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Abstract

Numerous functional magnetic resonance imaging (fMRI) studies have identified multiple cortical regions that are involved
in face processing in the human brain. However, few studies have characterized the face-processing network as
a functioning whole. In this study, we used fMRI to identify face-selective regions in the entire brain and then explore the
hierarchical structure of the face-processing network by analyzing functional connectivity among these regions. We
identified twenty-five regions mainly in the occipital, temporal and frontal cortex that showed a reliable response selective
to faces (versus objects) across participants and across scan sessions. Furthermore, these regions were clustered into three
relatively independent sub-networks in a face-recognition task on the basis of the strength of functional connectivity
among them. The functionality of the sub-networks likely corresponds to the recognition of individual identity, retrieval of
semantic knowledge and representation of emotional information. Interestingly, when the task was switched to object
recognition from face recognition, the functional connectivity between the inferior occipital gyrus and the rest of the face-
selective regions were significantly reduced, suggesting that this region may serve as an entry node in the face-processing
network. In sum, our study provides empirical evidence for cognitive and neural models of face recognition and helps
elucidate the neural mechanisms underlying face recognition at the network level.

Citation: Zhen Z, Fang H, Liu J (2013) The Hierarchical Brain Network for Face Recognition. PLoS ONE 8(3): e59886. doi:10.1371/journal.pone.0059886

Editor: Maurice Ptito, University of Montreal, Canada

Received November 20, 2012; Accepted February 19, 2013; Published March 20, 2013

Copyright: � 2013 Zhen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by the National Natural Science Foundation of China (91132703, 31230031, 30800295 and 31000507) and the National Basic
Research Program of China (2010CB833903). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: liujia@bnu.edu.cn

Introduction

The ability to quickly and accurately recognize faces is arguably

one of the most developed visual skills in humans. To investigate

the neural mechanisms underlying this fascinating ability, numer-

ous functional magnetic resonance imaging (fMRI) studies have

identified multiple cortical regions that show a higher response for

faces than for non-face objects [1–5]. The most frequently

localized regions are in the occipitotemporal cortex, such as those

in the fusiform gyrus (FG, or fusiform face area, FFA) [6,7],

inferior occipital gyrus (IOG, or occipital face area, OFA) [8,9]

and posterior superior temporal sulcus (pSTS) [10,11]. These

three regions are thought to constitute the core system for face

recognition[2,12]: FG and IOG analyze invariant aspects of faces

that underlies recognition of individuals[10,13,14], whereas pSTS

processes the changeable aspects of faces such as the direction of

eye gaze, facial expression and lip movements for facilitating social

communications [10,11,15]. In addition, face-selective regions

beyond the occipitotemporal cortex have been observed. For

example, the amygdala and insula are tuned to emotional aspects

of facial expression [16–20]; a region in the intraparietal sulcus

(IPS) is activated when the direction of eye gaze shifts spatial

attention [10,11]; regions located in the temporal pole (TP) and

anterior middle temporal gyrus (aMTG) are sensitive to the

familiarity of faces [21–23]; a region in the inferior frontal gyrus

(IFG) is involved in processing the semantic aspects of faces

[22,24]; and a region in the orbital frontal cortex (OFC) is

involved in extracting information on facial beauty [25–27].

However, many previous studies focus on the functional profile

of one individual face-selective region, not the properties of the

face-processing network constituted by these regions. Yet, typical

face recognition depends not only on the intact functionality of

individual regions, but also the dynamic interaction among them

[28–32]. In this study, we asked how these face-selective regions

constitute a hierarchically structured face-processing network

through synchronized neural activation among them, henceforth

called functional connectivity. To this end, we first localized face-

selective regions in the entire brain that served as nodes for

network-level analyses. Specifically, face-selective regions were

identified for each participant guided by a group-level probabilistic

map of face-selective activation [33,34]. Second, the reliability and

selectivity of these regions were evaluated to ensure that they were

truly involved in face processing. Third, the hierarchical structure

of the face-processing network constituted by these regions was

characterized on the basis of the strength of the functional

connectivity among them. Finally, we examined the dynamic

property of the face-processing network when participants

switched tasks between face recognition and object recognition.

