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Abstract

When identifying conservation priorities, the accuracy of conservation assessments is constrained by the quality of data
available. Despite previous efforts exploring how to deal with imperfect datasets, little is known about how data uncertainty
translates into errors in conservation planning outcomes. Here, we evaluate the magnitude of commission and omission
error, effectiveness and efficiency of conservation planning outcomes derived from three datasets with increasing data
quality. We demonstrate that investing in data acquisition might not always be the best strategy as the magnitude of errors
introduced by new sites/species can exceed the benefits gained. There was a trade-off between effectiveness and efficiency
due to poorly sampled rare species. Given that data acquisition is limited by the high cost and time required, we
recommend focusing on improving the quality of data for those species with the highest level of uncertainty (rare species)
when acquiring new data.
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Introduction

Conservation planning has gained increasing attention from the

scientific community and stakeholders as an essential way of

aligning socio-economic development and conservation needs to

secure the long-term persistence of biodiversity. Systematic

conservation planning [1] represents an advance from ad-hoc

conservation practices towards the implementation of efficient

conservation management. This strategy leads to more cost-

effective management recommendations by explicitly defining

conservation objectives and integrating socio-economic (e.g.,

acquisition or stewardship cost) and other ecological (e.g.,

connectivity) aspects when looking for optimal allocation of

priority areas for conservation.

The accuracy of conservation plans that arise from systematic

planning depends on the quality of data on biodiversity patterns or

other surrogates such as environmental classifications or habitat

types available. Poor-quality or sparse data is potentially subject to

high uncertainty and can lead to poor decision-making [2], the

misuse of the limited resources available and ultimately the failure

of conservation practice. Errors in conservation planning outputs

associated with poor quality data can reduce effectiveness (e.g.,

when a species is erroneously thought to be present within a

reserve, or commission errors) and efficiency (e.g., when a species

is erroneously thought to be absent forcing the selection of

additional and unnecessary areas, or omission errors). Despite the

clear benefit of reducing uncertainties in conservation assessments,

our capacity to make better informed decisions is constrained by

the cost and time required to collect data [3,4,5,6]. Conservation

planners and stakeholders do not have access to complete

information on biodiversity patterns (e.g., species distribution

maps) and ecological processes aiming to be protected. Instead,

conservation assessments are often carried out using sparse

biological data or coarse surrogates such as habitat types obtained

from remote sensing information [7]. Moreover, delaying conser-

vation actions for improved knowledge on biodiversity patterns is

not always the most appropriate strategy [6]. The effective

protection of biodiversity might be compromised by habitat lost if

the delay is too long. Understanding the limitations and

consequences of uncertainties in input data is therefore a key

issue in developing robust conservation recommendations from

systematic planning [8]. Multiple efforts have been devoted to

exploring the suitability of different types of data as surrogates for

biodiversity patterns [9,10], strategies to reduce uncertainties in

the data [11,12,13] or how to explicitly account for those

uncertainties in the planning process [14,15,16]. However, little

is known yet about the link between the level of uncertainty in the

input data and resulting errors in the conservation planning

outcomes [17]. For example, we do not know the expected

magnitude of commission and omission errors in conservation

derived from a given level of uncertainty in the data. This makes it

difficult to evaluate the relative risk taken when using poor quality

data. Answering these types of questions should then be a priority

to increase reliability of systematic conservation planning [8,18]

and help stakeholders evaluate the risks associated with imperfect

data [14].

Here, we use a data-rich area in northern Australia to explore

whether investing in new data acquisition is an adequate strategy
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to deal with errors in conservation planning outcomes derived

from the use of poor datasets. Furthermore, we also explore if for

any given dataset (either small or large) there is a significant

improvement in conservation planning outcomes by constraining

the data used to those species with low uncertainty. We model the

spatial distribution of freshwater fish species using the entire

dataset and use it as the true distribution of each species

resembling the best available information [6,8]. We then use

three alternative distribution maps obtained from models built on

different subsets of the database to evaluate the effect of data

availability on conservation planning outcomes. We assume these

maps to represent the information that a stakeholder would have

available if the area had not been extensively surveyed. We also

test the effect of constraining the data used in the planning process

to species with low uncertainty levels by running independent

analyses for different subsets of species for each model. We then

evaluate performance through measures of commission and

omission errors, effectiveness (proportion of species that are

adequately represented) and efficiency (ratio species representa-

tion/cost in terms of number of planning units required). We use

this case study to demonstrate the trade-offs associated with the use

of poor-quality data (and prone to errors) vs. more risk averse (but

more expensive) options derived from data acquisition. This would

help evaluate the risk associated with the use of poor quality data

and better inform the need for new data acquisition.

