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The application of Preventive Maintenance (PM) and Statistical Process Control (SPC) are important practices to achieve high
product quality, small frequency of failures, and cost reduction in a production process. However there are some points that
have not been explored in depth about its joint application. First, most SPC is performed with the X-bar control chart which
does not fully consider the variability of the production process. Second, many studies of design of control charts consider
just the economic aspect while statistical restrictions must be considered to achieve charts with low probabilities of false
detection of failures. Third, the effect of PM on processes with different failure probability distributions has not been
studied. Hence, this paper covers these points, presenting the Economic Statistical Design (ESD) of joint X-bar-S control
charts with a cost model that integrates PM with general failure distribution. Experiments showed statistically significant
reductions in costs when PM is performed on processes with high failure rates and reductions in the sampling frequency of
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Introduction

Control charts are tools of Statistical Process Control (SPC) that
monitor the state of a production process, identifying when the
quality attributes of a product change. The concept of “control” is
related to the quality attribute that is within specified limits
(control limits) to ensure production stability and quality of
products. If the attribute (i.e., weight, length, dimensions, etc.) is
not within these limits, then the process is in an “out-of-control”
state. In such case, is necessary to find and correct the assignable
cause that originated this state (failure).

A control chart is defined by three main parameters: the size of
the sample (1), the sampling interval between samples (%), and the
coeflicient of the control limits (k). These parameters are selected
based on economic and statistical restrictions because there are
costs and times associated with sampling and searching of
assignable causes: high sampling frequency would take more time
from the process cycle time, and depending on the nature of the
item, product loss. Also, close control limits would increase the
frequency of failure alarms and rejection of products which not
necessarily would be of low quality. The chart parameters must be
selected following a methodology in order to minimize the “cost of
quality” [1].

The Economic Design (ED) of control charts (the estimation of
the parameters) considers the costs (in time and money) associated
with sampling and searching/repairing of assignable causes. On
the other hand, the Economic Statistical Design (ESD) additionally
considers the statistical requirements, such as the probabilities of
error Type I (detecting an out-of-control state when the process is
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fine) and II (not detecting an out-of-control state when the process
is not fine) in the estimation of the parameters.

The ED of control charts was introduced in 1956 by Duncan
[2] for X-bar (X) charts that monitor the mean of the quality
characteristic of produced items. It had the following assumptions:
the failure mechanism of the process had an Exponential
probability distribution, there was only one assignable cause,
and the sampling interval was constant. Other works extended the
ED to ESD and covered other control charts: R, S, and EWMA
control charts were proposed to monitor variability [3-7]; p and
np control charts were proposed to monitor proportion or number
of nonconforming units within samples [8].

Variability is an important factor to control in a process because
raw material, operators skills, machine calibration, etc., increase
variability without affecting the process mean [9]. To keep control
in both the mean and variability of a process the X — R control
chart has been used, although the R chart loses reliability when
n>10 [10]. In this case the X —S or X —S? control charts are
more suitable. Collani, Sheil [9], and Yang [7] proposed the ESD
of S charts, considering the importance of the error Type I and II
for minimization of costs. The ED and ESD of X — R and X — S
control charts was proposed by Davis and Saniga [6,11,12],
pointing out the importance of controlling the mean and variance
of the process. However in these cases, it was assumed that the
sampling intervals were constant and that the process failed with
an Exponential distribution.

An extension of these works was presented by Chiu [13] who
considered the importance of Preventive Maintenance (PM) in the
ED of X —S? control charts to reduce long-term variability and
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failures that are only evident when the process reaches an out-of-
control state. In [14] the ED of an X control chart combined with
an age-replacement PM policy was presented. It was observed that
reduction in operating costs was superior to the reduction achieved
by using only the control chart or the PM policy. The relationship
between SPC and PM has been recognized in other studies as in
[15-20] identifying a link between equipment maintenance and
product quality: “Equipment maintenance, either corrective or preventive in
nature, has a direct impact on the reliability of the equipment, and thus the
performance of the equipment. Under the assumption that the equipment is used
to manufacture some type of product, with improved performance of the
equipment comes increased product quality” [1].

This paper extends on the application of SPC with PM as some
points were not completely covered by previous studies. First, most
SPC is performed with the X control chart which does not
consider the variability of the production process [1,14,15,20-23].
Second, many studies of design of control charts consider just the
economic aspect while statistical restrictions must be considered to
achieve charts with low probabilities of false detection of failures
[14-16,19,20]. Third, the effect of PM on processes with different
failure probability distributions has not been explored as most of
the studies consider one distribution (i.e., Exponential [18,19,23]
or Weibull [20,24]).

Hence, this paper presents the Economic Statistical Design
(ESD) of joint X—S control charts to monitor mean and
variability in a production process. In addition, the cost model
integrates PM  with general failure distribution (cases with
Exponential, Gamma, and Weibull distributions are presented)
and constant and variable sampling intervals. Experiments showed
that PM decreases costs for processes with high failure rates and
reduces the sampling frequency of units for testing under SPC.

Background

Reliability Function.
tion function F(f) represents the probability that a unit, randomly
taken from a population, will fail at most in time ¢ [25]. Now
consider that, instead of taking one unit, # units are taken at the
end of a time interval . If it is of particular interest to get the
distribution of the survival of the process, then the cumulative
distribution function F(/) can be defined as the probability of the
process failing (changing to an out-of-control state) at the end of
the sampling interval /.

Because the reliability (or survival) function of the process,
R(t)=1—F(t), represents the probability that a unit will be
working beyond time ¢ [25], the probability that a process will be
working properly (in-control state) after the sampling interval
can be expressed as R(h)=1—F(h).