Methods

Participants
Forty-two college students (aged 20–30 years; 18 females)

participated in the study. All participants were right-handed and

had normal or corrected-to-normal visual acuity. Ten participants

were scanned seven times over seven consecutive days (i.e., seven

scan sessions in total), and the rest of the participants were scanned
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once. The fMRI protocol was approved by the Institutional

Review Board of Beijing Normal University, Beijing, China.

Written informed consent was obtained from all participants

before the experiment.

Experimental Procedure
In each session, two blocked-design functional localizer runs

were conducted. Each run consisted of blocks of human frontal-

view faces, familiar objects, scenes and scrambled objects.

Scrambled objects were generated by superimposing a grid over

object images and then relocating the component squares

randomly. Each run lasted 5 min and 36 sec and consisted of

sixteen 16-sec blocks (i.e., four blocks per condition) with five 16-

sec fixation periods being interleaved. During each block, twenty

exemplars of a given stimulus category were presented sequen-

tially, each of which was presented for 300 ms in the center of the

screen followed by a blank interval of 500 ms. Participants pressed

a button whenever two identical images were presented in a row

(i.e., one-back task). The task was designated to maintain roughly

the same amount of attention among stimulus categories.

fMRI Data Acquisition
Scanning was conducted on a Siemens 3T scanner (MAGEN-

TOM Trio, a Tim system) with an eight-channel phased-array

head coil at BNU Imaging Center for Brain Research, Beijing,

China. The whole brain fMRI data were collected using a T2*-

weighted gradient-echo, echo-planar imaging sequence (EPI)

(TR=2 sec, TE= 30 ms, FA=90 degrees, matrix = 64664, 25

slices, voxel size = 36364 mm). In addition, MPRAGE, an

inversion prepared gradient echo sequence (TR/TE/TI= 2.53 -

sec/3.45 ms/1.1 sec, FA= 7 degrees, voxel size = 16161 mm),

was used to acquire 3D structural images.

fMRI Data Preprocessing
fMRI data analyses were performed with fMRI Expert Analysis

Tool (FEAT) of FSL (FMRIB’s Software Library, http://www.

fmrib.ox.ac.uk/fsl). Preprocessing was performed with the default

parameters of FEAT, consisting of motion correction, brain

extraction, high-pass temporal filtering (0.01 Hz cutoff), spatial

smoothing with a Gaussian kernel (FWHM=5 mm). Then, each

run in a session was modeled separately for each participant. A

boxcar was convolved with a gamma hemodynamic response

function, and its temporal derivative was used to model blood

oxygen level-dependent (BOLD) signal changes. Statistical anal-

yses on time series were performed with FILM (FMRIB’s

Improved Linear Model) with a local autocorrelation correction.

The statistic image for each run was thresholded using clusters

determined by Z.2.3 and a corrected cluster significance of

p,0.05, assuming a Gaussian random field for the Z statistics.

Finally, the statistic image from each run was registered to each

participant’s high-resolution structural image, and then trans-

formed to the standard MNI152 template by using FLIRT

(FMRIB’s Linear Image Registration Tool) for group analyses.

Localizing Face-selective Regions
The traditional approach in defining a region of interest (ROI)

at the individual level is to select a set of activated voxels with the

consideration of between-subject variance in structural anatomy

[35,36]. However, this approach is time-consuming and heavily

relies on experimenters’ expertise in defining ROIs. In this study,

we adopted a new method, called the group-constrained subject-

specific (GSS) approach, to automatically define ROIs at the

individual level [33,34]. As its name suggests, the GSS approach

uses a probabilistic map acquired at the group level to guide the

selection of relevant voxels at the individual level.

In particular, face-selective regions were defined in four steps

with the GSS approach in this study. First, the activation maps by

the contrast of faces versus objects of all participants from the first

run of the first scan session were overlaid onto the MNI152

template to generate a probabilistic map. The value for a voxel in

the map was the number of participants who showed a significantly

higher response for faces than for objects at this voxel (Z.2.3,

cluster-corrected significance threshold p,0.05). The value,

therefore, provided an index for the consistency of activation at

the voxel level. Second, the probabilistic map was smoothed using

a Gaussian kernel (FWHM=6 mm) to eliminate spurious local

maxima. Then, the smoothed map was segmented into anatom-

ically separated regions by using a watershed algorithm [37]. The

watershed algorithm is a region-based segmentation approach, an

analogy of a landscape being flooded by water. That is, water fills

up catchment basins from the local minima to the highest peak.

