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Abstract

Context: Adipokines are linked to the development of cardiovascular dysfunction in type 2 diabetes (DM2). In DM2-patients,
circulating levels of omentin-1, an adipokine preferentially expressed in epicardial adipose tissue, are decreased. This study
investigated whether omentin-1 has a cardioprotective function.

Methods: Omentin-1 levels in plasma and cardiac fat depots were determined in DM2-patients versus controls. Moreover,
the relation between omentin-1 levels and cardiac function was examined in men with uncomplicated DM2. Finally, we
determined whether omentin-1 could reverse the induction of cardiomyocyte dysfunction by conditioned media derived
from epicardial adipose tissue from patients with DM2.

Results: Omentin-1 was highly expressed and secreted by epicardial adipose tissue, and reduced in DM2. Circulating
omentin-1 levels were lower in DM2 versus controls, and positively correlated with the diastolic parameters early peak filling
rate, early deceleration peak and early deceleration mean (all P,0.05). The improved diastolic function following
pioglitazone treatment associated with increases in omentin-1 levels (P,0.05). In vitro, exposure of cardiomyocytes to
conditioned media derived from epicardial adipose tissue from patients with DM2 induced contractile dysfunction and
insulin resistance, which was prevented by the addition of recombinant omentin.

Conclusion: These data identify omentin-1 as a cardioprotective adipokine, and indicate that decreases in omentin-1 levels
could contribute to the induction of cardiovascular dysfunction in DM2.
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Introduction

Cardiac dysfunction and myocardial insulin resistance are

common in patients with type 2 diabetes (DM2) [1,2]. Recent

studies have implicated adipokines in the pathogenesis of these

cardiac alterations [3–6]. Omentin-1 is an adipokine with

decreased circulating levels in conditions associated with insulin

resistance [7–12]. Plasma omentin-1 levels inversely correlate with

body mass index (BMI), fat mass, and fasting plasma insulin, and

positively with insulin sensitivity, adiponectin, high density
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lipoprotein cholesterol, and endothelial function [8,10,11,13,14].

In vitro, omentin-1 enhances insulin-mediated stimulation of Akt-

phosphorylation, glucose uptake and inhibits tumor necrosis factor

a-induced inflammation [15,16]. This indicates that omentin-1,

like adiponectin, may act as a protective adipokine.

Omentin-1 is abundantly expressed in epicardial adipose tissue

(EAT), a visceral fat depot located around the heart and coronary

arteries [5,17]. Since EAT is not separated by a fascia from the

myocardium, factors secreted from EAT may directly affect

cardiac function [3,5,18,19]. We examined whether omentin-1

expression and secretion in various adipose tissue depots, including

EAT, pericardial, and subcutaneous adipose tissue, is altered in

patients with DM2. Furthermore, we evaluated whether omentin-

1 levels were associated with metabolic and cardiac parameters in

men with uncomplicated DM2 before and after intervention with

the insulin-sensitizing drug pioglitazone, which is known to act

predominantly on adipose tissue and was shown to improve

cardiac diastolic function in this cohort [20,21]. Finally, we

examined whether recombinant omentin-1 prevents the abroga-

tion of insulin action and induction of contractile dysfunction in

primary rat cardiomyocytes by conditioned media derived from

EAT from patients with DM2.

Materials and Methods

Patient Characteristics
The patient samples used in this study were collected from two

distinct cohorts.

At the University Hospital in Duesseldorf (Germany), Caucasian

men undergoing coronary artery bypass grafting with or without

additional valve replacement surgery consented to the collection of

biopsies from EAT, pericardial, and intrathoracic subcutaneous

adipose tissue after written informed consent. The procedure to

obtain adipose tissue samples was approved by the medical ethical

committee of the Heinrich-Heine-University (Duesseldorf, Ger-

many), and the study was conducted in accordance with the

principles of the Declaration of Helsinki. Patients of other ethnic

origins, diagnosed as having human immunodeficiency virus

infection, lipodystrophy or chronic coexistent inflammatory

disease were excluded from participation. Participants were

distributed into two groups, i.e. those with and those without

DM2, on the basis of the diagnosis ‘DM2’ in the medical record of

the patient. Adipose tissue biopsies were either used to generate

conditioned media (CM), or snap-frozen in liquid nitrogen and

stored at 280uC for protein extraction.

