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Abstract

We explored possible links between vector activity and genetic diversity in introduced populations of Limnoperna fortunei
by characterizing the genetic structure in native and introduced ranges in Asia and South America. We surveyed 24
populations: ten in Asia and 14 in South America using the mitochondrial cytochrome c oxidase subunit I (COI) gene, as well
as eight polymorphic microsatellite markers. We performed population genetics and phylogenetic analyses to investigate
population genetic structure across native and introduced regions. Introduced populations in Asia exhibit higher genetic
diversity (HE = 0.667–0.746) than those in South America (HE = 0.519–0.575), suggesting higher introduction effort for the
former populations. We observed pronounced geographical structuring in introduced regions, as indicated by both
mitochondrial and nuclear markers based on multiple genetic analyses including pairwise FST, FST, Bayesian clustering
method, and three-dimensional factorial correspondence analyses. Pairwise FST values within both Asia (FST = 0.017–0.126,
P = 0.000–0.009) and South America (FST = 0.004–0.107, P = 0.000–0.721) were lower than those between continents
(FST = 0.180–0.319, P = 0.000). Fine-scale genetic structuring was also apparent among introduced populations in both Asia
and South America, suggesting either multiple introductions of distinct propagules or strong post-introduction selection
and demographic stochasticity. Higher genetic diversity in Asia as compared to South America is likely due to more frequent
propagule transfers associated with higher shipping activities between source and donor regions within Asia. This study
suggests that the intensity of human-mediated introduction vectors influences patterns of genetic diversity in non-
indigenous species.
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Introduction

Blackburn et al. [1] proposed a unified framework for biological

invasions that incorporates both distinctive stages for species

moving between native habitats and those they are introduced

into, and barriers between stages that serve to reduce overall

invasion success. Differences among non-indigenous species (NIS),

the vectors that spread them, and environmental characteristics of

donor and recipient regions magnify the complexity of studying

biological invasions [2]. Studies of population genetic structure of

NIS have proven invaluable to our understanding of the invasion

process and, in particular, to evolutionary aspects of invasions [3–

5]. However, rapid and complex dynamics of human-mediated

invasions can limit the applicability of genetic methods, which are

mostly predicated on the existence of an equilibrium between key

factors driving evolution (e.g. mutation, drift, selection). Therefore,

it is essential to appreciate such limitations when studying genetics

of introduced species, and to ask questions that can be answered

using available resources [6].

The distribution and genetic structure of introduced populations

can exhibit complex patterns [2]. A modern view of biological

invasions recognizes that eroded genetic diversity [7–8] is not

ubiquitous among introduced populations, as numerous studies

have documented similar or increased genetic diversity owing to

multiple introductions and/or high propagule pressure [9–12].

Propagule pressure refers to the number of individuals introduced

to a region, and consists primarily of the number of introduction

events (i.e. propagule number) and the number of individuals

introduced per event (i.e. propagule size) [13–14]. Both compo-

nents can affect genetic diversity of introduced populations. High

propagule size may enhance establishment probability by lessening

demographic stochasticity and the severity of genetic bottlenecks

[14–15]. Increased propagule number diminishes the degree of

environmental stochasticity and can increase the occurrence of

admixture from different source populations [16–18]. Admixed
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populations may thus present with similar or even higher genetic

diversity than any single native population [12], [15], [17], [19–

20].

Genetic variation in introduced populations also depends on the

structure of the source population [21–22]. For instance,

introduced populations of the zebra mussel Dreissena polymorpha in

North America exhibit lower but not severely diminished

haplotype diversity relative to putative source populations in the

Black Sea [23]. Some introduced populations appear to possess

genotypes better adapted to changing environments than native

ones, and they may become highly invasive in the invaded habitat

[12]. Novel genotypes may appear in introduced populations

owing to hybridization of different lineages seeded from divergent

source populations or to hybridization with native species [21],

[24].

The nature of transmitting vector can define the extent of

propagule pressure and the genetic composition of introduced

populations received from the source region [25]. Ships’ ballast

water and hull fouling are recognized as major vectors in aquatic

human-mediated invasions [26–30]. Areas receiving significant

numbers of ship visits are at higher risk of biological invasions due

to both ballast water discharge and/or hull fouling [31–32].

Certain life history characteristics may enhance the ability of

species to invade [33]. For example, planktonic species (i.e.

holoplankton) or those with planktonic life stage (i.e. meroplank-

ton) have a higher chance of interfacing with a transport vector

and of being carried to new region relative to species with strictly

sessile, benthic life histories. Also, meroplanktonic species benefit

from different types of transmitting vectors during their life cycle.

In this study, we explore genetic consequences of global spread

of the golden mussel Limnoperna fortunei, a freshwater mytilid native

to mainland China, Korea, Cambodia, Indonesia, Laos, and

Vietnam [34–38]. The mussel was reported in Hong Kong in

1965, followed by Japan and Taiwan in late 1980s [38–39], and

then in South America in 1991 in Argentina’s Rı́o de la Plata

estuary [40]. Limnoperna thereafter expanded its distribution very

rapidly into Uruguay, Paraguay, Brazil and Bolivia, traveling an

average of 240 km per year [41].