During this process, water coming from different basins meets at

watershed lines, and the landscape is partitioned into multiple

regions separated by the watersheds. Here, the probabilistic map

was first flipped by multiplying 21, and was then treated as the

landscape in the watershed algorithm. That is, the local minima of

the landscape (i.e., the catchment basins) corresponded to the local

maximum of the probabilistic map, and the watershed lines were

the borders among face-selective regions. As a result, a set of

group-level ROIs were generated from the partition. The

percentage of participants who had at least one significantly

activated face-selective voxel within the ROI provided an index

for the consistency of activation at the ROI level. Of note, the

value for the consistency of activation at the ROI level was in

general larger than the value at the voxel level, because the former

did not differentiate whether face-selective voxels within the ROI

were overlapping or not. Third, a group-level ROI was removed if

it consisted of only a small portion of participants who showed

face-selective voxels in the ROI. The criterion was set to 60% (i.e.,

at least 60% of participants who had the face-selective voxels in the

ROI) to balance the need to localize as many ROIs as possible for

network analyses with the need to localize ROIs in as many

participants as possible. Finally, the group-level ROIs were

intersected with each individual’s activation map to generate

subject-specific ROIs. That is, the group-level ROIs were used to

constrain the selection of subject-specific ROIs.

Evaluating Reliability and Selectivity of the Face-selective
ROIs
Except those well-studied regions such as FG, IOG and pSTS,

the ROIs localized above may not be truly face-selective.

Therefore, before the ROIs were used to construct the face-

processing network, their reliability and selectivity were examined

with an independent set of data. The reliability analysis consisted

of cross-subject reliability and cross-session reliability. The

selectivity analysis examined whether the selectivity established

by the contrast of faces versus objects could be generalized to other

non-face objects (e.g., scenes). The scrambled object condition was

designated to localize object-selective regions (i.e., objects versus

scrambled objects), and therefore it was not used in the present

study on the face-processing network.

Cross-subject reliability. In this component, we examined

whether the ROIs defined in the first run retained their selectivity

for faces in the second run. Specifically, the percent BOLD signal

changes for faces and objects in the second run were extracted

from the ROIs defined in the first run for each participant. Pair-

wise t-tests were conducted to test whether the response for faces

Hierarchical Face-Processing Network
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was significantly higher than that for objects. The criterion for

cross-subject reliability was set to a significance level of

p,0.05(FDR corrected). ROIs that failed to meet this criterion

were removed.

Cross-session reliability. In this step, we examined wheth-

er the ROIs defined in one session could be reliably localized in

multiple scan sessions from ten participants who were scanned

once daily for seven consecutive days. An ROI was considered

face-selective in a session if there was at least one voxel in the ROI

that showed a significantly higher response for faces than for

objects. Like most power analyses, 80% was specified as the

desired level of power to be achieved in cross-session reliability, as

we expected that success (i.e., face-selective responses existed in

a face-selective ROI) was four times as likely as failure in a session.

That is, only when an ROI was found face-selective in 80% of all

scan sessions did it meet cross-session reliability. ROIs that failed

to pass the criterion were discarded.

Face selectivity. In this measurement, we examined whether

the selectivity of an ROI defined by the contrast of faces versus

objects can be generalized to other objects by comparing its

response for faces to its response for scenes that were not used to

define the ROI. Specifically, an ROI defined in the first run must

meet two criteria for face selectivity in the second run. First, the

response of an ROI for faces must be significantly higher than for

the fixation baseline. Second, the response for faces must be

significantly higher than for scenes that were not used to define the

ROI in the first run. The criterion for face selectivity was set to

a significance level of p,0.05(FDR corrected). ROIs that failed to

meet this criterion were removed.

Network Analyses on Functional Connectivity
After identifying face-selective ROIs, we investigated how they

constituted the face-processing network through functional con-

nectivity among them and what the dynamic nature of the

network was when participants switched tasks between face

recognition and object recognition.