Circulating omentin-1 levels were determined in 78 men with

uncomplicated DM2 from the previously described PIRAMID

(Pioglitazone Influence on tRiglyceride Accumulation in the

Myocardium in Diabetes) study [22] and 14 healthy men, aged

45–65 years, with normal glucose metabolism as determined by

a 75-g oral glucose tolerance test, which served as control subjects

[23] (Clinical trial registration number (unique identifier):

ISRCTN53177482; URL: http://www.controlled-trials.com/

ISRCTN53177482). Participating healthy controls and men with

uncomplicated DM2 had a body mass index (BMI) between 25–

32 kg/m2, and a blood pressure lower than 150/85 mm Hg (with

or without the use of antihypertensive drugs). Furthermore, only

DM2 patients with glycosylated hemoglobin (HbA1c) between

6.5–8.5% were eligible for inclusion. Patients with DM2 diagnosed

as having any symptoms or history of diabetes-related complica-

tions, or cardiovascular or liver disease, as well as prior use of

thiazolidinediones or insulin, were excluded from participation.

Exclusion criteria for healthy controls were a history or current

cardiovascular disease, dyslipidemia, and the use of any prescribed

medication. The clinical studies were conducted at two university

medical hospitals in the Netherlands (Leiden University Medical

Center, Leiden, and VU University Medical Center, Amsterdam),

were approved by the medical ethics committee of both centers,

and performed in full compliance with the Declaration of Helsinki.

Eligible participants with DM2 ceased their regular blood glucose

lowering agents before entering a 10-week run-in period in which

they were transferred to glimepiride monotherapy and titrated

until a stable dose was reached 2 weeks before randomization.

Then, participants with DM2 were randomized to pioglitazone

(15 mg once daily, titrated to 30 mg once daily after 2 weeks) or

metformin (500 mg twice daily, titrated to 1000 mg twice daily) in

addition to glimepiride throughout the study. Details on

assessment of cardiac function, aortic pulse wave velocity and

distensibility, and volume of pericardial and visceral abdominal

adipose tissue in the study groups have been described elsewhere

[21–24]. Insulin sensitivity was assessed by a euglycemic hyper-

insulinemic clamp using an insulin infusion rate of 40 mU.m22.-

min21 as previously described [25,26]. Fasting plasma samples for

determination of omentin-1 levels were collected before random-

ization and in the case of participants with DM2 after 24 weeks of

pioglitazone or metformin therapy.

Generation of Conditioned Media
CM was generated as described previously [3,27,28]. Briefly,

freshly collected adipose tissue biopsies were washed 3 times with

phosphate-buffered saline (PBS), supplemented with antibiotic-

antimycotic (Invitrogen, Carlsbad, CA, USA) at 37uC, and cut

into 10 mg pieces. Subsequently, the pieces were washed 3 times

with PBS, centrifuged for 1 min at 1200 rpm at room tempera-

ture, and cultured overnight in adipocyte medium containing

Dulbecco’s modified Eagle medium F12 supplemented with 10%

fetal calf serum, 33 mmol/L biotin, 17 mmol/L panthothenate (all

from Invitrogen, Carlsbad, CA, USA), and antibiotic-antimycotic,

in a humidified atmosphere (95% air and 5% CO2) at 37uC. Then,
CM was generated by culturing the explants in serum-free

adipocyte medium (100 mg explants/mL) for 24 h. The CM

was collected and stored as aliquots at 280uC until further use.

Omentin-1 Levels
Omentin-1 levels in human plasma and CM were determined

using an omentin-1 Enzyme Linked Immuno Sorbent Assay

(ELISA; USCN Life Science Inc, Cologne, Germany). The intra-

and interassay coefficients of variation for the omentin-1 ELISA

were less than 6.7% and 9.1%, respectively. For protein

expression, biopsies were homogenized in 50 mM Tris.HCl

[pH 7.5], 150 mM NaCl, 0.5% Triton X-100, 1 mM NaF,

1 mM Na3VO4, 2 mM MgCl2, 1 mM DTT, and protease

inhibitors (Complete, Roche Diagnostics, Mannheim, Germany).

Then, homogenates were cleared by centrifugation (15 min;

12.000 rpm; 4uC), and protein content was determined using

Bradford reagent (Biorad Laboratories, Munich, Germany).

Protein expression was determined by Western blot analysis of

ten microgram of protein using omentin-1 antibody (R&D

systems, Minnesota, MN, USA). Immunoblots were quantified

using a LUMI Imager system (Roche Diagnostics, Mannheim,

Germany), and normalized by reprobing the stripped filters with

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) antibody

(Abcam plc, Cambridge, UK).