Japan, Taiwan, Korea, and parts of China are considered at

high risk for biological invasion on the basis of ship traffic volume,

while the opposite is true for South America [32]. In addition to

possible introduction of L. fortunei via discharged ballast water [42],

evidence suggests a second possible introduction pathway. It is

possible that L. fortunei was introduced to Japan via aquaculture as a

‘fellow traveler’ with stocked Asian clams Corbicula fluminea

imported from China [43]. This means L. fortunei could be

introduced in Asia via at least two possible vectors (i.e. ballast water

and aquaculture), whereas only a single vector (i.e. ballast water)

appears possible for invasions in South America. Consequently the

likelihood of admixed introduced populations should, be lower in

South America than in Asia. This pattern serves as the basis of our

first hypothesis: introduced populations of L. fortunei in South

America will be genetically impoverished relative to introduced

ones in Asia. Introduced populations in Asia (Japan and Taiwan)

are separated by geographical barriers (marine water) whereas

introduced South American populations have spread upstream

from the putative initial invasion site in the Rı́o de la Plata estuary

along the Paraná, Uruguay, and Paraguay rivers. This pattern

serves as the basis of our second hypothesis: gene flow is more

limited among introduced Asian populations than among South

American ones, and, as a result, genetic differentiation is more

pronounced among introduced Asian populations. To test these

hypotheses we used the cytochrome c oxidase subunit I (COI) gene

and microsatellite markers to study genetic structure of this species

in both continents.

Materials and Methods

Ethics Statement
No specific permits were required for the described field studies

in Asia and South America. The species collected is an invasive

pest in South America, Japan, and Taiwan and is not protected

throughout this range. Sampling points did not include protected

or private lands.

Sample Collection, DNA Extraction and PCR
Limnoperna fortunei was sampled from 24 locations in Asia and

South America, distributed across both native and introduced

regions (Figure 1). Samples were collected from ten locations in

Asia, including four from mainland China (native range), three

from Japan, one from Korea (native range), and two from Taiwan,

as well as 14 locations in South America covering the invaded

range in the Paraná-Uruguay delta and the Rı́o de la Plata estuary.

Genomic DNA was extracted from a piece of posterior abductor

muscle using the protocol of Elphinstone et al. [44]. A fragment of

the COI gene was amplified using species-specific forward primer,

Limno-COIF1 [45], and universal reverse primer, HCO2198

[46]. PCR was performed with an initial denaturing at 94uC for 4

minutes followed by 5 cycles of 94uC for 50 s, 60uC for 50 s, 72uC
for 60 s, 35 cycles of 94uC for 50 s, 55uC for 50 s, 72uC for 60 s,

and a final elongation at 72uC for 5 minutes. Purified PCR

products were sequenced using the reverse primer and BigDye

Terminator 3.1 chemistry with an ABI 3130XL automated

sequencer (Applied Biosystems, Foster City, CA). All sequences

that contained ambiguous sites were subsequently sequenced with

the forward primer. We genotyped all populations at eight

microsatellite loci [47]. Fragment analysis was performed using

an ABI 3130XL automated sequencer with GeneScanTM–500

LIZTM size standard. Allele sizes were decided using GeneMapper

version 3.7 (Applied Biosystems). In order to validate the scoring

results, we re-ran random samples from multiple plates.

MtDNA Analysis
Sequences were aligned using CodonCode Aligner 2.0 (Co-

donCode Corporation, Dedham, MA) and then manually edited.

The possibility of doubly uniparental inheritance (DUI) of

mitochondrial genome observed in other Mytilidae species was

tested and ultimately excluded according to the method described

by Gillis et al. [4]. The best fit evolutionary model was estimated

using MRMODELTEST version 3.7 [48] with the Bayesian

Information Criterion (BIC). Bayesian phylogenetic analysis was

conducted with MRBAYES version 3.2 [49]. Trees were sampled

every 500 generations for five million generations and the first

25% of the sampled trees were discarded as burn-in. A sequence

for the green mussel Perna perna was used as the outgroup

(Genbank accession no: EF493941).

A parsimony haplotype network with 95% connection proba-

bility [50] was generated using TCS v.1.21 [51] to resolve

relationships among haplotypes. Sixteen COI sequences of L.

fortunei from Japan were retrieved from GenBank (Accession nos.

AB520611– AB520627) and included in phylogenetic analyses.

The number of haplotypes (n), haplotype diversity (h), and

nucleotide diversity (p), were estimated using DnaSP 5.0 [52].

Genetic differentiation between populations was determined by

FST with the Tamura-Nei substitution model implemented in

ARLEQUIN version 3.1 [53]. Sequential Bonferroni corrections

were used to adjust the significance level for multiple comparisons

Phylogeography of Limnoperna fortunei
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[54]. Hierarchical genetic structure was assessed using analysis of

molecular variance (AMOVA) based on 10,000 random permu-

tations in ARLEQUIN. Populations were grouped based on a

priori expectations according to their geographical origin into two

groups: i) all South American populations versus all populations

from Asia; and ii) based on their geographic region within Asia

(samples were divided as native: China, Korea and introduced:

Taiwan, Japan) and within South America (samples were divided

based on river basins into six regions: I Upper Paraguay (CO), II

Paraná River (RB, IT, YR, YD and SA), III Uruguay River (UR),

IV Rı́o Tercero (RT), V Sao Gonçalo (SO), and VI Paraná Delta -

Rı́o de la Plata (EC, TI, QU, SL and MA).