Hierarchical clustering analysis. Here we used the

strength of functional connectivity among the ROIs to character-

ize the hierarchical structure of the face-processing network. First,

the time courses of the BOLD signals of all voxels within an ROI

in each run were extracted and averaged across voxels. Second, to

remove fluctuations from head motion, six parameters obtained by

rigid body corrections for head motion with their temporal

derivatives were regressed out from the averaged time course.

Third, the residual time courses of all face blocks in the session

from an ROI were normalized to z scores, which were then

concatenated as one continuous time course. Because there were

eight data points in a face block (i.e., 16 sec per block with TR

being 2 sec), four face blocks in a run and two runs in a session,

there were sixty-four data points in total in the time course of an

ROI of a participant. Fourth, for each participant, a matrix on

functional connectivity was created by calculating Pearson

correlation coefficient (r) between the time courses of each pair

of ROIs. The matrices were then averaged across participants.

Then, a hierarchical cluster analysis with Ward linkage method

[38] was applied to the averaged matrix to determine which pairs

of ROIs were most synchronized and which were least synchro-

nized. The value of ‘‘1– r’’ was used as an index for distance in the

clustering. The resulting clusters, or dendrogram, were assessed by

the cophenetic correlation coefficient, which is a measure of how

faithfully the dendrogram represents the dissimilarities among

observations [39]. Specially, the cophenetic correlation is defined

as the linear correlation coefficient between original distances (i.e.,

dissimilarities) used to construct the dendrogram and cophenetic

distances obtained from the dendrogram (i.e., the height of the link

in the dendrogram at which observations are first joined). The

more faithful the dendrogram is, the closer to 1 the cophenetic

correlation coefficient is. The hierarchical clustering was consid-

ered successful if the cophenetic correlation coefficient was larger

than 0.75. Finally, brain network was visualized with BrainNet

Viewer (http://www.nitrc.org/projects/bnv/).

Dynamic properties of the network. To investigate how

the face-processing network adapted to different computational

demands, we compared the connectivity matrix obtained in the

face-recognition task with that obtained in the object-recognition

task. First, the connectivity matrix for the object task was

calculated for each participant, similar to the aforementioned

matrix for the face task. Then, pair-wise t-tests were used to

examine which pairs of ROIs showed significant changes in

functional connectivity when the task was switched from the face

task to the object task. False discovery rate (FDR) was used to

correct multiple comparisons at the significance level of q=0.05.

Results

Twenty-five Face-selective Regions are Identified in the
Entire Brain
Because there is considerable amount of variability in face-

selective activation across individuals and across scan sessions [40–

42], regions that are truly involved in face processing shall meet

three criteria: (1) consistent anatomic location across individuals

(cross-subject reliability), (2) replicable selectivity for faces across

sessions within an individual (i.e., cross-session reliability), and (3)

selective responses for faces but not for a variety of non-face

objects.

To identify face-selective regions, the GSS approach (see

Methods) was used to generate a probabilistic map that showed

the degree of consistency across the participants in response to

faces (versus objects) in the brain (Figure 1). In addition to its

similarity to the statistical map from the traditional random-effect

group analysis (Figure S1), the probabilistic map provided

additional information on the consistency of face-selective

activation across the participants, with the number of participants

who showed face-selective activation at a voxel as an index for the

consistency of activation at the voxel level. The voxel with highest

consistency of activation (25 out of 42 participants) was located in

the right FG (MNI coordinates: 44, 246, 223), encompassed in

the right FFA as reported previously (e.g., [43]).

The probabilistic map was further segmented into 137

anatomically separated regions with a watershed algorithm. The

percentage of participants who showed face-selective voxels within

the ROI provided an index for the consistency of activation at the

ROI level. Among them, only 37 regions held the consistency of

activation higher than 60% (i.e., these regions contained face-

selective voxels in more than 60% of the participants) (Figure S2).

