfected with the

indicated siRNAs. 48 Hrs after last trasfection, mortality was

calculated according to the CytoTox kit manufacturer instruction.

Cell mortality percentage increase over mock is shown in table.

Data from 5 independent experiments are listed.

(TIF)
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