Microsatellite Analysis
Genetic diversity indices including the number of alleles (A),

allelic frequency (F), allelic richness (Ar), observed heterozygosity

(HO), and expected heterozygosity (HE) were measured using

FSTAT v.2.9.3 [55]. Allelic richness (Ar), which is an estimate of

allelic diversity adjusted by the lowest sample size, was calculated

using Fstat. Genetic differentiation among populations was

examined by FST using ARLEQUIN. Similar to FST, sequential

Bonferroni corrections were used to adjust the significance level for

multiple comparisons [54]. Due to recent criticisms on the use of

FST and the interpretation of population differences, we also

calculated one of the corrected FST –like indices Jost’s D [56] using

the online software SMOGD [57]. We also performed AMOVA

on microsatellite data using the same criteria used for COI dataset

to group populations.

To further investigate population genetic structure of L. fortunei,

we employed a Bayesian clustering method using STRUCTURE

v. 2.3.3 [58]. The range of possible clusters (K) was tested from one

to 24 (total number of populations) and ten independent runs for

each K value were set at 106 Markov chain Monte Carlo (MCMC)

iterations, with an initial burn-in of 105. We followed the method

of Evanno et al. [59] to determine the value of K. We assessed

possible hierarchical genetic structure by conducting separate

Bayesian analyses on populations from South America (K from 1

to 14), and Asia (K from 1 to 10), plus Taiwan and Japan (K from 1

to 5). A three-dimensional factorial correspondence analysis (3D-

FCA) was performed using GENETIX v. 4.05 [60]. Contrary to

STRUCTURE, this method does not assume Hardy- Weinberg

Equilibrium and was used to validate results obtained from

STRUCTURE.

Results

Analysis of the whole 510-bp alignment obtained from 697

individuals resulted in 32 mtDNA haplotypes for COI (GenBank

accession Nos. HQ843794-HQ843806, HQ84373808-09,

JX177086-JX177102). All haplotypes were recovered after we

used only female mussels (F-type haplotypes), suggesting that

doubly uniparental inheritance (DUI) is not characteristic of L.

fortunei. Of the 16 Japanese haplotypes retrieved from GenBank,

eight were identical to those detected in this study. The haplotype

frequency map revealed a high level of geographic structure

(Figure 1). Native populations in mainland China and Korea and

introduced ones in Asia (Taiwan and Japan) and South America,

had similar haplotypes in each region with only a few haplotypes

shared among these groups. One haplotype (Lfm03) was common

in all but three Asian populations (KR, JP2, and JP3) (Figure 1,

Table 1), although haplotype frequency differed in each region.

We identified 12 haplotypes in South America, with three (Lfm01,

Lfm04–05) common to most of the populations (Figure 1).

Twenty-three haplotypes were found in Asia, three of which were

shared with South America (Lfm02–03, and Lfm06; Table 1,

Figure 1).

The Bayesian phylogenetic tree showed a shallow structure

lacking apparent phylogeographic structure (Figure 2A). We

observed a similar pattern in the statistical parsimony haplotype

Figure 1. Haplotype distribution and frequency map for Limnoperna fortunei. Sampling sites and distribution of mitochondrial cytochrome c
oxidase subunit I (COI) haplotypes for the native and introduced L. fortunei populations in Asia and South America. Site IDs as per Table 1. Different
colors refer to different haplotypes. Private haplotypes that are not shared have similar color.
doi:10.1371/journal.pone.0059328.g001

Phylogeography of Limnoperna fortunei
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Table 1. Sampling details and genetic diversity indices for mitochondrial and microsatellite markers for Limnoperna fortunei.

ID Collection site and Country Latitude mtDNA Microsatellite

Longitude N n Haplotype Code h P N A Ar HO HE

Asia

TW1 Sun Moon Lake, Taiwan 23.842u 26 3 Lfm03, Lfm08, 0.151 0.0013 29 11.4 7.3 0.4670 0.6673

120.872u Lfm19

TW2 Shiandau, Fusing 24.806u 28 2 Lfm03, Lfm08 0.071 0.0006 43 12.6 7.3 0.4286 0.7432

Township, Taiwan 121.252u

JP1 Daido intake station, Yodo 34.745u 20 4 Lfm09, Lfm03, 0.753 0.0079 14 6.9 6.2 0.4524 0.7460

River, Japan 135.551u Lfm20––21

JP2 Yahagi River, Toyota, 35.112u 23 4 Lfm09, Lfm20–21, 0.637 0.0056 48 10.1 6.1 0.4265 0.7150

Japan 137.194u Lfm27

JP3 Lake Ohshio, Tomioka, 36.223u 30 6 Lfm09, Lfm20–21, 0.743 0.0079 30 11.1 7.1 0.4129 0.7210

Japan 138.876u Lfm27–29

KR Korea Institute of Water 36.401u 20 3 Lfm11, Lfm21, 0.279 0.0006 30 14.5 9.5 0.3985 0.8576

and Environment, Korea 127.413u Lfm26

CH1 Lake Poyang, China 29.185u 41 4 Lfm03, Lfm11, 0.587 0.0068 45 18.0 8.8 0.4994 0.8059