Preparation of Adult Rat Cardiomyocytes
Animal experiments were performed in accordance with the

‘Principle of laboratory animal care’ (NIH publication No. 85–23,

revised 1996) and the current version of the German Law on the
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protection of animals, and were approved by the animal ethics

committee of the Heinrich Heine University (Duesseldorf,

Germany). Cardiomyocytes were isolated from male Lewis rats

(Lew/Crl) weighing 150–300 gram using a Langendorff perfusion

system as described [29]. Briefly, rats were killed following

anaesthesia with ketamine (100 mg/kg; Ratiopharm, Ulm,

Germany) and xylazine (Rompun, 5 mg/kg) (Bayer Healthcare,

Leverkusen, Germany). The isolated heart was retrograde

perfused using a Langendorff perfusion system and digested with

a buffer containing collagenase (Worthington, Lakewood, NJ,

USA) and hyaluronidase (Applichem, Darmstadt, Germany).

Isolated cardiomyocytes were seeded in Medium 199 with Hank’s

salts, supplemented with ITS (insulin, transferrin, selenium),

100 U/mL penicillin, 100 mg/mL streptomycin and 5% fetal

calf serum (all from PAA laboratories, Pasching, Austria) on

laminin-coated 35 mm culture dishes (for signaling experiments:

Greiner Bio-One GmbH, Solingen, Germany; for fluorescence

analysis: ibidi GmbH, Martinsried, Germany). The medium was

renewed after 4 h, and culture was continued overnight.

Analysis of Contractile Function and Insulin Signaling
To determine contractile function, isolated cardiomyocytes were

cultured overnight and then preloaded with Fura-2-AM (Merck

chemicals, Darmstadt, Germany) for 25 min at room temperature.

Then, cultures were washed twice with adipocyte medium and

incubated for 30 min with CM (diluted 1:6 with adipocyte

medium) or adipocyte medium in the presence or absence of

300 ng/mL recombinant human omentin (Cell systems GmbH,

Germany; CS-C1212). Subsequently, sarcomere shortening and

Ca2+-transients were analyzed using an IonOptix system (Milton,

MA, USA) as described [3]. For analysis of Akt-phosphorylation

by Western blotting, cardiomyocytes were incubated for 24 h with

CM (diluted 1:6 with adipocyte medium) or adipocyte medium in

the presence or absence of 300 ng/mL recombinant human

Table 1. Characteristics of patients from which adipose tissue
biopsies were collected.

ND-patients
(n =11)

DM2-patients
(n=14)

Anthropometric parameters:

Age (years) 68.462.2 71.962.4

BMI (kg/m2) 26.961.3 28.961.1

Fasting plasma glucose (mg/dl) 96.8611 132620*

Medication use:

lipid-lowering 7 8

diuretics 4 6

anti-hypertension 9 8

glucose-lowering 0 5*

Data are presented as mean 6 SD. P-values for differences between
anthropometric variables were calculated using the Mann-Whitney U-test in
case of continuous data, and using Fisher’s exact test for medication use.
*P,0.05. BMI, body mass index; DM2, type 2 diabetes; ND, non-DM2.
doi:10.1371/journal.pone.0059697.t001

Figure 1. Expression and secretion of omentin-1 in intrathoracal adipose tissue depots. Representative Western blot (A) and
quantification (B) of omentin-1 expression in paired epicardial (EAT), pericardial (PAT), and subcutaneous (SAT) adipose tissue biopsies of patients
with (DM2, n = 7) and without (ND, n = 6) type 2 diabetes. Equal loading was verified by probing the immunoblots with glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) antibody. (C) Quantification of omentin-1 levels in conditioned media generated from paired EAT, PAT and SAT explants
from DM2- and ND-patients. Data are expressed as mean 6 SEM (n= 6 patients per group). ***indicates P,0.001; **P,0.01, *P,0.05 for differences
between ND and DM2 (ANOVA followed by Bonferonni analysis for multiple comparisons); ###indicates P,0.001; ##P,0.01, and #P,0.05 for
differences between the various fat depots (paired t-test).
doi:10.1371/journal.pone.0059697.g001
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PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e59697



Table 2. Characteristics of subjects for determination of circulating omentin-1 levels.