Hence, the following probabilities are associated with the
control states of a process:

Clonsider that a cumulative distribu-

1 — F(h) in—control state beyond /. (1)

F(h) out — of — control state at most in /. (2)

Detection of States: Significance Level and Power. The
Significance Level a is the probability of the error Type I (false
positive), which is the detection of an out-of-control state when the
true state is in-control. Thus, if the null hypothesis Hy = process is
in-control state:
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o= Pr(Reject Hy|H, is true) = false positive alarm. (3)

1 —a=Pr(Do not Reject Hy|Hy is true). 4)

The probability of the error Type II (false negative), represented
as f3, consists in the null detection of the out-of-control state when
the process is truly in out-of-control state. Using Eq. 3 and 4 as
reference:

= Pr(Do not Reject Hy|H) is false) = false negative alarm. (5)

1 — = Pr(Reject Hy|H) is false). (6)

1-f is also known as the Statistical Power of the control chart, which
represents the ability of the chart to detect the out-of-control state
when the process is indeed in such state. Thus, the levels of o and 8
must be low and controlled when designing the control chart.
Significance X—-S Control
Charts. Although the cost model of a process may be used
with different control charts, the definitions of o and f are

Level and Power for

dependent of the control chart. For the X control chart, f8 in terms
of the control limits (Upper Control Limit UCL, Lower Control
Limit LCL), is expressed as:

Bx =Pr(X <UCL|u)—Pr(X <LCL|w). (7)

where the random variable of interest is X with N(u, ¢/n)
distribution. If p and ¢® are known, the control limits are
expressed as:

ag
UCLX,LCLy=uik(7ﬁ). (8)

and, if ¢ and 62 are unknown, these can be estimated from the m
samples of size 1 as:

o YT s, S
S L S 9
p=x m ’ Cy ©)
giving the following control limits:
UCLy,LCLy=Xtk S (10)
x> X - C4\/ﬁ '

In Eq. 9 and 10, S is the mean standard deviation of the m
samples, and Cy is a constant that depends on the size of the
sample (n). Note that y; in Eq. 7 is the value that represents the
change in the mean of the process, which is equal to ¢+ da, where
0 is the magnitude of that change. Hence, the error Type II
probability of Eq. 7 can be expressed as:

(7 W00 )

g

B Pr(ZS (LCL—(M+5G))\/E)_

[
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By =¢(k—5v/n)—¢(—k—5v/n). (12)
The error Type I for the X chart, oy can be expressed as:
1 =2(1— (k). (13)

For the S control chart, the Power in terms of the control limits
can be expressed as:

1—Bs=1—[PH(S<UCL|o))—PHS<LCL|ay)]. (14)

where the random variable is S with ¥ distribution with n—1
degrees of freedom, and o7 is the change in the standard deviation
of the process (61 > g9, where gy is the initial value). The control
limits can be expressed in terms of the known standard deviation

(o), or an estimation of the same (S), as follows:

o known : UCLg,LCLg= Cso+kor/1—Cy. (15)

o unknown : UCLS,LCLS=S'ikCi V1—=Cy. (16)
4

Commonly, k in Eq. 8, 10, 15, and 16 is restricted to 3 [26].
The relationship between the probability of the error Type II and
the parameters of the S control chart then is expressed as:

ﬁS:pr(XQ%)_pr(ng) (17)

2 2
o1 g1

Similar formulations for fig have been used by Saniga [6] and
Collani [9]. The error Type I for the S chart, ag, then can be
expressed as:

as=2(1—zp_(n—1)k3). (18)

Finally, the joint error probabilities for the X — S control chart
are defined as:

o= Pr(Reject Hp under the X control chart|Hj is true)
Pr(Reject Hy under the S control chart|Hj is true).

(19)

a=oy+os—ogos. (20)

1-8=
Pr(Reject Hy under the X control chart|Hy is false) U  (21)
Pr(Reject Hy under the S control chart|H) is false).

1=B=(1=Bx)+A=Bs)—(1 =) —Ps)=1—Pxhs.  (22)
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p=
Pr(Do not Reject Hy under the X control chart|Hj is false) (23)
Pr(Do not Reject Hy under the S control chart|H) is false).

B=PxPs- (24)

Note that for the X —S control chart two control limits
coefficients are considered: kg for the X control chart, and kg for
the S control chart. Also, because in the X — S control chart two
variables are monitored, two changes are considered: u—p;, and
d—01. Hence, Eq. 12 is extended for the estimation of fy in Eq.
24 as follows:

Bx =¢(k(a/a1)—d(a/a1)\/n)—d(—k(a/a1)—d(a/a1)V/n). (25)

By integrating Eq. 1 and 2 with 20 and 24, the probabilities
assoclated with the possible states of a process are obtained, and
these are presented in Table 1.

Methods

Base Cost Model with Constant Sampling Intervals

A production cycle is defined as the interval from the starting
production time (in-control state) until the time when a change,
caused by an assignable cause, occurs. This cycle includes the time
required to detect and repair the assignable cause. Because a
production cycle can be also defined as the time between
successive in-control periods [27], the process can be considered
as a serial of equally distributed independent cycles, a renewal
process.

Under this assumption, the cost per cycle can be estimated as
the accumulated cost from the beginning until the end of one
cycle, and the average cost per unit of time can be estimated as the
ratio of E(C)/E(T), where E(C) is the Expected Cost per Cycle
and E(T) the Expected Cycle Length. The objective of the ESD is
to minimize the costs per unit of time of a process:
minZ=E(C)/E(T) [21,27,28]. The Renewal Theory Approach
proposed by Rahim and Banerjee [28] was presented as an
alternative to obtain the equations for E(7) and E(C) for
Markovian and non-Markovian stochastic processes considering
these assumptions.

A stochastic process has the Markov property if the conditional
probability distribution of future states of the process depends only
upon the present state, not on the sequence of events that preceded
it. The Renewal Approach [28] studies the state of the system at
the end of the first sampling interval. Depending upon the state of
the system, the expected 7residual cycle length and cost can be
computed. Then these values, together with the associated
probabilities, define the renewal equations for E(T) and E(C).

The basic model studied by Duncan [2] had the Markov
property and considered that a production cycle was integrated by
the following components: (1) the in-control period; (2) the out-of-
control period; (3) the time required to take a sample and interpret
the results; and (4) the time needed to find the assignable cause. In
[28] these components led to define the following states of the
system at the end of the first sampling interval: (1) in-control state
and no alarm; (2) in-control state and false alarm; (3) out-of-control
and no alarm; and (4) out-of-control and true alarm. Then the
equations for E(T) and E(C) were obtained as the sum of the
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Table 1. Control state probabilities.