Methods

Spatial Framework, Fish and Environmental Data
The study area spans across northern Australia’s rivers from the

Fitzroy River in the Kimberley regions eastwards to the Jardine

River in Cape York Peninsula. We sourced presence-absence data

for 104 freshwater fish species across the study area from the

Northern Australian Freshwater Fish Atlas (www.jcu.edu.au/actfr)

updated by [19]. This dataset contains records for more than 2300

sampling sites, although we retained for further analysis only sites

with true presence-absence data (n = 714 sites). For subsequent

modelling purposes we translated these presence-absence records

into a network of predictive units. We delineated 11508

subcatchments (102.7 km2 on average) using ArcHydro [20] for

ArcGIS 9.3 [21] from a 9 second digital elevation model [22].

There were a total of 498 subcatchments containing at least one

sampling site. For those subcatchments with more than one record

(n = 216) we combined the list of all species reported to produce a

single record. We discarded from the dataset all the species with

less than five occurrences, due to difficulties in modelling the

distribution of these extremely rare species and the potential bias

they would introduce to the analyses. Our final dataset comprised

70 fish species with an average frequency of occurrence of 95

subcatchments (range 5–433). Alternative surrogates of biodiver-

sity patterns are commonly used in conservation planning, such as

environmental classifications or habitat/vegetation types (known

as coarse-filter surrogates). We focused on evaluating predictive

models and do not compare our results against coarse-filter

surrogates approaches as priority areas identified using these types

of surrogates might not represent biodiversity better than random

unless the classification clearly reflects the biodiversity patterns

that they aim to represent or substitute [23]. In addition, previous

studies highlighted the poor performance of coarse-filter surrogates

at representing freshwater fish assemblages (e.g., [24]).

An outline of the overall process we used to evaluate the role of

data availability on conservation planning outcomes is provided in

Figure 1. We built four different predictive models: a) on the

complete dataset (true distribution model) and b) three subsets of

that dataset to simulate different data availability scenarios using

the same set of predictive variables and modelling technique. We

used the model outputs from the incomplete datasets to identify

priority areas for conservation (using Marxan software package)

using the different species distributions as surrogates for biodiver-

sity patterns. In order to test the effect of species uncertainty on

conservation outcomes, we ran independent analyses for different

subsets of species, using the Area Under the ROC Curve (AUC) to

filter species with increasing certainty (higher AUC values). Results

from Marxan were compared against the true distribution to

obtain estimates of three different performance measures: 1)

commission and omission errors, 2) effectiveness, and 3) efficiency.

Predictive Modelling of Species Distributions
Nine ecologically-relevant landscape-scale environmental vari-

ables were selected from a larger number of candidate variables for

use in the predictive models which were derived from the National

Environmental Stream Attributes database for rivers [22]. We

used Principal Component Analysis (PCA) to select a set of nine

non-redundant environmental attributes that explain a high

proportion of the environmental variability in the study area

[25] (Table S1).

We used Multivariate Adaptive Regression Splines (MARS,

[26]) to model the spatial occurrence of the 70 fish species. MARS

is a method of flexible non-parametric regression modelling [27]

useful for modelling complex non-linear relationships between

response and explanatory variables. The model was built on the

whole dataset (n = 498 subcatchments). Model accuracy was

evaluated using two complementary approaches: deviance ex-

plained and the area under the receiver operating characteristic

curve (ROC, [28]). The area under the ROC curve (AUC) was

assessed through a k-fold cross validation procedure [29]. In this

process the data set is randomly divided into k exclusive subsets

and model performance is calculated by successively removing

each subset, re-fitting the model with the remaining data, and

predicting the omitted data. The average error when predicting

occurrence in new sites can then be calculated by averaging the

AUC across each of the subsets [26]. Deviance complements AUC

because it expresses the magnitude of the deviations of the fitted

values from the observations. We retained these measures as an

estimate of the uncertainty around the predictions for each species.

