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Abstract

Understanding the effects of climatic variability on marine mammals is challenging due to the complexity of ecological
interactions. We used general linear models to analyze a 15-year database documenting marine mammal strandings (1994–
2008; n = 1,193) and nine environmental parameters known to affect marine mammal survival, from regional (sea ice) to
continental scales (North Atlantic Oscillation, NAO). Stranding events were more frequent during summer and fall than other
seasons, and have increased since 1994. Poor ice conditions observed during the same period may have affected marine
mammals either directly, by modulating the availability of habitat for feeding and breeding activities, or indirectly, through
changes in water conditions and marine productivity (krill abundance). For most species (75%, n = 6 species), a low volume
of ice was correlated with increasing frequency of stranding events (e.g. R2adj = 0.59, hooded seal, Cystophora cristata). This
likely led to an increase in seal mortality during the breeding period, but also to increase habitat availability for seasonal
migratory cetaceans using ice-free areas during winter. We also detected a high frequency of stranding events for mysticete
species (minke whale, Balaenoptera acutorostrata) and resident species (beluga, Delphinapterus leucas), correlated with low
krill abundance since 1994. Positive NAO indices were positively correlated with high frequencies of stranding events for
resident and seasonal migratory cetaceans, as well as rare species (R2adj = 0.53, 0.81 and 0.34, respectively). This contrasts
with seal mass stranding numbers, which were negatively correlated with a positive NAO index. In addition, an unusual
multiple species mortality event (n = 114, 62% of total annual mortality) in 2008 was caused by a harmful algal bloom. Our
findings provide an empirical baseline in understanding marine mammal survival when faced with climatic variability. This is
a promising step in integrating stranding records to monitor the consequences of environmental changes in marine
ecosystems over long time scales.
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Introduction

Environmental changes are occurring worldwide and the

consequences of recent climatic variability are now acknowledged

as a global perturbation with geographic differences in intensity

[1]. Spatial heterogeneity in degree of environmental change and

climatic variability poses a challenge in monitoring effects on

terrestrial and marine communities [2,3,4]. This is especially true

for top predators, such as marine mammals, because their position

in food webs and long generation time make them especially

sensitive to perturbations in ecosystems [2,5]. Marine mammals

are threatened at the global scale with almost a quarter of these

species on the verge of extinction [6,7].

Stranding records have long been used as an indirect means to

monitor the status, distribution, and seasonal abundance of marine

mammals [8,9,10]. These records have also been instrumental in

detecting unusual mortality events [11,12,13]. A growing number

of studies have identified factors directly affecting individual

survival such as human activity, together with those affecting post-

mortem drift such as currents [14,15,16]. Recent work has

corroborated inter-annual variation in long-term stranding data

with climatic variability, demonstrating the utility of stranding

events as real-time bio-indicators [8,17]. To understand complex

(and variable) ecological responses of marine mammals to

environmental change, we need to consider environmental

parameters over multiple scales (regional and continental) and to

address data from multiple species [17,18]. Such a hierarchical

approach provides a promising avenue to evaluate effects of

climatic variability; this is especially true when dealing with species

with great variability in habitat use, e.g. with resident vs. migratory

species (Fig. 1) [19,20].

The St. Lawrence ecosystem, in eastern Canada, is an

important feeding area for numerous marine mammals of the

North Atlantic Ocean, including several species at risk [e.g.

endangered blue whale (Balaenoptera musculus), endangered North

Atlantic right whale (Eubalaena glacialis), and threatened St.

Lawrence Estuary beluga (Delphinapterus leucas)]. Recent environ-

mental changes in the St. Lawrence (e.g. below average ice cover

over the last decade) and structural changes in the marine
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community (e.g. composition, abundance, and distribution of

several invertebrates and fishes) have been identified as critical

factors affecting the dynamics of marine mammal populations

[21,22,23]. The systematic record of marine mammal stranding

events since 1994 can be used as a proxy of natural mortality over

such a large ecosystem. This provides a unique opportunity to

identify the temporal variability of oceanographic changes

affecting a complex community of marine mammals.