X-bar-S Control Chart with Preventive Maintenance

State Description Probability Expression
Soo Process in-control state and no alarm Pr(Process in-control)Pr(Do not Reject Hy|Hj is true) = Pr(Spo) (1-F(h))(1-20)
So1 Process in-control state and false alarm Pr(Process in-control)Pr(Reject Hy|Hj is true) = Pr(Sp;) (1-F(h))o
Sto Process in out-of-control state and no alarm Pr(Process out-of-control)Pr(Do not Reject Hy|H is false) = Pr(Sio) F(h)p

N Process in out-of-control state with alarm Pr(Process out-of-control)Pr(Reject Hy|H, is false) = Pr(S;) F(h)(1-p)

doi:10.1371/journal.pone.0059039.t001

expected residual cycle length and cost multiplied by the
probability associated with each of these states.

The expressions for E(C) and E(T) obtained with this
approach in [28] were confirmed with those obtained with
traditional approaches as that of Lorenzen and Vance [29] and
Heikes et al. [30] for Markovian and non-Markovian models
respectively. The approach also has been used to derive the
equations of cost models with specific elements as that of Yang
[27] which considered two assignable causes. This made the
Renewal Approach suitable for the development of the cost
models presented in this paper that are adaptations of the model of
Rahim and Banerjee [28] which considered Exponential failure
distribution and constant sampling intervals for the ED of X
control charts.

The adapted base cost model under the Renewal Theory
Approach assumes the following issues about the process:

1. The process starts in a stable in-control state with mean p and
variance ¢2. The event of an assignable cause changes the
variance of the process from 2 to 5%0’2, where a3 >1 is the
magnitude of the change and is known.

2. When a data point of the control chart is outside the control
limits an alarm is generated, then the process is stopped and the
search and repairing of the assignable cause starts. After the
assignable cause is repaired the process returns to the in-control
state, starting a new production cycle. The process is stopped
also when there is a false alarm.

3. There is only one assignable cause and the process does not
self-repair.
4. The time between failures has a general distribution.

5. The states of the system at the end of the first sampling interval
are identified as: (1) Spo - in-control state and no alarm; (2) So; -
in-control state and false alarm; (3) Sio - out-of-control and no
alarm; and (4) Sj1 - out-of-control and true alarm. The
probabilities associated with each state are presented in Table 1
and the details of the expected residual cycle length and cost
associated with each state are presented in the following
sections.

Renewal Equations of the Expected Cycle Length E(T).

® State Sp: the state of the process is evaluated at the end of the
first sampling interval 4, and depending on this the expected
residual cycle length is estimated. As shown in Figure 1, in this
case the process is in-control state with no alarm. Because
there are no other events associated with this scenario, the
expected residual cycle length is E(T).

® State Spy;: in this case there is a false out-of-control alarm
which causes the process to be stopped, an action that involves
loss of time and money. This scenario is shown in Figure 2,
where the variable Zj represents the time used to search the
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assignable cause when there is a false alarm. After that time the
process is restarted and the expected residual cycle length is
equal to E(T)+Zy which considers the delay caused by the
false alarm.

® State So: in this case the process is in out-of-control state and
there is no alarm (no detection). Here it is important to
consider the necessary time or intervals to detect the failure.
Because each sampling interval is constant with length A, the
necessary time to detect the failure can be expressed in terms
of the number of samples before the alarm is generated. As
show in Figure 3, this number is a geometric random variable
with mean 1/(1— f), which is known as the Average Run Length
(ARL) [3].

® Hence, the necessary time to detect the out-of-control state is
h(ARL), or h/(1—pf). Observe that hARL=ATS (Average
Time lo Signal), the average time to produce an alarm. When the
out-of-control is detected, the procedure to find the assignable
cause and restore the process to an in-control state 1is
performed. In Figure 3, Z; is the time associated with these
tasks. When the process is restored a new cycle begins. Hence,
the expected residual cycle length is equal to i1/(1—f)+ Z;.

® State Sii: as shown in Figure 4, in this case the alarm is
generated at the end of the interval where the process changed
to the out-of-control state, thus there was a correct detection.
In such scenario the only action that has to be performed is to
find the assignable cause and restore the process, which only
requires a time Z. Hence, the expected residual cycle length is
equal to Zj.

The total E(T') thus can be expressed as the sum of the expected
residual cycle lengths, multiplied by their associated probabilities,
of all states [27,28]:

E(T)=h+E(T)Pr(Sopo)+ [Zo+ E(T)) Pr(So1)+

26
[h/(1 = B)+ Z1|Pr(S10) + Z1 Pr(S11). )

1 B 1—F(h)
E(T)=h(% + m) +oaZy (W) +Z. (27)

Renewal Equations of the Expected Cost. FE(C). The

process has the following associated costs:

® Sampling: always that a sample of size n is taken, the cost
a+bn takes place, where a is the constant cost, and b the
variable cost of the sample.

® Producing in-control and out-of-control states: the cost per
hour for producing in-control state is defined as Dy and the
cost of producing in out-of-control state as D (D > Dy).

March 2013 | Volume 8 | Issue 3 | 59039



X-bar-S Control Chart with Preventive Maintenance

First Sampling
Interval

h h h

Expected Residual Cycle Length
|

£=0 ED)

Evaluation Point
(sampling) Anew cycle

begins

Figure 1. Expected Residual Cycle Length for State S(,. The process is in-control state and there is no alarm. Because the process is evaluated
at the end of the first sampling interval  and no other events are associated with this scenario, the expected cycle length is E(T).
doi:10.1371/journal.pone.0059039.9001

® Scarching and repairing: the cost of a false alarm is defined as
Y, and the cost of searching and repairing an assignable cause h J
is defined as W. e M

. 28
T i (28)

Considering these costs, the equations for E(C) are derived as
follows:

In Figure 7 observe that, in the interval from =0 to =1 the
process is in-control state, and that from t=7 until 1=/ (the
end of the interval ) the process is in out-of-control state.
Because of this, in the first sampling interval /1 there are the
following costs:

® State Sp: as presented in Figure 5, in this scenario only the
costs associated with sampling and producing in-control state
in the first interval Do/ are considered. Thus, the expected cost
is a+bn+ Doh+ E(C), where E(C) is the expected residual
cost for this state.