The model was then used to predict the probability of

occurrence of each species in all the unsurveyed subcatchments.

Probabilities of occurrence were transformed into presence-

absence data for posterior analyses using the optimal threshold

obtained from the cost method in the presence-absence package in

R [30]. This method finds an optimal threshold for each species

that balances the relative cost of false positive and false negative

predictions [28]. Given that these predictions were made with the

best and more accurate dataset available, we will treat them as our

true species distribution for subsequent analyses (see [6,17] for

similar approach).

Data Availability and Uncertainty Scenarios
We built three additional species distribution models to simulate

the effect of data availability on model errors (Fig. 1). With these

models we intended to represent the data that would be available

for stakeholders in data-poor areas [17]. We started using a

random subset of 15% of the data (n = 75 subcatchments,

hereafter termed ‘‘poor data model’’), and added new data

randomly selected from the set of subcatchments not included yet

up to complete 55% (intermediate data model) and 85% (good

data model) of the total available (n = 274 and 423 subcatchments

respectively). We used the same set of environmental predictors

Data Acquisition for Conservation Assessments
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across all models (same set of variables used for constructing the

true model above, Table S1). We applied the same minimum

threshold of 5 occurrences for a species to be included in the

predictive model developed for each dataset. This resulted in 47,

64 and 69 species modelled using the poor, intermediate and good

data model respectively (Fig. 1). We then used each model to

predict the spatial distribution of species under these three data-

constrained scenarios and calculated the optimal threshold to

transform the probabilities of occurrence into presence-absence

data. We measured the rate of false positive occurrences (1-

proportion of correctly predicted presences) and false negative

occurrences (non-predicted presences) for each of these three

models by comparing the predicted distribution under each data

constraint scenario to the true distribution.

Identification of Priority Areas for Conservation
We used the predictions from each model as surrogates of

biodiversity patterns to identify priority areas for conservation. We

used the software Marxan [31] to find an optimal set of planning

units to represent at least 10% of each species’ predicted

distribution at the minimum cost. Given our special interest in

evaluating the effect of different models’ outputs we used a

constant cost for each planning unit, so our objective translated

into finding the minimum set of planning units to achieve the

conservation targets [32]. Although we acknowledge that the use

of economic cost enhances the efficiency of recommendations

delivered by systematic conservation planning, we wanted to

isolate the effect of data availability from other issues. Although

this assumption entails a simplified planning environment it will

help our findings to be applicable to a wider range of

circumstances.

To further explore the effect of including species with different

uncertainty levels in the analyses we repeated the selection of

priority areas for different subset of species for each predictive

model. We constrained the optimization process to species with an

AUC.0.6, 0.7, 0.8 and 0.9 for these new scenarios (AUC

threshold scenarios hereafter). Therefore, we ran a total of 15

different scenarios (3 models65 AUC thresholds). For each of

them we retained 100 solutions obtained after 1.5 M iterations

each for further analyses.

To rule out potential bias in the results due to the different

number of species included in the analyses for the data availability

strategy, we compared the results when using all the species

modelled and only the ones common to all models (n = 47 species)

across 100 solutions from Marxan. With this aim we ran Marxan

for the whole set of species modelled and constraining the analyses

to the species common to all models for each of the predictive

models. So two different set of results were obtained for each data

availability scenario, including all modelled species and consider-

ing only the species common to all models. If there were significant

differences in the performance measures detailed above between

both approaches we would use the set of species common to all the

models only for subsequent analyses and avoid in this way the bias

introduced by new species added to analyses and allow for

comparisons across models.

Commission and Omission Errors
We measured the commission and omission error rates for each

solution obtained from Marxan (1500 solutions, 100 solutions615

scenarios) by comparing the expected and observed representation

achieved for each species. The expected representation was

measured as the number of occurrences within solutions according

to the surrogate data used in the optimization process (each of the

three different predictive models). This was treated as the expected

representation since it resembles the potential representation that

would be achieved if the predictions used had no associated errors.