These regions were widely distributed across the entire brain,

with 32 regions in the cerebral cortex and 5 in the subcortical

regions (Figure 1). These group-level regions were then intersected

with each participant’s face-selective activation map to generate

subject-specific ROIs for each participant (Figure S3). These ROIs

in total consisted of 63.9% of all voxels showing face-selective

activation in all participants. Next, we examined the reliability and

selectivity of these 37 ROIs with an independent dataset.

The evaluation of cross-subject reliability was performed by

examining whether the face selectivity of an ROI defined across

participants in the first run remained in the second run. We found

that 36 out of 37 ROIs showed a significantly higher response for

faces than for objects in the second run (all p,0.05, FDR

Hierarchical Face-Processing Network
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corrected). The region that failed this criterion was located in the

brain stem (BS) (the magenta-colored sphere in Figure 1). In

addition, we examined the cross-session reliability of the rest of the

ROIs in the participants who were scanned seven times on

separate days. We found that 34 out of 36 ROIs showed face-

selective activation in more than 80% of the total scan sessions.

Two regions that failed this criterion were located in the anterior

portion of both the frontal poles (L and R aFP) (the blue-colored

spheres in Figure 1). By contrast, regions in the bilateral FG (L and

R FG), right superior temporal sulcus (R STS), right superior

portion of the precentral gyrus (R sPCG) and right IFG (R IFG)

were reliably localized in all scan sessions and in all participants.

In addition to the reliability of the ROIs, we examined whether

the selectivity for faces in the ROIs can be generalized to objects

that were not used to define the ROIs. We observed that ROIs in

the bilateral amygdala (L and R AMG), posterior portion of the

left supramarginal gyrus (L pSMG), and right medial frontal

cortex (R MFC) failed to show a significantly higher response for

faces than for the fixation baseline. In addition, ROIs in the left

superior and inferior precentral gyrus (L sPCG and L iPCG), left

intraparietal sulcus (L IPS), the left middle frontal gyrus (L MFG)

and left thalamus (L THA) did not show a significantly higher

response for faces than for scenes (the cyan-colored spheres in

Figure 1) (See Figure S4 for the magnitude of responses).

Figure 1. Probabilistic map and peak locations of group-level ROIs overlaid on mean MNI152 brain surface. The probabilistic map was
created by overlaying participants’ binarized activation maps with the contrast of faces versus objects. Color bar indicates the number of participants
who showed face-selective activation. Spheres indicate the peak locations of thirty-seven group-level ROIs. ROIs that failed to meet the criteria of
cross-subject reliability, cross-session reliability and face selectivity were colored with magenta, blue and cyan, respectively. ROIs that met all criteria
were colored with green. L: left hemisphere; R: right hemisphere.
doi:10.1371/journal.pone.0059886.g001
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The remaining 25 regions satisfied both the reliability and

selectivity criteria (the green-colored spheres in Figure 1) (Table 1

and Figure S5). They were distributed throughout the brain and

were approximately symmetrically located in both hemispheres,

with the total size of the ROIs in the right hemisphere (RH:

5.626104 mm3) being about two times larger than that in the left

hemisphere (LH: 2.756104 mm3). Next, we characterized the

hierarchical structure of the face-processing network comprised of

these 25 face-selective regions through functional connectivity.

The Face-processing Network Consists of Three Sub-
networks
The face-processing network was constructed on the basis of the

strength of the functional connectivity among the ROIs when the

participants performed a face-recognition task. Functional con-

nectivity between a pair of ROIs was calculated as the temporal

correlation between the time courses extracted from the ROIs. On

average, the functional connectivity between all pairs of ROIs was

relatively strong (mean 6 standard deviation: 0.4560.1). Impor-

tantly, the hierarchical clustering analysis on the functional

connectivity matrix revealed that the face-selective ROIs were

grouped into three relatively independent sub-networks (Cophe-

netic correlation coefficient = 0.86) (Figure 2A). ROIs in the

occipital (L and R IOG) and temporal cortex (L FG, R FG and L

aFG) formed the first sub-network (Figure 2B, blue). The second

sub-network consisted of ROIs in the frontal cortex (L pIFG, R

MFG and R IFG), precentral gyrus (R iPCG and R sPCG),

parietal cortex (R IPS and R pSMG), lingual gyrus (L and R

LING) and right thalamus (R THA) (Figure 2B, red). The rest of

the ROIs in the frontal cortex (R pFP, R OFC and L aIFG),

lateral occipital cortex (L LOC), superior temporal sulcus (L and R

STS), paracingulate gyrus (L and R CING) and insular cortex (L

and R INS) constituted the third sub-network (Figure 2B, green).