116.014u Lfm24–25

CH2 Pengxi River, Yunyang 30.948u 22 3 Lfm03, Lfm11, 0.437 0.0050 22 10.0 7.3 0.5280 0.7263

County, China 108.680u Lfm30

CH3 Xiongjiang, Minqing 26.327u 44 9 Lfm02–03, Lfm 06, 0.766 0.0084 44 13.1 7.1 0.5175 0.7006

County, China 118.744u Lfm11–12, Lfm27,

Lfm31–33

CH4 Luohe River, Zhejiang 28.878u 30 6 Lfm03, Lfm11, 0.655 0.0083 30 11.0 7.1 0.4529 0.7015

Province, China 121.165u Lfm21, Lfm35–37

South America

CO Corumbá, Brazil 218.997u 29 5 Lfm01–05 0.416 0.0021 30 6.8 6.0 0.2214 0.5366

257.654u

RB Rı́o Baı́a, Alto Rio Paraná, 222.686u 27 5 Lfm01–05 0.724 0.0059 33 6.9 5.9 0.2285 0.5474

Brazil 253.253u

IT Itaipú Hydroelectric Power 225.408u 32 6 Lfm01–06 0.625 0.0033 30 7.9 6.9 0.2802 0.6067

Reservoir, Brazil 254.590u

YR Yabebiry River, Misiones, 227.297u 27 5 Lfm01–05 0.704 0.0037 28 6.9 6.3 0.1392 0.5575

Argentina 255.543u

YD Yaciretá Dam, Brazil, 227.471u 34 4 Lfm01, Lfm03–05 0.677 0.0029 29 6.3 5.8 0.1283 0.5578

Paraguay and Argentina 256.704u

SA Setubal Lagoon, Santa Fe, 231.635u 30 5 Lfm01–05 0.618 0.0042 34 7.4 6.3 0.2413 0.5764

Argentina 260.681u

SO Sao Gonçalo Channel, 231.811u 34 5 Lfm03–06, Lfm10 0.631 0.0034 34 6.8 5.9 0.2153 0.5628

Brazil 252.388u

UR Uruguay River, Colón, 232.152u 23 4 Lfm02–03, Lfm05, 0.387 0.0025 26 5.3 5.0 0.2046 0.5843

Argentina 258.188u Lfm17

RT Rı́o Tercero Dam, 232.213u 59 6 Lfm01, Lfm03–06, 0.546 0.0022 30 7.6 6.5 0.1795 0.5648

Córdoba, Argentina 264.473u Lfm13

EC Del Este Channel, Buenos 234.346u 24 6 Lfm01–03, Lfm05, 0.594 0.0041 40 7.8 6.6 0.1784 0.5835

Aires, Argentina 258.519u Lfm07, Lfm14

TI Luján River, Tigre, Buenos 234.415u 24 5 Lfm01–05 0.540 0.0068 40 9.0 7.1 0.1893 0.6312

Aires, Argentina 258.578u

QU Quilmes, Buenos Aires, 234.716u 22 4 Lfm03, Lfm05–07 0.541 0.0028 40 7.6 6.7 0.1807 0.6090

Argentina 258.214u

SL Santa Lucı́a River, 234.810u 26 5 Lfm01, Lfm03–05, 0.634 0.0038 30 7.1 6.4 0.2417 0.5945

Phylogeography of Limnoperna fortunei
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network, with a star-shaped topology and only a few mutation

steps among haplotypes (Figure 2B).

We detected the highest number of haplotypes (n = 9) in

population CH3 sampled from mainland China, while only two

haplotypes were recovered from population TW2 collected from

Taiwan. Mean haplotype diversity (h) and nucleotide diversity (p)

in Chinese populations were 0.611 and 0.007, respectively, higher

than those observed in invaded areas. Comparable values for

South America were 0.595 and 0.004, while those in introduced

populations in Asia were 0.439 and 0.004, respectively. Popula-

tions from Taiwan (TW1 and TW2) exhibited the lowest

haplotype and nucleotide diversity (0.111 and 0.001, respectively;

Table 1). Pairwise values of FST ranged from 0.005–0.945 in Asia,

0.000–0.077 in South America, and 0.003–0.867 between these

two continents. These values were non-significant in South

America, while most were significant in Asia or between the

continents (Table 2). There was more genetic variance within

(71.3%) than among (18.3%) populations (AMOVA; P,0.001 and

0.020, respectively; Table 3).