Here, our main objective was to investigate possible relation-

ships between temporal variation in marine mammal stranding

events and changes in environmental conditions occurring in the

St. Lawrence Estuary (SLE) and the Northwestern Gulf of St.

Figure 1. Conceptual framework showing how environmental parameters may affect stranding events of marine mammals in the
Estuary and the Gulf of St. Lawrence, Québec, Canada. Black solid lines are possible effects of regional parameters and dashed lines are
possible indirect effects of continental parameters identified in this study, while grey lines are additional effects previously reported in the literature
(see Table 1).
doi:10.1371/journal.pone.0059311.g001

Table 1. Studies documenting ecological linkages between marine mammals and environmental changes.

Marine mammals and environmental factors
Temporal scale
(years) Type of data used Literature cited

Cetacean and thermal fronts ,10 Sighting data [59,60]

Cetacean and sea ice ,10 Sighting data [2,53]

Cetacean and large-scale climatic factors .10 Sighting and stranding data [3,20]

Cetacean and harmful algal blooms ,10 Stranding data [13,63]

Cetacean and ressource availability ,10 Sighting data [26,64]

Pinniped and thermal fronts ,10 Diving data [56,60]

Pinniped and sea ice .10 Demographic and stranding data [17,39,40]

Pinniped and large-scale climatic factors .10 Demographic and stranding data [17,39]

Pinniped and harmful algal blooms .10 Stranding data [12,63]

Pinniped and resource availability ,10 Demographic and diving data [55,56]

Rare cetacean species and water conditions 55 Stranding data [49]

Climate change and marine mammals - This study and reviews [3,6]

This table is limited to selected citations given as examples, and does not constitute an exhaustive review of the literature. This table can be linked to Fig.1.
doi:10.1371/journal.pone.0059311.t001
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Lawrence (NWGSL) from 199422008 (Fig. 1). Recently, low ice

cover was linked to negative North Atlantic Oscillation index

values (NAO), which is a proxy for climatic variability over the

whole North Atlantic Ocean. This change in ice cover is a likely

mechanism to explain the increase in young-of-the-year harp seal

(Pagophilus groenlandicus) mortality in the Gulf of St. Lawrence [17].

This is an example of hierarchical effects of environmental

parameters, though it remains unclear whether such links are

affecting other species in the same manner.

We hypothesized that key environmental parameters (listed in

Table S1 in File S1) affecting stranding events such as ice volume,

have a different impact on marine mammal survival depending on

their dispersal strategy (i.e. resident vs. seasonal migrant) and

habitat use (i.e. for breeding vs. for feeding). Specifically, we

predicted that regional parameters measured with CIL volume

and sea temperature (low values) will negatively influence resident

species (high number of strandings). We also predicted that sea ice

volume (low values) will negatively influence stranding numbers of

pagophilic species (high number of strandings), and krill

abundance (low values) will negatively influence stranding

numbers of mysticetes species (high number of strandings). Finally,

we predicted that NAO index (low index), known as a key large-

scale continental parameter, will influence positively migrants

species (low number of strandings) but negatively pagophilic

species (high number of strandings).

Methods

Ethic Statement
Field-work endeavors in the marine ecosystems of Canada were

subject to approval by the Department of Fisheries and Oceans

Canada (DFO). Co-authors Michel Harvey (DFO) and Michel

Starr (DFO) were responsible of krill and phytoplankton sampling,

respectively, and notified DFO with their work. For the purpose of

this paper, we did not need additional permits as we used an

existing database recorded under the jurisdiction of the DFO.

Study Area
Marine mammal stranding events were documented along the

Northwestern shores of the Gulf of St. Lawrence (NWGSL) and

the St. Lawrence Estuary (SLE), Québec, Canada (Northwest

Atlantic Fisheries Organisation Divisions 4S and 4T) (Fig. 2A).

The St. Lawrence is a complex and dynamic ecosystem receiving

great quantities of salt and fresh waters [24]. Persistent high-

density aggregations of krill and fish (i.e. capelin) make the SLE

[25,26] and the NWGSL important feeding areas for a variety of

marine mammal species in summer [27].