Controls (n =14) DM2-patients (n =78)

Baseline characteristics, fat volume, insulin sensitivity

Age, years{ 54.567.1 56.565.6

BMI, kg/m2{ 27.062.5 28.763.5**

Disease duration, years{ n.a. 4 (2–6)

Visceral abdominal fat volume, mL 326 (195–422) 408 (300–531)*

Subcutaneous abdominal fat volume, mL 528630 6846258*

Pericardial fat volume, mL 26.9610.2 29.869.7

M-value, mg/kg.min{ 8.1 (7.4–10.0) 2.7 (1.6–4.2)***

Plasma parameters

Fasting plasma glucose, mmol/L{ 5.3 (5.0–5.6) 8.3 (7.1–10.0)***

Fasting plasma insulin, pmol/L{ 28 (19–33) 64 (36–92)***

HbA1c, %{ 5.360.2 7.161.0***

Total cholesterol, mmol/L{ 5.360.7 4.761.0***

HDL-cholesterol, mmol/L{ 1.4 (1.3–1.6) 1.1 (0.9–1.3)***

Triglycerides, mmol/L{ 0.9 (0.7–1.1) 1.5 (1.0–2.2)***

Plasma non-esterified fatty acids, mmol/L{ 0.46 (0.37–0.52) 0.50 (0.40–0.62)

Myocardial metabolism

Myocardial triglyceride content, %{ 0.57 (0.43–0.85) 0.81 (0.52–1.05)#

MMRglu, nmol/ml/min{ 834.96202.8 402.06152.6***

MFAU, nmol/ml/min{ 55.3 (45.0–71.6) 85.7 (63.7–130.8)*

MFAO, nmol/ml/min{ 51.9 (39.4–69.9) 77,6 (61.9–103.3)**

MFAE, nmol/ml/min{ 3.42 (1.70–5.59) 0.0011 (0–2.61)#

Hemodynamic parameters, cardiac dimensions and function

Systolic blood pressure, mm Hg{ 118611 128612***

Diastolic blood pressure, mm Hg{ 7268 7667*

Heart rate, beats/min{ 56 (51–62) 64 (60–70)***

Rate pressure product, (beats/min).mm Hg{ 668461441 834561457***

LV mass, gram{ 111624 107617

LV mass/volume ratio, gram/mL 0.6260.09 0.7060.11*

LV end diastolic volume, mL{ 181656 156625***

LV end systolic volume, mL{ 72 (63–82) 59 (52–71)**

Stroke volume, mL{ 107623 94616**

Ejection fraction, %{ 5964 6066

Cardiac output, L/min 623761324 617561160

Pulse wave velocity, m/s 5.4 (4.9–6.2) 6.3 (5.5–7.0)**

Aorta ascendens distensibility, 1023 mm Hg21 6.2 (4.8–7.7) 3.2 (2.3–5.9)***

E acceleration peak, mL/s2.1023 5.9 (4.9–8.7) 6.3 (5.6–7.5)

E acceleration mean, mL/s2.1023 4.3 (3.0–5.5) 4.0 (3.3–4.6)

E peak filling rate, mL/s{ 5036112 417684***

E deceleration peak, mL/s2.1023{ 4.73 (3.11–5.19) 3.40 (2.89–3.99)**

E deceleration mean, ml/s2.1023 2.7160.80 2.2660.67*

E/A peak ratio 1.2660.36 1.0460.25*

Data are mean 6 SD or median (interquartile range). P-values for differences between variables were calculated using the students t-test in case of normally distributed
data, or the Mann-Whitney U-test in case of non-Gaussian distributions data.
***indicates P,0.001;
**P,0.01;
*P,0.05;
#P,0.10. A, diastolic atrial contraction; BMI, body mass index; DM2, type 2 diabetes; E, early diastolic filling phase; HbA1c, glycated hemoglobin; HDL, high-density
lipoprotein; LV, left ventricular; MFAE, myocardial fatty acid esterification; MFAO, myocardial fatty acid oxidation; MFAU, myocardial fattu acid uptake; MMRGlu,
myocardial metabolic glucose metabolism; M-value, whole body insulin sensitivity.
{adapted from Rijzewijk et al. 2009 [23].
doi:10.1371/journal.pone.0059697.t002
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omentin. Then, cells were stimulated for 10 min with 100 nM

insulin, and lysed as described [3].

Statistical Analysis
Data are presented as mean 6 standard error of the mean or

median (interquartile range) in case of a non-Gaussian distribu-

tion. Significant differences between the variables were evaluated

as indicated in the legends to the Figures and Tables. Correlation

coefficients were calculated using the Pearson’s correlation.