We successfully genotyped 793 individuals from 24 populations

at eight microsatellite loci, resulting in a total of 311 alleles. Mean

allelic richness (Ar) ranged from 5 to 9.5, while mean expected

heterozygosity (HE) and observed heterozygosity (HO) ranged from

0.518 to 0.858, and from 0.128 to 0.528, respectively (Table 1,

Table S1). Mean expected heterozygosity (HE) and mean allelic

richness (Ar) were higher in Asia as compared to South America

(for HE: U = 0, Z = 4.07, P,0.0001; for Ar: U = 17.5, Z = 3.04,

P = 0.0012). Many loci (150 of 192) deviated from Hardy-

Weinberg equilibrium (HWE) and all exhibited heterozygosity

deficiency (Table S1). Genetic differentiation based on pairwise

FST ranged from 0.015 to 0.319 among all population compar-

isons. FST values within Asia (0.067) and South America (0.046)

were lower than those between the continents (0.257). Almost all

FST values were significant in Asia and between Asia and South

America while most of the FST values were non-significant in

South America. In Asia, pairwise FST values were lower inside

each geographic region (0.036 in mainland China, 0.025 in

Taiwan, and 0.066 in Japan) as compared to the overall value

(0.067) for the continent (Table 2). In South America, the overall

pairwise FST was 0.046, which is significantly lower than that of

Asia (U = 200.5, Z = 2.89, P = 0.0019). We observed relatively

high genetic differentiation between neighbouring populations in

South America, for example, FST = 0.072 between EC and UR

(separated by , 50 km), while some geographically distant

populations exhibited relatively low FST values, for example,

0.004 between CO and QU (separated by , 2000 km). Similar to

FST values, Jost’s D values were lower among populations in South

America (D = 0.00–0.074) than in Asia (D = 0.024–0.404), and

between Asia and South America (D = 0.351–0.726) (Table 4).

Genetic variance was greater within (80.8%) than among (13.9%)

populations (AMOVA, P,0.001; Table 3).

Bayesian clustering analysis revealed two clusters when all

populations were considered, corresponding to Asian and South

American groupings (Figure 3A). Likewise, only two groupings

(K = 2) were supported when Asia (Figure 3B) and South America

(Figure 3C) were analyzed separately. Within Asia, populations

from mainland China and Korea were grouped separately from

those collected from Taiwan and Japan (Figure 3A). Populations

from Taiwan and Japan could, in turn, be subdivided into two

clusters (K = 2). Two populations from Taiwan (TW1, TW2), and

one Japanese population (JP1) were grouped together, while the

other two Japanese populations (JP2 and JP3) were clustered into

another group (Figure 3D). South American clusters showed a

genetically discontinuous distribution: some geographically distant

populations were grouped in the same cluster, whereas some

proximal ones were assigned to different clusters (Figure 3C). The

3D-FCA revealed consistent results with the pattern obtained from

Bayesian clustering method (Figure 3A1–D1).

Discussion

We used both mtDNA (COI) and nuclear markers (microsat-

ellites) to contrast the geographical distribution of genetic diversity

of Limnoperna fortunei in Asia and South America. Three major

findings emerge from this survey. First, introduced populations in

South America exhibited lower genetic diversity relative to

comparable ones in Asia. Second, genetic variation was geo-

graphically structured in introduced populations on both conti-

nents. Third, our results suggest that more than one introduction

event might have occurred in each of Asia and South America.

Higher genetic diversity in the former is consistent with higher

propagule pressure associated with introduction vectors from

neighboring source regions.

Expected heterozygosity (0.667–0.746) for introduced popula-

tions in Japan and Taiwan was higher than that in introduced

South American ones (0.519–0.575). Both groups exhibited lower

expected heterozygosity as compared to native populations in

mainland China and Korea (0.701–0.858). The high number of

haplotypes at the COI locus recovered from Japan, coupled with

relatively high heterozygosity, suggests that L. fortunei has been

introduced more than once and/or in large inocula (i.e. high

propagule pressure). This conclusion is consistent with Tominaga

et al.’s (2009) [61] findings. It is possible that L. fortunei was

introduced to Japan via aquaculture as a ‘fellow traveler’ with

stocked Asian clams, C. fluminea, imported from China [43].

According to the Japan Fish Traders Association (JFTA, 2010) and

the World Health Organization (WHO publications 2010), Japan

is the largest importer of clams in Asia. China and Korea are the

Table 1. Cont.

ID Collection site and Country Latitude mtDNA Microsatellite

Longitude N n Haplotype Code h P N A Ar HO HE

Canelones, Uruguay 256.431u Lfm10

MA Magdalena, Buenos Aires, 235.013u 22 7 Lfm01–06, Lfm16 0.688 0.0036 34 6.5 5.5 0.2163 0.5390

Argentina 257.536u

Total 697 32 0.604 0.0033 793 311 6.1 0.2670 0.6025

N, sample size for different molecular markers in different populations; n, number of haplotypes; h, haplotype diversity; p, nucleotide diversity; A, number of alleles; Ar:
allelic richness; HO and HE, mean observed heterozygosity and expected heterozygosity computed at eight microsatellite loci.
doi:10.1371/journal.pone.0059328.t001

Phylogeography of Limnoperna fortunei
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main sources of clams imported to Japan, and both countries host

native populations of L. fortunei [35], [37]. For example, during the

period 1989–2011, more than 76% of freshwater clams imported

to Japan originated from China or Korea [62]. Trade between

Asian countries continues to grow, and with it the risk of further

spread of L. fortunei to neighboring countries [63].

We observed a low number of mtDNA haplotypes in Taiwan

(n = 3), but rather high level of allelic richness (Ar = 7.3) and

heterozygosity (HE = 0.7052) at microsatellite loci (Table 1).