During winter, the cold (,21uC) surface mixed layer reaches

an average depth of 75 meters and encompasses up to 45% of all

the waters of the Gulf of St. Lawrence [28]. Spring surface

warming, sea-ice melt and continental runoff produce a surface

layer below which the winter-formed cold layer is partly isolated

from the atmosphere. This forms the summer cold intermediate

layer (CIL), which persists until the next winter, gradually

warming up and deepening during summer [29,30].

Collection of Stranding Data
We assembled all available data on marine mammal stranding

events held by DFO and the stranding network Réseau québécois

d’urgences pour les mammifères marins (RQUMM). Annual awareness

campaigns provided information about the stranding network to

numerous organisations and citizens, who were invited to report

stranding observations. From 1994 to 2002, stranding data was

collected by DFO at the Maurice Lamontagne Institute (Qc,

Canada) and since 2003, by RQUMM, a marine mammal

response network co-ordinated by the non-governmental organi-

zation, Groupe de recherche et d’éducation sur les mammifères marins

(GREMM) under contract to DFO. We systematically examined

these two databases for both single and mass stranding events, the

latter defined as at least two animals ashore at the same place and

time except for cases involving a female and calf which are

considered single events [31]. Floating carcasses and strandings

attributed directly to human activity were excluded (N= 192, 16%

of total stranding measured in this study). Evidence of human

incidence on strandings was based on specific criteria and was

classified by categories (e.g. the by-catch category was identified

when the fishing gear was found on the animal or when unhealed,

narrow, linear lacerations or indentations were observed on the

epidermis of the carcass). These data are the object of a manuscript

in preparation (Truchon et al. pers. comm.). Analyses of stranding

data included only cases where identification of marine mammal

species was confirmed (photographs and/or trained observers were

used to confirm species identification). Ambiguous cases of species

identification were classified as ‘‘seal spp.’’ or ‘‘cetacean spp.’’ and

were excluded from single species analyses. Seasons were defined

as Spring (Sp) - March to May, Summer (S) - June to August, Fall

(F) - September to November and Winter (W) - December to

February.

Environmental Data
Environmental data were obtained from various DFO and

National Oceanic and Atmospheric Administration (NOAA)

monitoring programs. Data included environmental parameters

involving linkages between environmental changes and marine

mammals (see Table 1, Fig. 1, and below for details) at regional

and continental scales. The parameters for the regional scale are:

(1) abundance of some species of harmful toxic algae (TA) (St.

Lawrence Global Observatory: http://ogsl.ca/en/phytoplankton.

html), (2) krill abundance (Krilla) [22,32], (3) sea surface

temperature (SST) [33], (4) freshwater runoff (FWR), http://

ogsl.ca/en/runoffs/data/tables.html), (5) volume of the cold

intermediate water layer (CIL) (Vol0) [23] and (6) volume of sea

ice cover (ICEV) [23]. Finally, parameters for the continental scale

are: (1) North Atlantic Oscillation (NAO) index of the current

year, (2) NAO index of the previous year (NAOt–1), and (3) NAO

index of the previous winter (NAOwt–1).

Regional environmental data. Annual mean of harmful

toxic algae abundance was recorded at eleven coastal stations

covering the SLE and GSL. Phytoplankton samples were taken

every week from mid-May to late October (see [34] for details).

We selected and pooled seven taxa with potential toxic effects:

Alexandrium spp., Dinophysis spp., Karenia mikimotoi, Prorocentrum lima,

Prorocentrum minimum, Pseudo-nitzschia pseudodelicatissima, and Pseudo-

nitzschia seriata.

Annual index of estimated krill abundance included three

species (Meganyctiphanes norvegica, Thysanoessa raschii, and Thysanoessa

inermis) and were collected at four fixed stations, in mid-June and

late fall (late October and early November). Zooplankton

collections and standard measurements are outlined in [35] and

were corrected (see [22] for details). SST was averaged over the

entire GSL (195 000 km2) for each year (1994 to 2008) between

June to August, inclusively, when marine mammals most

frequented the area (see [23] for details of the methods and [33]

for recent inter-annual variability over the GSL). For other

parameters, we used mean annual freshwater runoff (FWR)

measured at Québec City (main freshwater input), August/

September volume of the CIL at T,0uC and mean annual

volume of sea ice cover of the entire GSL (obtained from

Marine Mammals in a Changing Environment
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Canadian Ice Service daily digitized ice charts where standard

thicknesses are attributed to ice types) including breeding areas of

pagophilic seals (harp and hooded seals).