Linearity of the regression models was judged based on histograms

and scatter plots. Because no interactions were found between

group and dependent variables, both groups were analyzed as one

for regression analysis. Additional potential confounders were

investigated by adding group state, BMI, and M-value for insulin

sensitivity for associations of omentin-1. Variables that changed

the regression coefficients by more than 10% were included in the

adjusted model. IBM SPSS Statistics version 20 was used for these

Figure 2. Plasma omentin-1 levels in men with uncomplicated type 2 diabetes. Plasma omentin-1 levels, fat distribution, insulin sensitivity
and diastolic parameters were determined in healthy control men (n = 14) and men with uncomplicated type 2 diabetes (DM2) (n = 78). (A) Whisker
plot (median, min-max) depicting plasma omentin-1 levels in controls and DM2-patients. Differences in circulating omentin-1 levels were analyzed
using a Mann-Whitney U-test. **indicates P,0.01. Regression analysis identified significant correlations between baseline omentin-1 plasma levels
and E peak filling rate (B), early deceleration peak (C), M-value (D), visceral fat volume (E), and systolic blood pressure (F). A straight line indicates
a regression line for all subjects. A dashed line indicates a regression line for healthy controls only.
doi:10.1371/journal.pone.0059697.g002

Omentin-1 and Cardiac Function
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Table 3. Correlations between plasma omentin-1 levels and anthropometric, plasma, hemodynamic parameters, and cardiac
dimensions and function.

All subjects (n =92) Controls (n =14) DM2-patients (n =78)

Baseline characteristics, fat volume, insulin sensitivity

Age, years 20.025 20.061 0.005

BMI, kg/m2 20.219* 20.069 20.184

Disease duration, years n.a. n.a. 0.131

Visceral abdominal fat volume, mL 20.269** 20.363 20.205#

Subcutaneous abdominal fat volume, mL 20.176# 0.037 20.149

Pericardial fat volume, mL 20.180# 20.288 20.138

M-value, mg/kg.min 0.379*** 0.502 0.322**

Plasma parameters

Fasting plasma glucose, mmol/L 20.227* 0.059 20.090

Fasting plasma insulin, pmol/L 20.378*** 0.117 20.379***

HbA1c, % 20.259* 20.589# 20.146

Total cholesterol, mmol/L 0.235* 0.703* 0.152

HDL-cholesterol, mmol/L 0.280** 0.187 0.230*

Triglycerides, mmol/L 20.173 0.474 20.131

Plasma non-esterified fatty acids, mmol/L 20.050 20.345 0.015

Myocardial metabolism

Myocardial triglyceride content, %{ 0.156 20.439 20.087

MMRglu, nmol/ml/min 0.142 20.106 0.142

MFAU, nmol/ml/min 20.115 20.510 20.057

MFAO, nmol/ml/min 20.130 20.420 20.064

MFAE, nmol/ml/min 20.008 20.128 20.030

Hemodynamic parameters, cardiac dimensions and function

Systolic blood pressure, mm Hg{ 20.130 0.709** 20.108

Diastolic blood pressure, mm Hg{ 20.037 0.476 20.113

Heart rate, beats/min{ 20.221* 20.210 20.153

Rate pressure product, (beats/min).mm Hg{ 20.243* 0.117 20.184

LV mass, gram{ 20.071 0.164 20.147

LV mass/volume ratio, gram/mL 20.167 0.181 20.144

LV end diastolic volume, mL{ 0.076 0.007 20.009

LV end systolic volume, mL{ 0.098 20.053 0.019

Stroke volume, mL{ 0.039 0.104 20.024

Ejection fraction, %{ 20.074 0.179 20.032

Cardiac output, L/min 20.098 0.020 20.125

Pulse wave velocity, m/s 0.031 0.067 0.060

Aorta ascendens distensibility, 1023 mm Hg21 0.175# 0.006 0.132

E acceleration peak, mL/s2.1023 0.148 0.316 0.122

E acceleration mean, mL/s2.1023 0.146 0.207 0.114

E peak filling rate, mL/s{ 0.246* 0.325 0.182

E deceleration peak, mL/s2.1023{ 0.221* 0.232 0.185

E deceleration mean, mL/s2.1023 0.218* 0.278 0.179

E/A peak ratio 0.139 0.419 0.040

Data are Pearson’s r. In case of non-Gaussian distributions, parameters were ln-transformed for correlation analysis. A, diastolic atrial contraction; BMI, body mass index;
DM2, type 2 diabetes; E, early diastolic filling phase; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LV, left ventricular; MFAE, myocardial fatty acid
esterification; MFAO, myocardial fatty acid oxidation; MFAU, myocardial fattu acid uptake; MMRGlu, myocardial metabolic glucose metabolism; M-value, whole body
insulin sensitivity.
#P,0.10;
*P,0.05;
**P,0.01;
***P,0.001.
doi:10.1371/journal.pone.0059697.t003
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analyses. A value of P,0.05 was considered as statistically

significant.