MtDNA has smaller effective population size (Ne) relative to

nuclear DNA owing to its maternal inheritance and haploid

nature. Therefore, the mitochondrial genome is expected to be

more sensitive to bottleneck events than the nuclear genome [64].

Similar genetic patterns have been observed in other non-

indigenous species, such as the ascidian Ciona intestinalis [2]. Two

possible processes - sweepstakes reproductive success and dramatic

demographic changes during translocation - could lead to stronger

signatures of genetic drift on mtDNA [2]. Taiwan, a major bivalve

market in Asia for oysters and scallops, imports animals mainly

from the USA, Canada and Japan (WHO publications, 2010).

Figure 2. Phylogenetic analyses of Limnoperna fortunei. Bayesian inference tree (A) based on the mitochondrial cytochrome c oxidase subunit I
(COI) haplotypes. Numbers are posterior probabilities recovered by Bayesian analysis, and only values above 50% are shown. COI haplotype
parsimony network (B) for L. fortunei in Asia and South America. Haplotype names as per Table 1. Haplotypes are indicated by circles, the size of
which corresponds to frequency. Missing or unsampled haplotypes are indicated by black circles. Colors indicate different geographical regions from
which the sample was collected. Haplotype names starting with K correspond to extra sequences from Japan retrieved from Genbank.
doi:10.1371/journal.pone.0059328.g002
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These imported species are mainly marine [65], thus the risk of L.

fortunei introduction from Japan through aquaculture appears to be

low. L. fortunei has not yet been reported in USA or Canada. While

aquaculture remains a possible vector for introduction to Taiwan,

it is more likely active in Japan. The low haplotype diversity

observed in Taiwan could be also result from inhospitable

environmental conditions in primary introduction areas. It is also

possible that the putative source population carries similar level of

genetic diversity. Korea was also represented by a low number of

haplotypes, and high nuclear allelic diversity, relative to native

populations in mainland China (Table 1). However, since only one

Korean population was surveyed, we suspect that this pattern

might be the product of low sample size.

Heterozygosity deficit was found in 77.6% of all analyzed

microsatellite loci, including native populations in mainland China

and Korea (Table S1). This pattern has been reported in other

invasive, freshwater bivalves, including quagga mussels (D.

rostriformis bugensis) and zebra mussels (D. polymorpha) [65–69].

Several factors including Wahlund effect, inbreeding, selection,

and null alleles could contribute to a heterozygosity deficiency. We

observed high PCR amplification success rate for all loci

examined, suggesting that null alleles were likely not a major

factor responsible for the heterozygosity deficit. Given that

planktonic free-swimming larvae of L. fortunei can be transported

both up- and downstream through recreational boating, natural

inland currents, and seasonal flooding, temporal and/or spatial

Wahlund effect could account for the heterozygosity deficit,

although inbreeding and selection cannot be completely dismissed.

Genetic Variation among Populations
In Asia, both mtDNA and microsatellite markers exhibited

lower genetic differentiation within geographic regions as com-

pared to that among regions. This finding is supported by a higher

percentage of variance allocated to among groups as compared to

among populations within groups (AMOVA; Table 3). Japanese

populations showed relatively high genetic differentiation, indic-

ative of some population structure. This might be the result of

separation of introduced populations of L. fortunei in each

geographic region by a saltwater dispersal barrier, with inter-

region gene flow limited to human-mediated translocation of

propagules. In addition, distinct sources of introduction can drive

genetic differentiation among regions. We observed high genetic

differentiation between South American and Asian populations

(FST = 0.180 – 0.306). High genetic differentiation has been

reported in other freshwater invasive mussels, including D.

polymorpha (FST = 0.006 – 0.263) and D. rostriformis bugensis

(FST = 0.008 – 0.267) [23]. Our Bayesian analyses revealed fine-

scale genetic structuring in Japan. One population from Japan

(JP1) exhibited more admixtures with the other cluster containing

populations from mainland China and Korea as compared to the

other Japanese populations (JP2 and JP3), suggesting two possible

genetically distinct sources for the introduced populations surveyed

in Japan. A previous COI haplotype survey failed to recover fine-

scale population genetic structure in Japan [61]. Similar to JP1,

populations from Taiwan (TW1, TW2) exhibited some admixture

with the other cluster containing native populations. The low

genetic differentiation between TW1 and TW2 indicates similar

source(s) or high gene flow within Taiwan. Long-distance or

‘‘jump’’ dispersal of L. fortunei, to upstream areas due to ship-

mediated translocation appears responsible for the patchy post-

Table 3. Analysis of molecular variance (AMOVA) for L. fortunei.