® State Sp;: as shown in Figure 6, in this case besides the costs
described above, there is a cost associated with a false alarm
(Y), which implies losses because the process is stopped
unnecessarily (for a time Zy). Thus, the expected cost for this
state is a+bn+Doh+ Y+ E(C), where Y+ E(C) is the
expected residual cost.

— Sampling cost: a+ bn;
— Cost for producing in-control state: Dyt;

— Cost for producing in out-of-control state: Dy(h—1).

The evaluation of the process is performed at the end of the
interval /1 (sampling), however in this case the out-of-control

State Sj¢: observe in Figure 7 that an assignable cause occurs
within the first sampling interval in time 7 which changes the
process to an out-of-control state. T is a variable that was
introduced by Duncan [2] for the case of the ED of a X-
control chart when the failure mechanism had an Exponential
distribution (f(¢) = Ze~*, where A is the number of failures per
unit of time). For a general f(¢), 7 is defined as:

Expected Residual Cycle Length

First Sampling

state is not detected (there is no alarm). Hence, in the following
mntervals the process will continue producing in out-of-control
state until the detection is successful, which happens after
1/(1—p) samples (ARL). Meanwhile, during these intervals
there are sampling costs (¢+bn) and losses for producing in
out-of-control state (Dyh). Thus, the cost of producing in out-
of-control state until the detection takes place is given by
ARL(a+bn+ Dyh).

When detection is performed, the process is stopped and searching
and repairing of the assignable cause is done with an associated cost
W. Finally, the expected cost for this state is defined as:

Interval
ferva Searching
h Time h h
| ] | i
5 Zy ¢
=0 L— >l E(T)
Evaluation Point
(sampling)

A false alarm is generated Restart

Anew cycle
begins

Figure 2. Expected Residual Cycle Length for State S;. The process is in-control state but there is a false out-of-control alarm which causes the
process to be stopped. This involves a time Z, required to search for an assignable cause. After Z the process is restarted and the expected residual
cycle length is equal to E(T)+ Z).

doi:10.1371/journal.pone.0059039.9002
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Expected ResidualCycle Length

|

First Sampling
Interval

Expected time to find the
assignable cause and repair

the process.
h h h
[ ] !
- 0 | | £
= <€ hARL >
Evaluation Point Evaluation Point
(sampling) (sampling) A new cycle
Process Out-of-Control Process Out-of-Control begins

No alarm is generated

An alarm is generated

Figure 3. Expected Residual Cycle Length for State S)(. The process is in out-of-control state and there is no alarm (no detection). The
necessary time to detect the failure can be expressed in terms of the number of samples before the alarm is generated. This number is a geometric
random variable with mean 1/(1 — ) which is known as the Average Run Length (ARL). Thus, the necessary time to detect the out-of-control state is
hARL) or h/(1— ). When the out-of-control is detected, the procedure to find the assignable cause and restore the process to an in-control state is
performed with a time Z;. The expected residual cycle length is equal to /(1 —f)+Z;.

doi:10.1371/journal.pone.0059039.g003

a+bn+Dot+Di(h—1)+[(1/(1 = pP)|(a+bn+Dih)+ W, where
[(1/(1—=P)(a+bn+ Dih)+ W is the expected residual cost.

® State S;: as presented in Figure 8, in this case the detection of

the out-of-control state is performed successfully at the end of

the first sampling interval /1, hence prompt procedures to find
the assignable cause and restore the process are implemented
with a cost W. Thus, the expected cost for this scenario is
a+bn+Dyt+Di(h—1)+ W, where W is the expected
residual cost.

The total E(C) thus can be expressed as the sum of the expected
costs, multiplied by their associated probabilities, of all states
[27,28]:

Expected Residual Cycle Length

l_‘_\

First Sampling Expected time to find the

Interval assignable cause and repair
the process.
| ? ¢
t=0 Z]
Evaluation Point A new cycle
(sampling) begins

Process Out-of-Control

An alarm is generated

Figure 4. Expected Residual Cycle Length for State S;;. The
process is in out-of-control state and detection is performed at the end
of the interval where the process changed to this state. The only action
that has to be performed is to find the assignable cause and restore the
process. This only requires a time Z; which also represents the
expected residual cycle length.
doi:10.1371/journal.pone.0059039.g004
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E(C)=[a+bn+ Doh+ E(C)|Pr(Soo)+
[a+bn+ Doh+ Y + E(C)|Pr(So1)+
a+bn+Dih
1-p
[a-+bn-+ Dot + D1 (h—1)+ W]Pr(S1y).

3 1—F(h) p 1—F(h)
E(C)—D011<7F(h) )+D1h(1+1_ﬁ>+Yoc< Fh) )+

(30)
(a+bn) <th) ﬁﬁ

{a+bn+D0r+D1(h—r)+ +W} Pr(S10)+

> +1(Dg—D1)+ W.

Base Cost Model with Variable Sampling Intervals

In the model given by Eq. 27 and Eq. 30 when all sampling
intervals are constant or fixed, /iy =4 for all j samples. When the
sampling intervals are variable, h is different for each j sample. In
[21] Rahim e al. proposed to cons1der a specific number of m
samples (sampling intervals) in the production cycle, j=1,2,...,m,
so the production cycle could be considered as truncated [31]. A
truncated production cycle starts when a new component is
installed and ends with a repair or after a fixed number of m
sampling intervals (at a given age Wp,). The cost model derived in
this section is the model of Rahim and Banerjee [21] for general
failure distribution and variable sampling intervals. The deduction
was important to understand the model in order to develop the
integrated cost model with PM.