Results

Expression and Secretion of Omentin-1 in Adipose Tissue
Depots
Omentin-1 expression was determined in adipose tissue biopsies

collected from patients with and without DM2 undergoing open

heart surgery. As shown in Table 1, both groups had comparable

age and BMI, while fasting blood glucose levels were elevated in

patients with DM2. Omentin-1 protein expression was highest in

EAT from non-DM2 subjects as compared to pericardial and

subcutaneous adipose tissue from the same patient, respectively

(Figure 1A/B). Furthermore, omentin-1 levels in EAT were

reduced in patients with DM2 versus non-DM2 patients (P,0.01)

(Figure 1A/B). Analysis of CM showed highest omentin-1

secretion by EAT and pericardial adipose tissue as compared to

subcutaneous adipose tissue in non-DM2 patients (Figure 1C).

Furthermore, omentin-1 levels in CM were markedly reduced in

DM2 (Figure 1C).

Circulating Omentin-1 Levels in Type 2 Diabetes and
Controls
Plasma omentin-1 levels were determined in 78 men with

uncomplicated DM2 and 14 healthy controls. Detailed baseline

and cardiometabolic parameters of the participants have been

described previously [23]. Briefly, patients with DM2 had a slightly

higher BMI, increased systolic and diastolic blood pressure,

visceral fat and subcutaneous fat volumes, as well as elevated

HbA1c and fasting plasma glucose and insulin levels (all P,0.05)

(Table 2). Furthermore, patients with DM2 versus healthy controls

had a lower M-value for insulin sensitivity, impaired left

ventricular diastolic function, increased pulse wave velocity, and

decreased distensibility of the aorta ascendens (all P,0.05)

(Table 2). As compared to controls, median plasma omentin-1

levels were lower in patients with DM2 (313 versus 426 ng/mL;

P=0.008) (Figure 2A).

Univariate regression analysis identified inverse correlations

between plasma omentin-1 levels and BMI, fasting plasma glucose,

insulin and HbA1c, visceral fat volume, heart rate, and rate

pressure product, and positive associations with the diastolic

parameters early peak filling rate, early deceleration peak and

early deceleration mean, M-value for insulin sensitivity, adipo-

nectin and HDL-cholesterol (Table 3, Figure 2B–F). Only in

controls, omentin-1 levels associated with systolic blood pressure

Figure 3. Plasma omentin-1 levels in men with uncomplicated type 2 diabetes before and after 24-week pioglitazone treatment
versus 24-week metformin treatment. (A) Plasma omentin levels before (0) and after 24 weeks of treating males with uncomplicated type 2
diabetes with metformin or pioglitazone. P-values for treatment-effects were calculated using a Wilcoxon signed rank test. **indicates a P,0.01.
Pearson regression analysis showed that only in the pioglitazone group changes in omentin-1 levels positively correlated with changes in early peak
filling rate (B), early deceleration peak (C), and early deceleration mean (D).
doi:10.1371/journal.pone.0059697.g003
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(Table 3, Figure 2F). In multivariate regression analysis, the

associations between omentin-1 plasma levels and early peak filling

rate and early deceleration mean were independent of diabetic

state, BMI, and M-value (respectively b=0.247; P=0.04;

b=0.255, P=0.004). The association between omentin-1 plasma

levels and early deceleration peak was borderline significant in this

analysis (b=0.233; P= 0.06).

Treating patients with DM2 with pioglitazone or metformin led

to similar improvement of glycemic control, but only pioglitazone

treatment resulted in improved left ventricular diastolic function

Figure 4. Effect of recombinant omentin on sarcomere shortening and calcium fluxes in primary adult rat cardiomyocytes. Primary
rat cardiomyocytes were incubated with control medium or conditioned media from epicardial adipose tissue from patients with type 2 diabetes
(EAT) for 30 min in the absence or presence of recombinant omentin before analysis of sarcomere shortening and cytosolic Ca2+-fluxes. Effect of
exposure of cardiomyocytes to EAT and omentin on departure velocity of contraction (A), peak sarcomere shortening (B), return velocity of
contraction (C), departure velocity of cytosolic [Ca2+] (D), peak fura-2 fluorescence (E) and departure velocity of cytosolic [Ca2+] (F). Data were
collected during at least 4 independent experiments using cardiomyocyte preparations from different rats and conditioned media from different
donors, and are expressed as mean 6 standard error of the mean. Differences among the groups were evaluated using the Kruskal-Wallis method
followed by a Dunns multiple comparison test. ***P,0.001; **P,0.01, versus control adipocyte medium (control), ###P,0.001; ##P,0.01 EAT
versus EAT+omentin.
doi:10.1371/journal.pone.0059697.g004
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[22]. Plasma omentin-1 levels were increased in patients with