Source of variation
Sum of
squares

Variance
components

Percentage
of variation P-value

mtDNA

Group 1 (Asia and South America)

Among groups 130.64 0.365 21.8 ,0.001

Among groups 130.64 0.365 21.8 ,0.001

Among populations within groups 162.63 0.219 13.0 ,0.001

Within populations 736.00 1.094 65.2 ,0.001

Group 2 (region based)

Among groups 206.46 0.282 18.3 0.002

Among populations within groups 86.81 0.158 10.3 ,0.001

Within populations 735.90 1.093 71.3 ,0.001

Microsatellite

Group 1 (Asia and South America)

Among groups 477.14 0.602 21.5 ,0.001

Among populations within groups 226.22 0.125 4.5 ,0.001

Within populations 3239.0 2.074 74.0 ,0.001

Group 2 (region based)

Among groups 598.68 0.432 13.9 ,0.001

Among populations within groups 198.94 0.166 5.3 ,0.001

Within populations 3551.11 2.520 80.8 ,0.001

Populations are grouped based on their geographical distribution; group 1 (10 populations from Asia, and 14 populations from South America) and group 2 (native
regions in Asia: China, Korea, introduced regions in Asia: Japan, Taiwan and regions in South America: (CO), (RB, IT, YR, YD, SA), (UR), (RT), (SO), (EC, TI, QU, SL, MA)). P-
values for all groups indicate significant differences.
doi:10.1371/journal.pone.0059328.t003
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establishment spread of the species in South America [47], [70].

Higher genetic differentiation among introduced populations in

Asia relative to those in South America may be linked to the

presence of geographical barriers between countries in Asia (e.g.

East Sea China and Sea of Japan) as well as to possible genetically

distinct propagule sources. The heterozygosity deficiency found in

the surveyed L. fortunei populations violated the HWE assumption

for STRUCTURE analyses. However, similar results were

observed using another method (i.e. 3D-FCA) without this

assumption.

The parsimony network analysis and Bayesian phylogenetic

reconstruction revealed a close relationship among haplotypes of

L. fortunei. It appears that a recent geographic expansion of L.

fortunei throughout its native distribution can explain of its low

phylogeographic structure. This finding suggests that even in the

native region, populations may still be expanding to areas not

previously populated. Vector activity such as ship traffic between

local ports in native region (e.g. mainland China and Korea) may

have contributed to recent expansion of L. fortunei across its native

range [71].

Asia versus South America
Our study suggests that introduced golden mussels carry less

allelic diversity in South America than in Asia. A number of

factors may contribute to this pattern. First, data from global ship

traffic between 2005–2006 [71] documented higher ship traffic to

ports in Japan and Taiwan relative to those in Argentina (Figure 4).

For example, Japan received about 3 6 104 ships from countries

considered native for L. fortunei, whereas Argentina received only

26 ships. Second, Taiwan and especially Japan may benefit from

an aquaculture transfers from adjacent Asian countries, notably

mainland China. Third, given the comparatively short distance

between Asian countries, hull fouling could effect local or regional

spread. L. fortunei larger than 20 mm can tolerate anoxia for up to

18 days at 20uC [72], whereas it is unlikely that adults could

survive ocean salinity (and hypoxia if valves are closed) while being

transported on hull surfaces from Asia to eastern South America.

The relatively high domestic traffic between local ports in each

introduced country (Figure 4) suggests that shipping was a likely

vector for secondary introduction of L. fortunei in these regions.

Although taxonomically distinct, L. fortunei, D. polymorpha and D.

rostriformis bugensis share similar ecological and biological charac-

teristics including planktonic larvae and a sessile, benthic adult

stage. These life history traits suggest similar vectors could effect

their human-mediated spread (i.e. ballast water and hull fouling).

Also, golden mussel can be transported as a ‘fellow traveler’ in

aquaculture [43], while this vector is possible but far less likely for

either of the two dreissenid NIS [73]. Previous studies have

assessed patterns of genetic diversity in populations of D. polymorpha

and D. rostriformis bugensis in North America and Eurasia [23], [74].

Our survey of L. fortunei provides a good basis for comparison of

the genetic characteristics of the three mussel species (Table S2).

Table 4. Estimates of population genetic differentiation (corrected FST –like index, Jost’D) based on microsatellite markers for
Limnoperna fortunei, across the introduced range in South America.