The model makes the following assumptions:

1. The first interval /; is randomly chosen.

2. The length of the next sampling intervals are chosen as
hj=ph;_1, where h; is the sampling interval for sample j, and p
is a decrement factor. The sampling intervals /1; are computed
by applying the decrement factor to the successor sampling
interval, thus &y >hy >h3 >...>h,,, because as time continues
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Expected Residual Cost
First Sampling [ A 3
Interval

| ] | |

I ik I I

t=0 0 E(C)

Evaluation Point
(sampling) Anew cycle
a-+bn begins

Figure 5. Expected Cost for State Sy). The process is in-control state and there is no alarm. Hence, only the costs associated with sampling
(a+bn) and producing in-control state in the first interval D/ are considered. Thus, the cost consists of a+bn + Dyh+ E(C), where E(C) is the

expected residual cost for this state.
doi:10.1371/journal.pone.0059039.g005

the sampling frequency must increase given the natural wear
and tear of the components of the process [21].

. The number of sampling intervals is fixed and given (m> 2).

4. The objective is to find n, /; (j=1,2,...,m), and k that minimize
Z=E(C)/E(T).

. There is an additional cost S(w,,) in E(C) which is associated
with the salvage cost of an equipment of age wy,.

. F(wj) is the cumulative distribution function of failure when
the equipment (process) is of age w;, which is accumulated
accordingly to the sampling over time. Hence, the age of a
process at a given sampling interval j is given by:

(1)

. The failure probability (out-of-control probability) for a specific
interval j can be estimated as:

Renewal Equations of the Expected Cycle Length E(T)

® State S),S0;: when the process is in-control state, the stop
condition is given by (1) an alarm (true or false), or (2) by the
age of the equipment (= w,,). When there is no alarm at all,
the stop condition is given only by w,,. When the sampling
intervals are variable, the probability to be in-control state
cannot be generalized as 1—F(h) (Eq. 1), because each
interval has an associated probability which is dependent on
the age of the equipment (Eq. 32).

In Figure 9, F(w;) represents the probability of being in out-
of-control state at most in time wj, and 1—F(w;) the
probability of being in-control state from time w;. However
this does not represent the probability of being in-control state
in the interval /1. To include this interval, which starts in wq
and ends in wj, the corresponding probability must be
1 —F(wp). Hence, for the range of intervals from wy to wy,
the following probabilities are defined for each sampling interval

hj i hi—=1—=F(wo); ha—=>1—=F(w); ..; =1 —=F (W, —1).

From these probabilities, the expected time when the process is
in-control state and no alarm is generated (State Syg) can be

VF(Wj) = F(Wj) - F(Wj— 1) (32) expressed as:
Expected Residual Cost
|
| 1
Pirst & n Costof False
ISLSampUe  gearching Alarm Y
Interval :
Time
h h h
| ' ' | I
' Deh zo A
t=0 >l¢ E(C) >|
Evaluation Point \
(sampling) Anew cycle
Restart beging

A false alarm is generated

Figure 6. Expected Cost for State S);. The process is in-control state but there is a false out-of-control alarm which causes the process to be
stopped. Besides the sampling and in-control production costs, there is a cost associated with a false alarm (Y) which implies losses because the
process is stopped for a time Z. Thus, the expected cost for this state is a+bn+ Doh+ Y + E(C), where Y + E(C) is the expected residual cost for
this state.

doi:10.1371/journal.pone.0059039.9g006
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Expected Residual Cost

First Sampling ( L )
Interval ) ]
h Expected time to find the
assignable cause and repair
T the process.
D(]T |D](h-T) D]h I D]h I D]h
S e T Y e S O S
V.
(= atbn 0 at+bn | a+bn ! a+bn 0 Z,
< hARL > <
T Anewcycle
. begi
Assignable Evaluation Point Evaluation Point .
Cause (sampling) (sampling)
Process Out-of-Control Process Out-of-Control
No alarm is generated An alarm is generated

Cost of finding the
assignable causeand
repairing the process

w

Figure 7. Expected Cost for State S)(. The process is in out-of-control state and there is no alarm (no detection). The assignable cause occurs
within the first sampling interval at time © which changes the process to an out-of-control state. Thus, in the interval from =0 to =1 the process is
in-control state, and from 7=t until =/ the process is in out-of-control state. Because of this, in the first sampling interval / there are sampling costs
(a+ bn), in-control production costs (Dyt), and out-of-control production costs (D;(2—1)). Then, sampling and out-of-control production costs take
place while there is no detection (number of intervals estimated by ARL=1/(1—p)). Finally, when detection is performed there is a cost W
associated with interrupting the process, searching the assignable cause and repairing the process. Hence, the expected cost for this state is defined
as a+bn+Dyt+Di(h—1)+[(1/(1 —p)|(a+bn+ Dih)+ W, where [(1/(1—p)|(a+bn+ Dih)+ W is the expected residual cost.
doi:10.1371/journal.pone.0059039.g007

Expected Residual Cost

——

Expected time to find the
assignable cause and repair
the process.

t=0 6

Assignable
Cause Evaluation Point
(sampling)

\ Anew cycle

begins

Costof finding the assignable
cause and repairing the process
w

Process Out-of-Control

An alarm is generated

Figure 8. Expected Cost for State S;;. The process is in out-of-control state and detection is performed at the end of the interval where the
process changed to this state. In addition to sampling costs (a + bn), in-control production costs (D), and out-of-control production costs (D (h—1))
there is a cost W associated with interrupting the process, searching the assignable cause and repairing the process. Thus, the expected cost for this
state is defined as a+bn+ Dyt+ Di(h—1)+ W, where W is the expected residual cost.

doi:10.1371/journal.pone.0059039.g008
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()1 = F(wo)) + (h2)(1 = F(w1)) +
(h3)(1 = F(w2)) + ... + () (1 = F(win—1)) =

m m (33)
=M [1=F(w-n]= 2 hiF(w;—1).
j= j=

The probability of a false alarm when the process is in-control
state (State Sp) is represented by a (Eq. 3), and is generated at
the end of the first sampling interval. Because of this, it is not
necessary to consider the in-control probability for this
interval, and the in-control probability associated with other
intervals can be expressed as:

(I=F(w1)+ (1 —=F(w2))+(1—F(w3))

m—1
Fot (I=F(wu_1)=>_ F(w).
j=1

Thus, the expected time to find an assignable cause when there
is a false alarm (State Sp;) is expressed as:

m—1

aZy Z F(wj). (35)
=1

® State Sio, Sii: in State Sjo the process is already in out-of-
control state (has failed), but there is no alarm. To derive the
renewal equations some points must be considered:

the interval where the process changed to the out-of-control
state;

— the interval where the out-of-control state would be
detected.