Continental environmental data. To assess the effect of

large-scale climatic variability on stranding numbers at a conti-

nental scale, we used NAO index values obtained from the

Climate Prediction Center of the National Weather Service (www.

cpc.ncep.noaa.gov). NAO data are calculated using the difference

in sea level pressure between Lisbon, Portugal and Stykkisholmur/

Reykjavik, Iceland. The amplitude of the NAO index is known to

have a major effect on ice conditions in Arctic and Atlantic

Oceans, including a time-lag effect from the previous year and

previous winter on the current year [36,37,38]. The NAO index

consists of a north-south dipole of air pressure anomalies with one

center located over Greenland and the other center covering the

central latitudes of the North Atlantic Ocean, between 350N and

400N latitudes [39]. Several studies link the recruitment of

pagophilic species (i.e. ringed seal, Phoca hispida and harp seal) to

the current year NAO index, the NAO index of the previous year

(NAOt–1), the NAO index of the previous winter (NAOw t–1,

measured as the NAO index from December to March of the

previous year), and ice conditions [39,40]. We included all these

parameters in our analyses.

Statistical Analyses
All statistical analyses were conducted with R.2.8.0 [41].

Analyses of variance (ANOVAs) were first used to detect

differences in the occurrence of stranding events between years

and seasons followed by post-hoc t-tests for single factors [42].

Kruskall-Wallis tests were used when Shapiro-Wilkinson tests

indicated failure to meet the two assumptions of normality and

homogeneity of variance, thereby precluding the use of parametric

tests as well as mathematic transformations [42]. Differences were

statistically significant at p,0.05.

Multiple linear regressions were performed to model the

relationships between stranding events (e.g. response variable)

and environmental parameters (e.g. explanatory variables) by

species. All models were tested with Shapiro-Wilkinson tests to

meet the two assumptions of normality and homogeneity of

variance. To overcome the variability of sampling effort, we used

de-trended stranding data by using residuals in multiple linear

regression models. For pagophilic seal species, breeding within the

area during winter, and for resident species, two different models

Figure 2. Study area and distribution of marine mammal stranding events in the Estuary and the Gulf of St. Lawrence, Québec,
Canada, 1994–2008. (A) All reported marine mammal stranding events (1994–2008), (B) stranding events reported only during the harmful algal
bloom of 2008, and (C) stranding events of pagophilic seals only (1994–2008). Marine mammal groups used in analyses are defined in Table S2 in File
S1.
doi:10.1371/journal.pone.0059311.g002
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were used based on species (Table S1 in File S1); NAO index of

the previous year (NAOt–1), and the other with NAO of the

previous winter (NAOwt–1), respectively. Akaike’s Information

Criterion (AIC) was used to select the most parsimonious model

[43], unless the differences in AIC were smaller than 2 in which

case the best explicative model was selected (highest values for

their adjusted R2).

We restricted our models to exclude collinear variables by using

a Pearson’s correlation coefficient greater than 0.6. To avoid

problems in regression fitting caused by the strong correlation of

ice cover volume with krill abundance (0.7) and CIL volume (0.6),

we used the residuals of ice cover volume (resICEV), indicating the

deviation from average, as a predictor [44]. We then obtained nine

predictors (Vol0, SST, FWR, resICEV, krilla, TA, NAO, NAOt–1

and NAOwt–1), which were not correlated. The most parsimonious

model was compared to an intercept-only model (i.e. without

predictor variables) to evaluate the power of environmental

parameters selected for each single species model.