The observed representation was measured as the number of

occurrences within solutions according to the true spatial

distribution. We then measured the rate of commission and

omission errors as the proportion of expected representation that

was not truly achieved (Equation 1).

Figure 1. Flow diagram of analysis. We built four different
predictive models: a) on the complete dataset (true distribution model)
and b) three subsets of that dataset to simulate different data
availability scenarios. We used the model outputs from the incomplete
datasets to identify priority areas for conservation (using Marxan
software package). In order to test the effect of species uncertainty on
conservation outcomes, we ran independent analyses for different
subsets of species, using the Area Under the ROC Curve (AUC) to filter
species with increasing certainty. Results from Marxan were compared
against the true distribution to obtain estimates of three different
performance measures: 1) commission and omission errors, 2)
effectiveness, and 3) efficiency.
doi:10.1371/journal.pone.0059662.g001
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Error ~ (Expected rep{Observed rep)=Expected rep ð1Þ

Whenever the expected and observed representations are

similar, the error obtained from Equation 1 is close to 0, indicating

low commission or omission error. However, when the expected

representation is higher or lower than the observed representation,

the error value will depart from 0 and be negative or positive,

indicating commission and omission errors, respectively.

Systematic conservation planning aims to informing conserva-

tion decision-making on cost-effective priorities rather than

providing a conservation plan to be implemented. For this reason,

our evaluations on errors are constrained to the recommendations

that would be offered to stakeholders rather than errors in the final

implementation of conservation plans.

Effectiveness and Efficiency
We measured the effectiveness of each solution as the

proportion of the species that truly achieved the target (observed

representation $ target). Given that targets were defined

according to each predictive model’s output as 10% of the

expected distribution (model-specific target) they might also be

exposed to error. For example, if a species’ distribution was

significantly underestimated under any of the predictive models, its

target would also be underestimated and so increase the likelihood

of true underrepresentation in solutions. In order to estimate the

effect of model errors on target setting, we measured the

proportion of species that would achieve a target of 10% of their

true distribution (observed representation $10% true distribution,

or true target). We then compared whether each species had

achieved the model-specific target but had not achieved the true

target (labelled as a false positive target achievement) or vice versa

(labelled as false negative target achievement). We also checked the

number of species that did not achieve either the target or the true

target.

Finally, we measured the efficiency of each solution as the

average ratio across all species between the true representation

and the total number of planning units required.

Determinants of Commission and Omission Error Rates
We explored the importance of a set of factors potentially

driving the observed commission and omission error rate. With

this aim, we built a Generalised Linear Model (GLM) using a

normal distribution and a log link function with the commission

and omission error rate as dependent variable and seven

different factors we wanted to test as independent variables.

These included the rate of false positive and negative prediction

errors, the model used to obtain the species’ distribution (poor,

intermediate and good data models), the AUC and deviance of

each species in each model, the AUC threshold used and each

species’ prevalence in the dataset used for building each model.

We used a forward stepwise variable selection procedure with a

p,0.05 entry criterion to obtain the best model. We retained

the adjusted R2 as an indicator of the model fit and each

independent variables’ Beta coefficient and P value in the model

as an estimate of their relative importance at explaining the

dependent variable. The magnitude of the Beta coefficient allows

comparing the relative contribution of each independent

variable and the P value informs whether the effect was found

to be significant or not. We would expect important factors to

be included in a model that explains a high proportion of the

dependent variable’s variance (high adjusted R2), with a high

Beta coefficient. We tested independent variables for redundancy

prior to analyses and included all the factors cited previously

except the deviance explained since it was highly redundant

with AUC (Pearson’s R = 0.73, while R,0.15 for the remaining

pair wise correlations).

Effect of Strategies to Improve Conservation Planning
Outcomes

We used factorial ANOVA to test for significant changes in

commission and omission error, effectiveness and efficiency when

following the two alternative strategies evaluated here (increasing

the amount of data used for the predictive models and

constraining the analyses to species with low uncertainty –

measured by the AUC). We included each strategy (e.g., model

and AUC threshold) and their interaction as factors. In order to

evaluate the net effect of the new species added when increasing

the dataset in the overall commission and omission error rate,

effectiveness and efficiency, we also used ANOVA to test for

significant differences between results obtained using all the species

modelled and for the subset of species common to all models.