TW1 TW2 JP1 JP2 JP3 KR CH1 CH2 CH3 CH4 CO RB IT YR YD SA SO UR RT EC TI QU SL MA

TW1 ****

TW2 0.039 ****

JP1 0.088 0.127 ****

JP2 0.200 0.171 0.071 ****

JP3 0.163 0.200 0.123 0.131 ****

KR 0.274 0.304 0.245 0.391 0.404 ****

CH1 0.124 0.102 0.104 0.225 0.265 0.259 ****

CH2 0.132 0.114 0.122 0.235 0.292 0.320 0.091 ****

CH3 0.079 0.108 0.119 0.213 0.199 0.328 0.086 0.030 ****

CH4 0.086 0.130 0.144 0.205 0.213 0.319 0.123 0.056 0.024 ****

CO 0.525 0.463 0.523 0.411 0.496 0.536 0.522 0.488 0.462 0.482 ****

RB 0.624 0.559 0.633 0.537 0.602 0.612 0.555 0.616 0.598 0.589 0.021 ****

IT 0.476 0.418 0.511 0.409 0.472 0.508 0.463 0.451 0.452 0.435 0.033 0.047 ****

YR 0.544 0.484 0.522 0.389 0.504 0.519 0.521 0.453 0.448 0.471 0.023 0.072 0.024 ****

YD 0.597 0.558 0.599 0.494 0.593 0.610 0.581 0.568 0.564 0.552 0.041 0.031 0.052 0.055 ****

SA 0.553 0.500 0.543 0.420 0.511 0.543 0.526 0.518 0.514 0.503 0.017 0.026 0.028 0.039 0.037 ****

SO 0.631 0.575 0.612 0.454 0.589 0.626 0.538 0.570 0.587 0.616 0.044 0.014 0.044 0.058 0.049 0.039 ****

UR 0.531 0.463 0.511 0.411 0.504 0.500 0.478 0.421 0.444 0.464 0.034 0.032 0.040 0.048 0.066 0.025 0.024 ****

RT 0.559 0.514 0.546 0.414 0.521 0.559 0.528 0.508 0.500 0.502 0.007 0.011 0.039 0.044 0.031 0.010 0.018 0.015 ****

EC 0.552 0.484 0.536 0.439 0.507 0.518 0.532 0.465 0.467 0.476 0.017 0.042 0.039 0.013 0.041 0.012 0.072 0.031 0.021 ****

TI 0.555 0.482 0.530 0.397 0.508 0.530 0.494 0.469 0.473 0.471 0.031 0.044 0.029 0.014 0.036 0.015 0.033 0.020 0.031 0.020 ****

QU 0.552 0.484 0.525 0.398 0.500 0.525 0.524 0.471 0.467 0.470 0.000 0.025 0.028 0.019 0.033 0.012 0.052 0.037 0.015 0.011 0.018 ****

SL 0.726 0.662 0.687 0.502 0.659 0.693 0.594 0.636 0.647 0.652 0.040 0.019 0.058 0.068 0.051 0.020 0.003 0.031 0.018 0.066 0.026 0.037 ****

MA 0.528 0.472 0.534 0.351 0.508 0.548 0.498 0.403 0.418 0.458 0.019 0.046 0.026 0.041 0.074 0.039 0.011 0.026 0.022 0.046 0.032 0.023 0.026 ****

Population identifications as per Table 1. Horizontal and vertical double lines separate populations from Asia and South America.
doi:10.1371/journal.pone.0059328.t004
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When using microsatellites, all three species have similar level of

genetic diversity across native and introduced regions (Table S2).

The higher number of COI haplotypes retrieved from L. fortunei

(40 haplotypes) as compared to 11 found for D. polymorpha [75] and

seven for D. rostriformis bugensis [76] suggests that the former species

did not experience historical population fluctuations following

colonization like the latter species. For D. polymorpha, the Great

Lakes appear to have served as a ‘hub’ for subsequent expansion

across North America [23]. Similarly, the Rı́o de la Plata estuary

appears to have served as a ‘staging hub’ for subsequent spread of

introduced golden mussels through much of eastern South

America.

Conclusions

Our findings suggest that L. fortunei’s introduction in both Asia

and South America likely involved multiple introductions and high

propagule pressure, resulting in populations with high genetic

diversity relative to sampled native populations in Asia. Introduced

populations exhibiting lower genetic diversity (South America)

likely received lower propagule pressure relative to those with

higher diversity (Japan). Our genetic survey shows how human-

mediated introduction of NIS can create genetic complexities

across introduced locations. Our study evaluates possible links

between vector activity and genetic composition of a nuisance NIS

at a global scale, and highlights the utility of incorporating

population genetics and vector activity data to understand species

dispersal patterns [77–78].

Supporting Information

Figure S1 Values of DK calculated as in Evanno et al.
[59] for detecting the biologically relevant clusters of
Limnoperna fortunei collected from all 24 locations (A)
and Asia (B).

(TIF)

Table S1 Genetic diversity at eight microsatellite loci for the

golden mussel, Limnoperna fortunei, sampled from 24 locations across

the global range in East Asia and South America. A, number of

alleles; Ar, allele richness; HO, observed heterozygosity; HE,

Figure 4. Ship traffic for Taiwan, Japan and Argentina. The total
number of ships visiting each country is divided into: ships departing
from countries considered native for Limnoperna fortunei (black bars),
ships traveling between domestic ports in each country (grey bars), and
ships departing from other global ports (white bars). Data is derived
from supplementary information [71] provided by Lloyd’s Fairplay.
doi:10.1371/journal.pone.0059328.g004

Figure 3. Bayesian inference population genetic structure of Limnoperna fortunei. Bayesian clustering of L. fortunei based on eight
polymorphic microsatellites in all 24 populations (A), populations collected from the native range in Asia (B), introduced populations in South
America (C), and introduced populations in Asia (D). Each genotype is represented by a thin vertical line, with proportional membership in different
clusters indicated by different colors. Bold vertical lines separate collection sites, with site identifications indicated below the plot. Site identification
as per Table 1. Three-dimensional factorial correspondence analysis (A1– D1) corresponding to the Bayesian clustering of L. fortueni.
doi:10.1371/journal.pone.0059328.g003
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expected heterozygosity; PHW, exact P-value for Hardy-Weinberg

equilibrium test. The significance after sequential Bonferroni

correction was bolded.

(DOC)

Table S2 Comparison of microsatellite-based genetic features of

the three highly invasive freshwater mussels, zebra mussel Dreissena

polymorpha, quagga mussel Dreissena rostriformis bugensis, and golden

mussel Limnoperna fortunei.

(DOC)
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