Results

From 1994 to 2008, a total of 1,193 stranding events were

reported on the shores of the St. Lawrence, and included 549

cetaceans (405 odontocetes, 96 mysticetes, and 48 cetacea spp.)

and 644 seals (260 identified to the species level, see Table S2 in

File S1). Cetacean strandings included 10 and 5 species of

odontocetes and mysticetes, respectively. Belugas (n = 205) and

minke (n = 61) whales were the most frequently reported

odontocetes and mysticetes, respectively. Seal strandings included

five species, with harbour (Phoca vitulina, n = 80) and grey

(Halichoerus grypus, n = 80) seals being the most frequently reported.

Although the large majority of stranding events involved single

individuals, a total of 22 mass stranding events were reported for

the Magdalen Islands (Fig. 2.A; 41% of 54 reports). Mass stranding

events involved mostly harp seals (n = 5, representing 53% of total

number of individuals involved in seal mass strandings), Atlantic

White-sided dolphins (Lagenorhynchus acutus) (n = 5), hooded seal

(n = 2), and unidentified seals (n = 15). During the study period,

there were very few stranding observations involving rare or less

common species in the SLE (n = 16; see Table S2 in File S1).

Temporal Patterns
Overall, stranding reports were more frequent during summer

and fall compared with spring and winter (odontocetes:

F3,179 = 56.74, p,0.001, n= 405; mysticetes: x2 = 37.02, df = 3,

p,0.001, n = 96; and seals: F3,179 = 33.53, p,0.001, n= 644;

Fig. 3).

De-trended stranding data increased during the study period

(r = 0.77). This trend was possibly driven by the low number of

strandings recorded at the beginning of the time series (1994–

1998) followed by high numbers reported from 1999 to 2007 as

well as in 2008 when the harmful algal bloom occurred. The

increasing trend remained even after excluding 2008 (large

standard deviation for the number of stranding events caused by

the harmful algal bloom in summer 2008; see below).

2008 Event
A multi-species stranding event occurred in August 2008,

involving grey seals, harbour seals, harbour porpoises (Phocoena

phocoena), and belugas (Fig. 2.B). During this event, a total of 114

carcasses (62% of the year’s total) were found on the south shore of

the SLE. Grey seal stranding numbers were numerous (n = 35),

being 122 times the 14-year mean (1994–2007) of August 2008.

Concurrently, beluga stranding numbers (n = 10) amounted to

Marine Mammals in a Changing Environment
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three times the mean numbers documented for that single month

from 1983 to 2007 (DFO, unpublished data).

Necropsies performed on carcasses indicated that most animals

were in good nutritional condition with no lesions attributable to

any infectious, parasitic or other etiological agent (DFO, un-

published data). However, analyses of tissues from marine

mammal carcasses (including belugas, harbour porpoises, harbour

and grey seals), invertebrates, fishes, and birds revealed the

presence of biotoxins produced by A. tamarense (DFO, unpublished

data).

Environmental Explanatory Parameters
Multiple linear regression models were performed on de-

trended data from the period 1994–2008 (Table S3 in File S1 and

Fig. 4). Results showed that inter-annual changes in environmental

parameters significantly affected the occurrence of stranding

events of five marine mammal species (i.e. models significantly

differed from the null models, p,0.05; Table 2). Environmental

parameters failed to explain inter-annual variations of stranding

events for two species (i.e. harbour seal and fin whale, Balaenoptera

physalus), and one species (harp seal) was not included as the

Shapiro-Wilkinson test indicated failure to meet the assumption of

normality. The explanatory power of models including several

environmental parameters varied greatly based on the species

(ranging from 34% to 81% for the best models, Table 2). The

models including minke whale and hooded seal stranding numbers

as response variables had the best predictive power (81% and

59%, respectively).

Regional parameters. Two of the eight parameters were

negatively correlated with years; ice cover volume and krill

abundance (r =20.51, p = 0.005; r =20.72, p=0.002, respective-

ly). Ice cover volume was also positively correlated with krill

abundance and CIL volume (r = 0.66, p=0.007; r = 0.78,

p,0.001, respectively; Fig. 5). Water parameters in general,

including CIL volume and SST, were recurrently selected in

models with species-specific relationships (Table 2). Overall, years

with low ice conditions positively affected stranding events for all

species (higher number of strandings), except for the harbour

porpoise and resident beluga. Relationships between marine

mammal stranding events and other environmental parameters

were species-dependent. With respect to biotic factors, years with

low krill abundance were correlated with high stranding events of

belugas and minke whales. In addition, the multi-species stranding

event in August 2008 coincided with a harmful algal bloom of A.

tamarense in the SLE.