DM2 following pioglitazone (baseline versus pioglitazone: 257

versus 375 ng/mL; P=0.002), but not metformin, treatment

(Figure 3A). Furthermore, changes in omentin-1 levels were

correlated with changes in early peak filling rate, early de-

celeration peak and early deceleration mean in patients with DM2

after 24-week of pioglitazone treatment, but not after metformin

treatment (Figure 3B–D).

Effect of Recombinant Omentin on Cardiomyocyte
Contractile Function and Insulin Action
The above findings suggest that increases in omentin-1 levels

could beneficially affect cardiac function in patients with DM2. To

substantiate this, we investigated whether recombinant omentin

could prevent the induction of cardiomyocyte dysfunction by CM

generated from EAT from patients with DM2 (CM-EAT).

Exposure of primary rat cardiomyocytes to CM-EAT reduced

peak sarcomere shortening and the departure and return velocity

of contraction as compared to cardiomyocytes exposed to control

medium (Figure 4A–C). Omentin alone had no effect on

contractile function, but partially prevented the reductions in the

parameters of sarcomere shortening induced by CM-EAT

(Figure 4A–C). Furthermore, the abrogation in cytosolic Ca2+-

transients induced by CM-EAT, as illustrated by reductions in

departure and return velocities and a lower peak Fura-2

fluorescence signal, was fully reversed by the presence of omentin

(Figure 4D–F). Finally, we examined the effect of omentin on the

reduction of insulin-stimulated Akt-phosphorylation caused by

exposure of cardiomyocytes to CM-EAT. As shown in Figure 5,

omentin alone had no significant effect on insulin-mediated Akt-

phosphorylation. Yet, the presence of omentin prevented the

abrogation of insulin-mediated Akt-phosphorylation induced by

CM from patients with DM2 (Figure 5).

Discussion

Here we show that decreases in circulating omentin-1 levels

associate with left ventricular diastolic dysfunction. In patients with

DM2, circulating omentin-1 levels were lower as compared to

controls. Pioglitazone treatment, which improved left ventricular

diastolic function in this study cohort [22] increased plasma

omentin-1 levels. Furthermore, in pioglitazone-treated patients

with DM2, the increments in plasma omentin-1 levels correlated

positively with the observed changes in diastolic function. Finally,

in cardiomyocytes, the presence of omentin prevented the

induction of contractile dysfunction and insulin resistance by

CM-EAT from patients with DM2. Collectively, these findings

provide evidence for a cardioprotective function of omentin-1, and

suggest that decreases in omentin levels may contribute to the

pathogenesis of cardiac dysfunction in DM2.

This study confirmed that circulating omentin-1 levels are lower

in patients with DM2 versus controls [10,12], that positive

associations exist between omentin-1 levels and insulin sensitivity,

adiponectin, and high-density lipoprotein cholesterol, and that

negative associations exist between omentin-1 levels and measures

of adiposity, such as BMI, visceral fat volume, fasting plasma

insulin and glucose levels [8,10,11,13,14]. Circulating omentin-1

levels also weakly associate with endothelial function in men with

normal and impaired glucose tolerance [9,14]. We observed

a weak tendency of omentin-1 levels associating with aorta

distensibility, but not with pulse wave velocity. Other studies

reported increases in omentin-1 levels following a 6–month

metformin intervention in women with the polycystic ovary

syndrome [30], and following treatment of Chinese patients with

DM2 with poor glycemic control with metformin combined with

liraglutide [31]. Although metformin improved glycemic control

[22], we observed no effect of metformin on omentin-1 levels in

our study population containing men with well-controlled DM2. It

remains to be clarified whether this can be ascribed to differences

among the study cohorts, such as gender, glycemic control, disease

status, ethnicity, and the lack of a ‘metformin only’ group in the

Chinese study [31].

A major finding in our study is the association of plasma

omentin-1 levels with left ventricular diastolic function. Because of

the strong positive association with adiponectin levels, omentin-1

levels may be regulated by adiponectin [12]. Like omentin-1,

adiponectin positively associates with insulin sensitivity and high-

density lipoprotein cholesterol, and negatively with BMI, and waist

circumference, but not with parameters of left ventricular diastolic

function in this study population [32]. Although these findings do

not exclude a role for adiponectin in the regulation of omentin-1,

the data suggest a direct cardioprotective effect of omentin-1

rather than adiponectin-mediated.