In addition, the hierarchical clustering analysis revealed that both

the distance between the identification and semantic sub-network

and that between the identification and expression sub-network

were larger than the distance between the semantic and expression

sub-networks, suggesting that the identification sub-network is

more distinct from the rest of the two sub-networks.

One possible interpretation of the hierarchical structure of the

face-processing network is that it may result from anatomical

distance between the face-selective regions. Because the strength of

functional connectivity is inversely correlated with the anatomical

distance between regions, it is expected that neighboring ROIs

were clustered together (e.g., IOG and FG). However, the

anatomical distance cannot fully account for the hierarchical

structure of the face-processing network for three reasons. First,

the interhemispheric pairs of homologous ROIs (e.g., L and R FG)

showed strong long-range connectivity, and they were grouped

into the same sub-network at the first level. Second, some

intrahemispheric regions that are located in different lobes, such as

the ROIs from the occipitotemporal cortex (e.g., STS and LOC)

and from the frontal cortex (e.g., R pFP, R OFC and L aIFG)

were clustered into the same sub-network. Finally, the hierarchical

clustering analysis based on the anatomical (Euclidean) distance

among these ROIs generated a qualitatively different set of sub-

networks (Figure S6). Therefore, the hierarchical structure based

on functional connectivity partly reflects the network-level

property of the face-processing network in processing faces.

IOG Serves as an Entry Node in the Face-processing
Network
We further asked how the face-processing network dynamically

adjusts its weights in functional connectivity among constituent

nodes to adapt to different computational demands. To this end,

a new functional connectivity matrix of the ROIs was generated in

the object-recognition task in the same manner as that in the face-

recognition task. Then, the functional connectivity matrix

acquired in the object-recognition task was compared to that in

the face-recognition task. That is, changes in functional connec-

tivity were examined on each pair of ROIs when the task was

switched from the face task to the object task. We found that the

functional connectivity in the face-processing network in general

was significantly reduced when the participants switched to the

object-recognition task from the face-recognition task (FDR,

q,0.05). Interestingly, the significant decrease in functional

connectivity was mainly found between the IOG (i.e., OFA) and

the rest of the ROIs. Specifically, 21 out of 24 ROIs showed

reduced functional connectivity with the right IOG, whereas 20

out of 24 ROIs showed reduced connectivity with the left IOG (all

p,0.05, FDR corrected) (Figure 3). In addition, the functional

connectivity between the left and right LING, left and right FG,

right FG and right STS, right IFG and right FG, and right THA

and left pIFG was also reduced (all p,0.05, FDR corrected). No

other significant decrease in functional connectivity was observed

(all p.0.05). Interestingly, the significant changes in connectivity

mainly occurred both within the identification sub-network and

between the identification sub-network and the rest of two other

two sub-networks because the only difference of the two tasks was

the category of stimulus.

Discussion

In this study, we characterized the face-processing network

comprised of face-selective regions in the brain. We first identified

twenty-five regions showing reliable face-selective activation across

participants and across scan sessions. The functional connectivity

analysis revealed that these regions were clustered into three

relatively independent sub-networks. Importantly, the IOG may

serve as an entry node of the face-processing network, as the

functional connectivity between the IOG and the rest of the

regions were significantly decreased when the participants

switched from the face-recognition task to the object-recognition

task. In short, our study provides some of the first empirical

evidence of the face-processing network throughout the brain,

inviting further studies on face recognition from the network

perspective.

Nodes are the functional building blocks of brain networks. In

addition to the well-studied face-selective regions in the occipito-

temporal cortex, reliability and selectivity of the remainder of the

face-selective regions must be evaluated before they may be

considered as nodes functioning in the face-processing network.