Continental parameters. The NAO index positively affect-

ed stranding numbers of two migrant species (i.e. Atlantic White-

sided dolphin and minke whale) compared to the grey seal

(Table 2). Stranding numbers of the Atlantic White-sided dolphin

and the minke whale were negatively and positively correlated

with the previous year NAO index, respectively. Stranding

numbers of resident and migrant species (i.e. belugas, grey seals

together with rare species) were positively correlated with the

previous winter NAO index. In contrast, seal mass strandings were

negatively correlated with the previous winter NAO index.

Discussion

Here we identify potential links between stranding events and

environmental conditions using a multiple species and scale

approach. Our multiple regression models suggest that the inter-

annual variability of marine mammal stranding events over a 15-

year period is associated with regional (e.g. ice volume) and

continental (e.g. NAO index) changes in the environment for both

resident and migrant species (Table 2). The marine mammal

community was likely affected by low ice conditions observed in

recent years through two pathways; 1- directly with changes in ice

conditions modulating the availability of habitat for feeding and

breeding activities or 2- indirectly with changes in water conditions

and marine productivity (e.g. using krill abundance as an index).

Moreover, the magnitude and timing of a stochastic event, the

harmful algal bloom in August 2008, at the head of the Laurentian

Channel, an area of upwelling in the St. Lawrence Estuary,

affected migrant and resident species.

Implication of Sea Ice Changes
In the temperate ecosystem of the St. Lawrence, ice is

a fundamental component structuring the marine mammal

community by creating habitats for some species (e.g. whelping

substrate for pagophilic phocids in winter [40,45]) and acting as

a potential barrier for some others [46–47]. Ice volume is high

during severe winters, which also favours a high CIL volume for

the following summer, regionally affecting krill abundance and

patchiness [23,26,28].

Over the last decade, poor ice conditions have been observed

compared to ice conditions in the late 1980 s and 1990 s in eastern

Canada. In some years, neonatal mortality of the North Atlantic

harp seal has been documented in association with poor ice

conditions [40,45]. Our models are consistent with previous

reports of pagophilic seal mortality [39,40,45] as we demonstrated

an association between reduced ice cover volume and increased

strandings of single hooded seals and mass strandings of seals

(particularly juveniles, with harp seal representing 53% of the total

number of individuals involved in seal mass stranding events).

Large-scale climatic parameters such as NAO and NAOw(t21)

indices are known to modulate sea ice and consequently affect the

survival of pagophilic seal pups during the whelping season

[17,39]. Here, we also found an association between negative

NAO phase, i.e. last winter (NAOw(t21)) index, and increased mass

mortalities of seals, with mortality correlated with low ice cover

volume.

Environmental changes may also drive shifts in composition and

structure of marine communities with climatic variability directly

affecting organisms or indirectly through the food web, from

primary to secondary producers [48,49]. Our models support

previous studies that local prey resources are important (using krill

abundance as a proxy) for resident species (e.g. beluga) and migrant

mysticete species (e.g. minke whale) using the SLE and GSL for

feeding activities (i.e. particularly in areas of upwelling where krill

and fish are aggregated along continental shelves) [25,26]. While

the decline of krill abundance in the St. Lawrence since 1994 has

not been thoroughly investigated yet [22,50], our results suggest

a relationship between low krill abundance and poor ice

conditions observed in the 2000 s, which has likely affected the

marine mammal community. The correlations found between

decreased krill abundance, low CIL volume and low ice cover

volume suggest that recent low ice cover volume affected resource

availability through water conditions, with krill abundance

specifically associated with CIL volume [22,26]. Beside this, we

suspect the negative relationship found between ice volume and

Figure 3. Seasonal variability in the mean number of marine
mammal stranding events in the Estuary and the Gulf of St.
Lawrence, Québec, Canada, 1994–2008. (A) Mysticetes, (B)
odontocetes and (C) seal species in the Estuary and the Gulf of St.
Lawrence, Quebec, Canada, 1994–2008. Letters over the bars indicate
statistical differences (see methods); bars with different letters are
statistically different at 5% level.
doi:10.1371/journal.pone.0059311.g003
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number of strandings of migrants species results from the release of