® Suppose that the process changes to the out-of-control state at
some point within the interval /1, and it is not detected at the
end of the same interval. By considering Eq. 32, the out-of-
control probability in /1, is given by VF(wy) = F(w2) — F(w)).
When the out-of-control probability is determined, it is
necessary to consider the next intervals where detection can
be performed (in this case, /3, ha, hs,..., h,). Thus, in general,
if the assignable cause occurs in /;, the detection can be
performed in any interval /; where i=j+1,...,m. If detection
is performed in /3 (i=3), the no-detection probability can be

X-bar-S Control Chart with Preventive Maintenance

expressed as B¢=°, because the state was detected in the
immediate following interval after the assignable cause
occurred (thus there were g=0 intervals with no detection).
If however, detection takes place in interval /s (i=35), this
means that the state was not detected in intervals /13 and /i4
(g =2), and thus there were two consecutive intervals where no
detection was performed with probability B?. The index g of
B¢ follows the sequence g=i—j—1, so in the case that the
detection takes place until the end of the sampling intervals in
Iy, the probability of no detection would be /3'"7271. In
general terms, the expected time to detect the out-of-control
state can be expressed as Z;":H_l hi" /=" for each interval j

where an assignable cause occurs with a probability VF(w).

Thus, the expected time to detect the assignable cause when
the process is in out-of-control state is given by:

m—1 m
B <VF<w,-) > h,-ﬁf“) : (36)
j—1

izt 1

In State S); detection is successful at the end of the interval
where the assignable cause occurred, thus the expected time
consists of only Zj.

The total E(T) thus can be expressed as the sum of Eq. 33, 35,
36, and Z;:

m—1

E(T)= E hiF(wi_1)+0Z, E F(w))
Jj=1 j=1
(37)

m—1 m
+8) <VF(Wj) > hiﬁi_j_l> +Zi.
j—1

i=jt1

Renewal Equations of the Expected Cost E(C).

e Costs of producing in-control states (Sy,S01): Eq. 33
provided the time that the process was in-control state with no
false alarm (Spo). Because in Eq. 30 Dy is the cost per hour of
producing in-control state, then the expected cost of producing
while the process is in-control state with no false alarm can be
expressed as:

hl h2 h3 h4 hm-l hm
A} N A A 3| oo
> 4 > A2
Fow) I-F(w))
,l‘
t=0 Wi

Wo

Figure 9. F(w;) and 1 — F(w;) when the Sampling Interval is Variable. F(i,) represents the probability of being in out-of-control state at most
in time wy, and 1 — F(w;) the probability of being in-control state from time w;. However this does not represent the probability of being in-control
state in the interval /1;. To include this interval, which starts in wy and ends in wy, the corresponding probability must be 1 — F(wy). Hence, for the
range of intervals from w, to w,, the following probabilities are defined for each sampling interval h;: 7y —1—F(wg); hy—1—F(wy);..;

hm_’l _F(Wm—l)'
doi:10.1371/journal.pone.0059039.g009
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Do > F(w;_). (38)
j=1

When there is a false alarm (Sp;) the process is stopped, and
the expected time to search an assignable cause is given by Eq.
35. Because now it is required to consider the associated cost,
Zy in Eq. 35 it can be replaced by the cost Y which
corresponds to a false alarm:

m—1

aY Z F(wj). (39)
=

Costs of producing in out-of-control states (S9,511):
when there is a transition from the in-control to the out-of-
control state, the following events are considered:

— The process is initially in-control state until the assignable
cause occurred at some point within the sampling interval.
As in the case of 7 in Eq. 30, it is important to know the cost
associated with the period of time in which the process was
still in-control state. Because the process has a failure
distribution given by f(f), the mean expected probability for
the interval of time from 0 to w,, is:

E()= L o (1), (40)
Thus the cost:
(Do—D1)E(1). (41)

represents the expected cost associated with the fraction of
time within the interval in which the process is in-control.

— The process is in out-of-control state, and in this case, the
costs depend on the age of the equipment w; at the moment
of the failure. As the age increases there will be intervals /;
where the out-of-control probability will be more significant.
Note that the process can change to an out-of-control state
in any /; with a probability of VF(w;). The associated cost of
producing in out-of-control state can be expressed as:

(D1—Do) Z Wi VE(w)). (42)
i—1

— As there is no detection of the out-of-control state, it is
important to consider the cost associated with the intervals
where no-detection is performed (the number of intervals
until detection is successful). For this, Eq. 36 gives the time
expected to detect the out-of-control state. Because during
this time the process is in out-of-control state, the associated
cost for this period can be expressed as:

PLOS ONE | www.plosone.org
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> !

i=j+1

m—1
D> | VE(w) (43)
j—1

— Detection is successful and the repairing procedure starts. In
this situation, the costs only consist of finding and repairing
the assignable cause (W).

® Sampling Costs: sampling is performed when the process is

in-control state and while there is no detection (true alarm) of
the out-of-control state. With this in mind, the first cost would

be:

a+bn. (44)
which corresponds to the first sampling interval which is
performed independently of the state of the interval. At the
evaluation point of this interval a decision is made about
continuing or not (in the case of a false alarm) with the process.
For these in-control intervals the corresponding sampling costs
are:

m—2

(a+bn) Z F(w)).

J=1

(45)

Observe that j=1,...,m—2, because the first and last intervals
are not considered. The last one is not considered because
there is already a stop condition given by w,,.