Results

Species Distribution Predictive Models
The predictive model built on the whole dataset was good as the

indicated by average AUC and explained deviance measures

(Table S2), similar to model performance reported in previous

applications of MARS predictive models [25,33]. Both AUC and

deviance explained increased from the poor-data to the high-data

models (Table S2). As an indication of the improvement gained

when adding new data for model construction, the proportion of

species with AUC.0.9 rose from 2%, to 19% and 26% from the

poor to the intermediate and high-data models, respectively.

Similarly, the proportion of species with AUC.0.8 increased from

30% to 50% and 59% for the same models, respectively. This net

improvement in modelling performance also translated into a

reduction of errors in predictions. The rate of false positive

occurrences decreased from 0.32 to 0.09 from the poor to the

high-data model for the set of species common to both models.

This decrease in false positive occurrences was also true for the set

of species added in the intermediate and poor-data models,

although the values where always lower than for the species

common to all models (Table S2). The rate of false negative

occurrences decayed even more abruptly when adding new data,

for both set of species (common to all models and new additions;

Table S2).

Commission/Omission Errors
The inclusion of the new species in the planning process when

more data were available for the models showed no major effect

on commission and omission errors. Commission and omission

errors for solutions where only species common to all models were

used and when al modelled species (including new additions of

rare species) were very similar (Pearson’s R2 = 0.99 in all cases).

For this reason we hereafter use the solutions where all the

modelled species had been included.

The rate of false positive and negative occurrences were the

most important determinants of commission and omission errors

explored in the GLM model (Table 1). This model also revealed

the amount of data used in model and the AUC of each species as

additional important factors explaining but at a significant distance

from the rate of false positive and negative occurrences. The

threshold applied to the AUC appeared in the final model but with

a non-significant effect and the species’ prevalence was not

Data Acquisition for Conservation Assessments
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selected (Table 1). These results were supported and refined by the

ANOVA analysis on the effect of the two alternative strategies

tested here (increasing the amount of data used for the predictive

models and constraining the analyses to species with low

uncertainty) on variation in commission and omission errors.

There was a significant decrease in omission errors across models

(Table S3) but not in commission errors (Table S3; Fig. 2). On the

other hand, there were not significant differences either in

commission nor omission errors across AUC thresholds (Table

S3; Fig. 2). The interaction term in the factorial ANOVA was non-

significant (Table S3). In all cases there were significantly higher

errors for the newly added species in each model than for the

remaining common to all models (Table S3; Fig. 2). In summary,

expanding the dataset used for building the predictive models was

the only strategy that significantly reduced omission errors. This

was true only for the species common to all models (the ones that

accumulated more presences when adding new data, since the

average prevalence of species common to all models increased

from 25 to 76 and 118 occurrences from the poor-data to the

intermediate and high-data models respectively).

Effectiveness
The amount of data used for model construction always had

significant effects on effectiveness in both types of targets, although

stronger when testing differences in the true target (Table S3). On

the other hand the AUC threshold strategy only had significant

effects on effectiveness when attending to the true target (Table S3;

Fig. 3). The interaction term in the factorial ANOVA (amount of

data6AUC threshold) was significant for the true target effective-

ness, while non-significant for the model-specific target (Table S3).

The effect of errors in predictions did not only translate into

commission and omission errors but biased target setting and the

estimate of effectiveness. The rate of false positive target

achievement decreased with data addition, while the rate of false

negative increased with data addition (Fig. 4). Data addition

proved to be beneficial at reducing the proportion of species that

never achieved the target (either the true or model-specific targets).

The use of different AUC thresholds had no major effect (Fig. 4).

Efficiency
There was a significant decrease in efficiency when adding new

data to the predictive models (Table S3; Figure 5). However, there

was a significant increase in efficiency when attending only to the

species common to all models (Fig. 5), so we can conclude the

decrease in efficiency was driven by the new species considered in

the analyses when more data were available. On the other hand

there were no significant differences when trying different AUC

thresholds neither for all the species or the species common to all

models (Table S3; Fig. 5). The interaction term in the factorial

ANOVA was also non-significant in this case (Table S3).