ice barriers and distribution changes in winter and early summer

[51]; low ice volume into the Gulf could yield new ice-free habitats

for migrant species [52,53] and allow movement toward the Gulf

and Estuary -this would increase the odds of stranding events in

our study area (e.g. increase odds of sporadic mortality such as in

ice entrapment events [46,47]. Alternatively, when sea ice volume

is low, a sick animal or a carcass may be more able to get to the

shore to strand than when sea ice is consolidated. Nevertheless,

a carcass entrapped in sea ice can drift and strand ashore with

a delay driven by the timing of spring melt or during winter

warming periods that can precipitate the thinning of sea ice.

However, a seasonal delay in stranding numbers is not expected to

drive the negative relationship between sea ice volume and

stranding numbers because we considered the total annual

stranding numbers in all models. Moreover, most cetacean species

feeding in the study area during the summer time leave the area in

fall, avoiding harsh winter conditions. Therefore this migration

pattern reduces the likelihood of carcasses being entrapped in sea

ice within our area [54].

Large-scale climatic parameters such as NAO and NAOt21 are

also important in models for migratory species such as the Atlantic

White-sided dolphin and the minke whale. This is consistent with

NAO indices affecting migratory behavior, body condition and

survival of marine mammals indirectly through effects on local

resource availability [55,56].

The Use of Stranding Data and the Multi-scale Approach
In general, temporal variability in oceanographic conditions is

particularly high in temperate ecosystems where seasonal ice plays

a major role in the dynamics of marine populations [20]. This

seasonal variability may reduce our ability to detect and interpret

ecological mechanisms affecting marine populations due to

climatic variability, particularly for migratory species [20]. In this

context, the use of long-term stranding datasets allows the

identification of possible ecological mechanisms between climate

variability and marine mammal communities (review in Table 1).

The multi-scale (regional and continental) and multi-species

datasets used in this study illustrate the complexity, underlying

seasonality, various pathways through the food web (e.g. the

relationship between ice, krill abundance and migrants), as well as

Figure 4. Inter-annual variation of marine mammal stranding events in the Estuary and the Gulf of St. Lawrence, Québec, Canada,
1994–2008. The time series are de-trended (see methods) to indicate inter-annual variation rather than long-term changes and remove any
potential bias due to increased observation reports over the years.
doi:10.1371/journal.pone.0059311.g004
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the effect of stochastic events (e.g. the harmful algal bloom in 2008)

(Fig. 1). Although marine mammals are highly mobile and can

avoid adverse local conditions, harmful algal bloom events in

habitats where animals feed increase the probability of intoxication

and mortality. In the Estuary, harmful algal blooms are a recurrent

phenomenon known to occur in many restricted areas at the

mouth of rivers and are associated with above-normal freshwater

runoff during summer [57,58], but have not, to our knowledge,

been recorded in an area with upwelling (i.e. the head of the

Laurentian Channel, described in [26]) leading to unusually high

mortality of several marine species as observed in 2008. As the

toxic dinoflagellate, A. tamarense is sensitive to some environmental

changes [58]; monitoring harmful algal blooms promotes pro-

tection and conservation of marine mammals as well as public

health.

Stranding data do not allow us to define the ecological

mechanisms underlying changes in water conditions (e.g. SST

and FWR). In contrast, the effect of water conditions (e.g. fronts,

eddies, topography) on widely distributed cetaceans has largely

been examined at a fine spatio-temporal scale, focusing on marine

mammal sighting data rather than stranding data [59,60]. As a way

forward, we suggest that sighting data may be combined in the

future with stranding data as a more comprehensive tool to

understand ecological linkages [61]. This would be especially

relevant in a feeding area where water parameters affect prey

aggregation and consequently the distribution of marine mammals

into predictable areas [59] (Table S1 in File S1).