Now the associated costs of samples taken when the process is
in out-of-control state and there is no alarm (no detection) are
considered. Rahim et al. [21] defined this cost as Q;, which is
the expected number of samples taken after w; considering that
the process is in out-of-control state from this time and there is
no detection:

m—1—j

Y =P =1

i=

0= (46)

As in Eq. 45, the first and the last intervals are not considered.
Because there is no detection, it is necessary to consider the
error Type II probability together with the out-of-control
probability in the interval /; given by VF(w;). Hence, for cach
interval there is an associated cost Q;, and the sampling cost
when there is no detection is given by:

m—2

(a+bmB > " VF(w)Q;.

i=1

(47)

The total sampling cost is then expressed as the sum of Eq. 44,
45, and 47:
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@b+ (@b S Fo)+(a+bnp'SS VE(3)0; =
n1j;l m—2 - (48)

=(a+bn)<l+ S Fwp)+p Y VF(wj)Q/).
i=1 =

® Salvage value for a machine of age w,,: The model of
Rahim e al. [21] considers a salvage value for the equipment
used, allowing the possibility of replacement of the equipment
depending on its age w,, before a failure. This is only
significant when the replacement produces an economic
benefit. The salvage value for the equipment S(w,,) exists
only when the process is in-control state within w,, and so the
corresponding cost during this period is:

F(Wn1)S("Vm)~ (49)

Observe that this value represents a saving and not a cost.

The total Expected Cycle Cost E(C) is expressed as the sum of
all costs described in this section which are given by Eq. 38, 39, 41,
42, 43, 48, and 49:

m m—1
E(C)=D, 21 hiF(wj—1)+o0Y zl FOv))+(Do—Dy)(Jy" tf (1)dr) +
J= J=

i=j+

(D1 —Dy) f: w,-VF(wj)+D1ﬁnil <VF(W/) f: h,-lfijl> + W+ (50)
j=1 = I

(a+bn) <1 + mijz F(w)+ [)’mi:z VF(W/-)Q/) — F(wi)S(win).
j=1 i=1

Eq. 37 and 50 match the model presented by Rahim ez al. [21],
which gives confidence about the deduction of the cost equations
and hence, of the understanding of the cost function model to
integrate the preventive maintenance.

Integrated Cost Models with Preventive Maintenance

Preventive Maintenance (PM) has been proposed by diverse
studies to increase the long-term reliability of equipment in a
production process by reducing failure rates and age of the system
[23,32]. Chiu [13] integrated PM in a cost function for the
Economic Design (ED) of X —S? control charts assuming the
following:

1. The process had increasing failure rate.

2. PM is performed at the evaluation point of constant sampling
intervals. If the process is in-control state in time /1;, then PM is
performed with an associated cost.

3. M includes costs associated with small adjustments or changes
in machines or in other parts of the process (M < repairing
cost).

4. PM does not restore the process from an out-of-control state to
an in-control state.

5. The process is stopped when the PM is performed.

These assumptions were similar to those presented by more
recent studies which also had significant additional considerations.
In [15] Ben-Daya and Rahim also considered performing PM at
the evaluation point of constant sampling intervals. However Chen
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et al. [23] stated that performing PM at each evaluation point
would increase costs. As an alternative they proposed a
“threshold” for the quality characteristic measured during a
sampling interval to decide whether or not to perform PM. Rahim
et al. [32] proposed that PM activities could be performed at L
integer multiples of evaluation points, considering also that
production ceases during PM.

Mehrafrooz and Noorossana [18] proposed different types of
maintenance: Preventive, Corrective, Compensatory, and Planned
maintenance. In their work, “true” out-of-control signals require
Preventive maintenance while “false” alarms require Compensa-
tory maintenance. Coorrective maintenance is performed whenever
process stops due to a failure, and Planned maintenance is the one
scheduled to be performed after (m+1)h in-control intervals.
However, a common assumption of some works (i.e., [18,32]) is
that PM is capable of restoring an equipment to a “‘good-as-new’
condition, something that is not a realistic situation as discussed in
[23]. Also, a single failure distribution is considered (ie.,
Exponential [18,23]) and thus, the effect of PM is not fully studied.

In this paper is assumed the following:

1. PM does not restore the process to a “good-as-new” condition
although it decreases the failure rate after each implementation
[32]. Failure rate was considered to be reduced by extending
the period of time between failures. For this, a constant 6 was
defined as the possible gain in the life expectancy of the process
and was integrated in the period of time between failures. It
was considered to be at least of 10% of the original time
between failures.

2.In terms of [18], Corrective maintenace is implicit in the
activity of searching/repairing an assignable cause. PM is
performed at each evaluation point while the process is
detected to be in-control state (thus, Preventive Compen-
satory = Planned maintenance).

3. The process has general failure distribution and the following
are considered: Exponential, Weibull, and Gamma.

4. Sampling intervals are constant and variable.

5. The process can continue or be stopped while performing PM:
M is the cost of PM if the process continues, and M> the cost
of PM if the process is stopped (M) < M>).

6. Taking as reference the cost of repairing the process from an
out-of-control state, the PM cost was set to 10% and 30% of W
if the process continues while performing PM or if is stopped
respectively.

Thus, the study of Chiu [13] about PM is extended for the ESD
of X —S8 control charts with the more complex cost function
model of Rahim et al. [21] for variable sampling intervals and
general failure distributions. The work of Linderman [33] was also
reviewed to allow, by means of a binary variable (/=0,1), the
modelling of the situation of performing PM without interrupting
the process. Thus, a more comprehensive insight is presented
about the effect of PM on the reliability of a process. In order to
keep consistency with the base models of Rahim et al. [21,28], the
proposed models share the same terminology for E(T) and E(C).