In vitro studies have indeed ascribed a signaling function to

omentin-1 because it promotes Akt-phosphorylation in isolated

blood vessels, vascular smooth muscle cells, and microvascular

endothelial cells [30,33,34], and enhances insulin-mediated Akt-

Figure 5. Effect of recombinant omentin on insulin action in
primary adult rat cardiomyocytes. Western blot (A) and quantifi-
cation (B) of recombinant omentin on insulin action. Lysates from
primary adult rat cardiomyocytes exposed for 24 h to control adipocyte
medium (control) or recombinant omentin in the absence or presence
of conditioned media generated from epicardial adipose tissue from
patients with type 2 diabetes (EAT) were analyzed for insulin-induced
Akt-Ser473-phosphorylation. Data were collected during at least 6
independent experiments using cardiomyocyte preparations from
different rats and conditioned media from different donors, and are
expressed as mean 6 standard error of the mean. Open bars, basal;
filled bars, insulin stimulated cells. Differences among the groups were
evaluated by ANOVA following Bonferroni analysis for multiple
comparisons. *P,0.001 effect of insulin (filled bars) versus basal (open
bars); ###P,0.001 control versus EAT, ##P,0.01 EAT versus EAT+o-
mentin.
doi:10.1371/journal.pone.0059697.g005
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phosphorylation and glucose uptake in adipocytes [15]. Further-

more, omentin-1 has an anti-inflammatory action as illustrated by

its ability to reduce the induction of migration, angiogenesis, and

activation of nuclear factor kappa B (NF-kB) and p38 by pro-

inflammatory factors in endothelial cells and smooth muscle cells

[16,30]. In recent studies, we observed that factors secreted from

EAT can directly affect contractile function and insulin action in

primary adult rat cardiomyocytes [3,6]. Moreover, we could show

that DM2 induces qualitative alterations in the secretory profile of

EAT, which may contribute to the induction of cardiac

dysfunction [6]. In the present study, we demonstrated that

circulating omentin-1 levels and omentin-1 released from EAT are

reduced in DM2. Analysis of omentin-1 action in cardiomyocytes

showed that omentin alone had no effect on sarcomere shortening,

cytosolic Ca2+-fluxes and Akt-phosphorylation in cardiomyocytes.

Rather, omentin-1 was found to protect against the induction of

cardiomyocyte contractile dysfunction and insulin resistance by

EAT-released factors from patients with DM2. This suggests that

omentin-1 could exert its cardioprotective effects by acting as

a scavenger for detrimental factors secreted by adipose tissue.

Yet, several issues remain to be addressed. First of all, this study

was conducted in men, and it is unclear to what extent our findings

can be applied to women. In this respect, the clinical studies that

addressed this issue reported no impact of gender on circulating

omentin-1 levels [35–38]. However, one should note that others

reported conflicting data with elevated levels found in both men

and women as compared to the other gender [8,12], and

sometimes dependent on disease status [31]. Furthermore, it is

unclear how omentin-1 synthesis is regulated in response to

external stimuli. In adipose tissue, omentin-1 is predominantly

produced by the stromal vascular fraction [15], which contains

a wide variety of non-adipose cells, including pre-adipocytes,

endothelial cells, stem cells, fibroblasts, and immune cells. Adipose

tissue in DM2 is characterized by infiltration of immune cells and

an enhanced secretion of pro-inflammatory adipokines [39]. These

factors may result in the induction of apoptosis and endoplasmic

reticulum stress and consequently inhibition of the synthesis of

abundantly expressed proteins. Finally, the beneficial effects of

pioglitazone on circulating omentin-1 levels in patients with DM2

may also implicate a critical role for peroxisome proliferator

activated receptor-c in the regulation of omentin-1 production.

However, because of the complex cellular composition of adipose

tissue, it may be preferable to specify the cell type(s) in which

omentin-1 is produced first, before studying a contribution of

regulators of omentin-1 synthesis.

Conclusions
This study shows that omentin-1 levels in plasma and EAT are

decreased in patients with DM2. Furthermore, the positive

association of omentin-1 levels with left ventricular diastolic

function and the experiments in isolated rat cardiomyocytes

suggest that omentin-1 could have a cardioprotective function.

Accordingly, a reduction in omentin-1 expression in EAT might

contribute to the induction of cardiac dysfunction in patients with

DM2.
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