That is, a face-selective region should not only show a significantly

higher response to faces (versus a variety of non-face objects) but

also be reliably replicated across participants and across scan

sessions. On the basis of these criteria, twenty-five regions were

identified in the brain, comprised of nearly all of the face-selective

regions previously identified [2,34,44,45]. Interestingly, the

massive cluster in the frontal cortex was found to contain multiple

peaks, and thus was further divided into various smaller face-

selective regions (e.g., IFG, sPCG, iPCG, OFC and pFP).

Furthermore, the functional connectivity analysis revealed that

these frontal regions belonged to different sub-networks. Future

work is required to elucidate the functional divisions of labor

Hierarchical Face-Processing Network
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among these regions in the frontal cortex. In contrast, regions in

the amygdala and anterior temporal lobe that were previously
identified as face-selective regions did not meet the selectivity

criterion in the current study, possibly because we used novel faces

with neutral expressions [16,18,20].

The functional connectivity analysis revealed that these face-

selective regions were organized in a hierarchical structure with

three sub-networks. The first sub-network consisted of the IOG

and FG, presumably involved in recognizing face identity

[10,13,14]. Regions such as the MFG and IFG formed the second

sub-network, possibly involved in accessing semantic information

contained in faces [22,24]. The third sub-network was constituted

by the regions that seem tuned to facial expression, such as the

STS, OFC, and INS [16,17,20]. These three sub-networks derived

from the functional connectivity analysis extend the neural model

proposed by Haxby and colleagues (2000) [2] (see also Bruce and

Young, 1986 [46]). The first sub-network identified in this study

corresponds to the core system in the model that is engaged in

representing invariant aspects of faces to discriminate individuals.

Importantly, our study demonstrates that the extended system in

the model can be further divided into two sub-systems, one for

processing facial expressions and the other for analyzing semantic

information associated with faces.

However, the three face sub-networks are not completely

independent; instead, face-selective regions in one sub-networks

may possess functions of another sub-network. For example, the

FG in the identification sub-network also shows a higher response

for expressive faces than neutral faces [20,47–50], while the STS

in the expression sub-network shows an adaptation effect not only

to facial expression but also to facial identity [51,52]. The division

of the face-processing network into three sub-networks does not

contradict with these findings. First, although some face-selective

regions may be involved in multiple functions, they show different

levels of preferences in processing different aspects of faces. For

example, the STS prefers to process facial expression, whereas the

FG prefers to process facial identity [10]. Second, the hierarchal

cluster analysis in this study was based on the relative, not

absolute, separability of the face-selective regions, or their

Figure 2. Hierarchically structured face-processing network. (A) Dendrogram from the hierarchy clustering analysis based on the strength of
functional connectivity among the face-selective ROIs when the participants performed a face recognition task. The face-processing network consists
of three relatively independent sub-networks that correspond to the recognition of individual identity (Identification), retrieval of personal
knowledge (Semantic) and analysis of facial expression (Expression). (B) Sub-networks are displayed on the mean MNI152 brain surface with nodes
and edges. The sub-network for Identification, Semantic, and Expression is colored with blue, red and green, respectively. Note that for display
purposes, edges between the sub-networks are not shown.
doi:10.1371/journal.pone.0059886.g002

Figure 3. The IOG plays a pivotal role in the face-processing
network. The matrix indicates changes in functional connectivity
among the face-selective regions when the participants switched from
the face-recognition task to the object-recognition task. Black cells
indicate that the change in functional connectivity is not significant,
whereas colored cells show that the functional connectivity between
the face-selectivity regions is significantly reduced (p,0.05, FDR
corrected). Note that the decrease in functional connectivity is mainly
observed between the IOG (i.e., OFA) and the rest of the face-selective
regions.
doi:10.1371/journal.pone.0059886.g003
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preferences in processing different aspects of faces. Therefore, the

distinctions among the sub-networks are relative, and regions in

one sub-network may be recruited to process faces jointly with

regions in other sub-networks.