Discussion

Our results demonstrate that data acquisition might not always

be the best strategy to increase the accuracy of conservation

recommendations as the magnitude of the errors introduced by the

new sites/species can exceed the benefits gained by reducing the

errors for other species. These errors can reduce efficiency of

solutions leading to the misuse of the limited resources available

and ultimately the failure of conservation practice. There were

trade-offs between the benefit at reducing representation errors

and increasing efficiency mainly led by the influence of poorly

sampled rare species. The value of biodiversity surveys has been

highlighted as an effective way of increasing certainty in data

[13,34] and enhance the accuracy of conservation planning.

However, our results align with other studies suggesting the value

of reduced datasets. For example [35] reported that reserves

identified using data from low sampling effort can be highly

effective at representing species, even at their peak abundance

areas. This does not disqualify the value of biodiversity surveys,

given that it would be very difficult to detect some of the rarest

species in the landscape (most in need of conservation) without

intensive surveys. This may particularly apply in biogeographically

complex or environmentally heterogeneous areas that may exhibit

high species turnover and centres of endemism/rarity. Given that

the addition of new high quality data is constrained by the high

cost and time required, we would recommend concentrating

survey efforts on gathering more data for those species with the

highest uncertainties (especially rare species, see for example

Gradsec in which sampling is focused on discrete areas selected to

contain maximum environmental heterogeneity to minimize

travelling between sites; [13,36]) or incorporating these uncertain-

ties explicitly in the decision-making process (e.g., information-gap

theory; [16,37,38]). These would lead to a better informed

decision-making and enhanced conservation practise.

Commission and Omission Errors
Commission and omission errors were mainly associated with

the rate of false negative and false positive occurrences in the

distribution maps. As expected, commission errors were positively

related to the rate of false positive occurrences, while omission

errors were negatively related to the rate of false negative

occurrences. These errors could be reduced by making more data

available for the predictive models. However, while there was a

continuous decrease in the rate of false negative errors and

omission errors when adding new data, this decline was not so

strong for false positive and commission errors. Given that

reducing omission errors is a risk averse strategy in conservation

planning [9], it would be reasonable to invest in further data

acquisition even though the improvement in commission errors

was not so pronounced. However, the benefit of this strategy was

only true for species that were relatively common in the study area

and that rapidly increased the number of presences in the dataset

Table 1. Multiple regression model used for evaluating the
relative importance of different factors as drivers of
commission and omission errors.

Factor Beta t(828) p-level AdjR2

False negative occurrence rate 20.82 247.5 ,0.001 0.79

False positive occurrence rate 20.47 225.6 ,0.001

Amount of data 20.14 27.0 ,0.001

AUC 20.07 24.3 ,0.001

AUC Threshold 0.02 1.3 0.205

Intercept 27.9 ,0.001

The rate of false positive and negative occurrences was calculated by
comparing the spatial distribution of species under each predictive model and
the true distribution. Amount of data refers to each of the three different
models tested (poor, intermediate and good quality data models), the Area
Under the Curve (AUC) was measured for each species and model through a K-
fold validation procedure. Standardised Beta coefficients, a t statistic (degrees
of freedom between parentheses) and an associated p value are shown. The
adjusted R2 is also given.
doi:10.1371/journal.pone.0059662.t001
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when adding new sampling sites. Data addition allowed some rare

species initially excluded to be incorporated in the planning

process as they fulfilled the threshold of minimum number of

presences. However, the inclusion of these new species had a

counterproductive effect as the magnitude of omission errors

increased significantly to the point of veiling the benefit described

above. There is thus a trade-off between the reduction of omission

errors for common species and the increase in omission errors at

the community level when rare species are considered.

To a lesser extent the rate of commission and omission error

were related to the estimate of species-specific uncertainties

obtained from the model validation process (AUC). There was

not a high correlation between AUC and the rate of false positive

and negative occurrences, which could indicate that some of the

AUC values were overestimated (e.g., overfitting) or underesti-

mated [39]. This could also explain the poor performance of the

AUC-threshold strategy and may constrain the potential use of this

estimate of species-specific uncertainty for approximating the

potential risk associated with a given dataset for use in

conservation planning. Given that our estimates of false positive

and negative occurrences would not be available during the

planning process further research is required to test alternative

measures of species’ uncertainties that are more suitable for

indicating the relative risk associated with a dataset (e.g., consensus

analyses across different modelling techniques; although see [40]).