Despite inherent limitations associated with marine mammal

stranding data, we demonstrated the importance of using

a multiple scale and species approach to detect unexpected

ecological linkages compared to mono-specific or single scale

studies [17,62]. This approach has been useful in identifying

relatively complex ecological linkages (e.g. distribution of migrant

whales in winter with respect to ice conditions). Overall, its uses

may help in designing future researches on the effect of climatic

variability on the diverse and vulnerable community of marine

mammals.

Supporting Information

File S1 File contains: Table S1. Species composition in the

stranding database for the Estuary and the Gulf of St.-Lawrence,

Québec, Canada, 1994–2008. This table provides an overview of

all marine mammal species stranded in the study area. Age and sex

classes for each species were grouped together. Table adapted

Table 2. Multiple linear regression model coefficients for environmental parameters tested as predictors of inter-annual variation
in marine mammal stranding events in the Estuary and the Gulf of St. Lawrence, Québec, Canada, 199422008.

Parametera Residentb Seasonal migrantc Pagophilicd Seale mass Rare speciesf

Dl Pp La Ba Hg Cc stranding

SST 22.79 0.7 9.22**

Vol 0 9.4861024* 3.3661024 20.002* 23.4661024D

resICEV 25.87610211 22.27610210 * 23.83D 21.59610210 25.86610211D 29.20D

FWR 28.8161024 20.002 0.002 3.2361024 6.6361024*

Log. Krilla 25.29D 23.14D

Log.TA 6.71 * 3.34 * 6.24 2.38*

NAO 3.92 * 4.04** 21.78*

NAO t–1 22.61D 2.39

NAOwt–1 5.43** 1.20* 21.37* 1.12

p 0.02 0.04 0.03 0.004 0.05 0.009 0.0002 0.1

Adj. R2 0.53 0.40 0.41 0.81 0.41 0.59 0.40 0.34

aParameters in most parsimonious models : sea surface temperature (SST, uC), cold intermediate layer volume at 0 uC (Vol0, km3), ice cover volume residuals (resICEV,
Km3), freshwater runoff (FWR, 103 m3s21), abundance of krill (Krilla, ind. m23), abundance of harmful toxic algae (TA, cell L21), North Atlantic Oscillation (NAO) index,
NAO index of the previous year (NAO t–1) and NAO index of the previous winter (NAOwt–1).
bResident species is beluga whale (Delphinapterus leucas, Dl),
cSeasonal migrant species are Harbour porpoise (Phocoena phocoena, Pp), Atlantic White-sided dolphin (Lagenorhynchus acutus, La), Minke whale (Balaenoptera
acutorostrata, Ba) and Grey seal (Halichoerus grypus, Hg),
dPagophilic species is Hooded seal (Cystophora cristata, Cc) and,
eSeal and
fRare species as listed in Table S1 in File S1. Dp,0.1; *p,0.05; **p,0.01.
doi:10.1371/journal.pone.0059311.t002

Figure 5. Retrospective variations of ice cover volume, CIL
volume in the Gulf of St. Lawrence, and krill abundance in the
St. Lawrence Estuary (1994 to 2008), Québec, Canada.
doi:10.1371/journal.pone.0059311.g005
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from [54]. Table S2. Species composition of marine mammal

strandings reported in the Estuary and the Gulf of St.-Lawrence,

Québec, Canada, from 1994–2008 (N= 1193). Table S3. Model

selection for multiple linear regressions including environmental

parameters as predictors of the inter-annual variation in marine

mammal stranding events in the Estuary and the Gulf of St.

Lawrence, Québec, Canada, 1994–2008. For each model, we

report the sample size (n), the number of parameters (k), the

Akaike Information Criterion (AIC), the value relative to the

model with the lowest AIC (DAIC), AIC weight (vAIC) as well as
the adjusted R2 (R2adj.). Models are ranked by their AIC and best

models are shown in bold.

(DOC)
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stranding data : Biodôme de Montréal, Fisheries and Oceans Canada,

Parcs Canada, Parc Aquarium de Québec, Groupe de recherche et
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