Interestingly, the functional connectivity in the face-processing

network was generally reduced when the task was switched from

face recognition to object recognition, suggesting that the face-

processing network dynamically adjusts its weight in connectivity

among the face-selective regions to adapt to different computa-

tional demands. Importantly, the IOG, which abuts the FG

ventrally and STS dorsally, plays a pivotal role in dynamically

adjusting the weights, as the functional connectivity between IOG

and the rest of the face-selective regions was decreased after the

task was switched from face recognition to object recognition. This

observation is consistent with the previous finding that the IOG is

activated around 100 ms after stimulus onset [53,54] and then

provides input to both the FG and STS [29,30]. In addition,

although IOG is specialized in processing faces, it processes faces

in the parts-based fashion, similar to the manner in which non-face

objects are processed [54–58]. Therefore, the IOG may serve as

a bridge connecting two types of processing: the holistic processing

of faces and the parts-based processing of objects, which makes it

perfectly suitable as a critical node that connects the face-

processing network and the network involved in processing non-

face objects. However, this finding does not necessarily suggest

that the IOG is the only node that the information flowing from

the early visual cortex to the face-processing network. Instead,

previous studies have suggested the existence of other possible

pathways. For example, one study have reported that the face-

selective response in FG is earlier than that in the IOG[59], and

the FG and STS are properly activated by faces despite the IOG

lesions [60].

Several issues remain unaddressed in this study. First, the

regions identified in this study showed clear face-selective

activation, but they may not necessarily be dedicated to face

perception; instead, some of them are likely involved in general

cognitive functions, such as inferring others’ intention[10,61],

accessing knowledge about others [22,24], or directing one’s own

attention to objects and events that others are looking at [10,11].

They are simply automatically recruited to act in concert with the

face-selective regions when faces are presented. Second, the face-

selective regions identified in the study are not exhaustive since the

activation of a region is determined by many factors, such as the

context of semantic information, information from different

sensory modalities, and task requirements. That is, more regions

are likely to be identified when other types of tasks or stimuli are

used (e.g., tasks concerning facial expressions or gender) [48,62].

Accordingly, the hierarchical structure may be changed to reflect

the intrinsic properties of cognitive processes specified by tasks and

stimuli. Future work is needed to examine how the face-processing

network dynamically adjusts its weights among constituent nodes

under different computational demands. Third, the functional

connectivity analysis is not able to demonstrate how information

flows within the network. Effective connectivity approaches, such

as the dynamic causal model, may provide additional information

on the face-processing network.

Supporting Information

Figure S1 Face-selective activation map from random-
effect group analysis. The activation map is generated by

a general linear model with the contrast of faces versus objects

from each participant as input and then models the variability

between participants as a random effect. Color bar indicates the z-

score from the contrast of faces versus objects in the group

analysis. L: left hemisphere; R: right hemisphere.

(TIF)

Figure S2 Thirty-seven group-level ROIs coded in
different colors. The ROIs are widely distributed across the

brain, and together they capture 63.9% of total face-selective

activation in all participants. The ROIs are labeled in random-

rainbow color. The z coordinate increases 2 mm per slice from the

upper left corner (z =236) to the lower right corner (z = 70).

(TIF)

Figure S3 Five exemplar GSS ROIs at the individual
level from a representative participant. From top to

bottom, the ROIs are FG, IOG, STS, MFG and aFP. The

group-level ROIs are outlined in blue and the subject-specific

activation is shown in red.

(TIF)

Figure S4 Percent BOLD signal changes for the 37
ROIs. (A) The BOLD response for faces, objects, scenes and

scrambled objects in the 25 ROIs that met the three criteria (i.e.,

cross-subject reliability, cross-session reliability and face selectiv-

ity). (B) The 12 ROIs that failed to meet at least one of the criteria.

The y-axis indicates the percent BOLD signal change for each

condition relative to the baseline condition (i.e., fixation). Error

bars denote standard error of the mean.

(TIF)

Figure S5 Distribution of the 25 group-level ROIs that showed

reliable face-selective activation across participants and across

sessions. The ROIs are labeled in random-rainbow color. The z

coordinate increases 4 mm per slice from the upper left corner

(z =228) to the lower right corner (z = 52).

(TIF)

Figure S6 Dendrogram from the hierarchal clustering
analysis based on anatomical distance between face-
selective ROIs. The anatomical distance between a pair of

ROIs is calculated as the Euclidean distance between the peak

coordinates of the ROIs. The dendrogram is generated in the

same manner as the dendrogram based on functional connectivity.

(TIF)
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