Effectiveness and Efficiency
Our results show a second trade-off between effectiveness and

efficiency for increasing amounts of data. There was a significant

Figure 2. Change in commission and omission errors across different scenarios. Effect of the two different strategies (increase of data
available for model construction and use of increasing AUC threshold) to reduce commission and omission error tested in this manuscript. Average
and standard error values across all species included in the model (note that increasing set of species could be modelled when adding new data;
n = 47, 64 and 69 species for the poor, intermediate and good data models respectively) and only for species common to all models (n = 47 species).
doi:10.1371/journal.pone.0059662.g002

Figure 3. Change in effectiveness across different scenarios.
Effect of the two alternative strategies tested on effectiveness
measured as the proportion of species that achieve the model-specific
target and true target. Average and standard error across 100 solutions
obtained from Marxan are showed.
doi:10.1371/journal.pone.0059662.g003
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increase in effectiveness when adding new data as more species

achieve the target [9,35,41]. The increase in effectiveness was

specially marked when attending to the true target (more species

achieved 10% of their true distribution). However, this increment

in effectiveness was coupled with a decrease in efficiency. More

species achieved the target, but at expenses of a significant

reduction in efficiency. In our case, this reduction in efficiency was

mainly due to the increment in omission errors associated with

rare species described before. Due to inflated omission errors,

more areas than needed were selected to adequately represent

these rare species which caused a decline in efficiency in the

overall conservation plan.

Target Setting
Modelling errors (false positive and negative occurrences) also

biased the target setting, which had not been explicitly addressed

in conservation planning yet. Given that our model-specific targets

were set as a proportion of the predicted spatial distribution,

modelling mistakes translated into over or underestimated targets.

This is not a trivial issue given that these targets could lead some

species to be underrepresented (affecting reserves’ adequacy) or

overrepresented (leading to bigger reserves than actually needed

and then reducing efficiency). We demonstrate that the proportion

of species that are erroneously thought to miss the target (and then

not adequately represented) due to overestimation of targets can

be reduced by adding new data. However, once again this gain

might be neutralized by the increase in the proportion of species

that are erroneously thought to achieve the target (more species

are affected by underestimation of targets).

Figure 4. Change in false positive and negative errors across different scenarios. Proportion of species that did not achieve the neither the
model-specific target nor the 10% of their true distribution (white); species that achieved the model-specific target but not their 10% true distribution
(false positive in grey); and species that did not achieve the species-specific model but did achieve their 10% true distribution (false negative in black).
Each bar shows the average values across 100 solutions obtained from Marxan for a given combination of model and AUC threshold.
doi:10.1371/journal.pone.0059662.g004

Figure 5. Change in efficiency across different scenarios. Effect
of the two alternative strategies tested on efficiency measured as the
ratio representation/number of planning units. Average and standard
error across 100 solutions obtained from Marxan are showed.
doi:10.1371/journal.pone.0059662.g005
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Concluding Remarks
Our results clearly demonstrate that data acquisition is not

always the best strategy to increase accuracy in conservation

planning assessments. We highlight the value of sparse data as it

might be suitable for portraying the spatial patterns of biodiversity

surrogates used for conservation planning. Data addition led to an

increase in effectiveness as more species were adequately

represented within priority areas but at the expense of reducing

efficiency. This strategy thus has a doubly pernicious economic

effect on conservation planning: it is more expensive to produce

conservation recommendations (increase in cost due to data

collection) and these conservation recommendations are less

efficient (more areas than needed are selected). Given that data

acquisition is limited by the high cost and time required, we

recommend focusing on improving the quality of data for those

species with the highest level of uncertainty (rare species) when

acquiring new data. Further studies are required to evaluate the

suitability of different data acquisition strategies (environmentally

driven strategies such as Gradsec mentioned above vs. the random

addition we tested here) and to give a monetary value to the trade-

offs showed here, so stakeholders could decide whether investing in

new data acquisition is worth the effort.
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