Depending on the kind of process, if it is necessary to stop the
process while performing PM (/=1), then a delay Z is added to
cach sampling interval if the process is in-control state. This is
common In situations when some machine parts are worn-out and
need to be replaced, or too much waste is accumulated in a
machine. Another scenario that requires attention, independently
if the process is stopped or not, is lubrication of mechanic parts,
which can be performed with the process working without any
delay Z,, although it still implies a cost. Thus, Z, represents the
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Figure 10. Effect of PM on the Exponential distribution: 0=2.0, Z, =2.5, Initial Unit=20. / is the main parameter of the distribution and
represents the known number of failures per unit of time. When PM is performed a gain 0 in the life expectancy can be obtained. This would increase
the Initial Unit of time where failures are likely to take place. In addition, if the process is stopped during the performance of PM (/= 1) the associated
delay /Z, can be considered as another gain in the life expectancy of the process. Thus, the unit of time where failures would occur can be expressed
as Unit of Time=Initial Unit + 0 + IZ,. It is observed that for 2=A'"! and Z=4=° (PM with/without interruption of the process), the failure
probabilities decreased at time 7. The lowest failure probability is accomplished when the process is stopped while performing PM, and the highest
when there is no PM.

doi:10.1371/journal.pone.0059039.g010
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Figure 11. Effect of PM on the Weibull distribution: 0=5.0, Z, =6.0, m=3, Initial c =40. c represents the time where the process would fail,
identifying in this way the life expectancy of the process. ¢ is known as the scale parameter and m as the form parameter. When m=1 the Weibull
distribution is approximated to the exponential distribution with 2=1/c. When PM is performed a gain 6 in the life expectancy can be obtained. This
would increase the Initial c, and if the process is stopped during the performance of PM (/= 1), the associated delay /Z, can be considered as another
gain in the life expectancy of the process. Thus, the time at which the system would fail is expressed as: ¢ =Initial ¢ + 0+ 1Z,. Although all cases
achieve the same probability level by =100, there is a marked delay when PM is performed. While in the original case with no PM the failure
probability is 50% by =35, when PM is performed without interruption the probability at =35 is 40% (50% is reached when t=40). When there is
PM with interruption, in =35 the failure probability is 27%, reaching 50% in =45.

doi:10.1371/journal.pone.0059039.g011
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expected time to perform PM. In the following sections the
integration of these concepts is presented.

Constant Sampling Intervals. The modified Eq. 26 for the
Expected Cycle Length E(T) is:

E(T)=h+[E(T)+1Z,]Pr(Se0) +

[Zy+1Z,+ E(T)| Pr(So1)+

(51)
(ﬁ + f—zﬁ +Zl>Pr(S10)+

lel’(Sll).

Note that, for state Sjo, /(1 —f) is the time required to detect
that the process is in out-of-control state. Thus, IZ,/(1—pf) is
defined as the time that PM was performed while the process was
in out-of-control state before detection. Eq. 51 for E(T) is reduced
to the following expression:

E(T):h(i + i) +O(Z() <1_7F(h))

F(h)l 1F _(,ﬁ ,; F(h) 52)
+17: (g 1) ¥

In similar way, the expression for the Expected Cost E(C) of
Eq. 29 with PM is derived:

X-bar-S Control Chart with Preventive Maintenance

Table 2. Costs and Times for the ESD of X — S Control Charts
with PM.

=182 o=+/10 o1 =18 5=05
Zy=0.25 Z =1 Dy=50 Dy =950
a=20 h=422 W =1100 Y =500
Z,=075 M =100 M =300 Sy, =1100
%<0.15 $=<0.20 Zy= 075 0=0.5¢

doi:10.1371/journal.pone.0059039.t002

E(C): [a+bl’l+D0]’l+(l —l)M] +IM2 +E(C)}PV(S00)+
[a+bn+Doh+(1—1)M;+IM>+ Y + E(C)|Pr(So1) +
[a+bn+Dot+Di(h—1)+(1 =) M, + (53)

a+bn+D1h—1|—£1ﬁ—l)M1 +IM, n W:| Pr(510)+

[a+bn+ Dyt+ Di(h—1)+ W]|Pr(S).

IM, +

1—F(hy B
E(C)=D0h( Ty )+D1h<l+rﬂ)+
1—F(h) 1 ]

+‘L'(D()*D|)+ w.

Variable Sampling Intervals. When the sampling intervals
are constant, PM is performed at the end of the sampling interval

& No PM @ PM with No Interruption & PM with Interruption

0.8

0.6

F(1)

0.4

0.2

0 10 20 30 40 50
timet

70 80 90 100

Figure 12. Effect of PM on the Gamma distribution: 0=2.0, Z, =2.5, Initial Unit=20. r is termed as the form parameter, and 1 the scale
parameter. For convenience in this work r=2 was used. / is related to the life expectancy of the process which is considered to be increased by 0
when PM is implemented. If PM is performed with interruption of the production process (/= 1) then the associated time to this task Z, can be
considered as another gain in the life expectancy. Because 4 = 1/(Unit of Time until Failure), then 1/4 = Initial Unit of Time + 0 + [Z,. As presented, PM
with interruption presents the lower probability of a failure for 7= 1...,100. For example, for =40, the failure probability is approximately of 48% and
53% for PM with /=1 and /=0 respectively. However if no PM is implemented, the failure probability is near 60%.
doi:10.1371/journal.pone.0059039.g012

PLOS ONE | www.plosone.org 13 March 2013 | Volume 8 | Issue 3 | 59039



X-bar-S Control Chart with Preventive Maintenance

6C°0L L9'L6E 8996°0 9/¥0°0 L 66°L 8¢’L 0€ Wd
- [4°1°134 ££96°0 89¢0°0 L 60'C 860 LE 3sva 0505°0=2/1 T=w.lod ‘InqI3M
€0'EL L9'9vC ¥596'0 S¥E00 SS'L LL'e 9€'C [43 Wd
608 79'09¢ €60 S¢v0'0 o'l €0'C 0€'C €€ Wd
- GS'E8T €60 S¢r0'0 o'l €0'C 0S'L €€ 3svd §esT0=2/1 T =wlog ‘INqI3M
we— 05991 £896'0 €5€0°0 'L LL'e 891 [43 Wd
L9°E 6751 0896°0 S870°0 8¢’L 66°L [4%4 0€ Wd
- 89091 L96'0 9r00 8¢l 66'L [4°x4 0€ 3sva 0L0L'0=2/1 T =uwlod ‘Inqiam
£9'8— cLsel §/96'0 6¥70°0 il L0 €6'L LE Wd
88'L LSELL 08960 ¥S¥0°0 Lyl 00C 589 LE Wd
- 69GLL 08960 Sv0°0 Lyl 00¢ 144 LE 3sva S0500=2/1 T =w.lod ‘InqI3M
66'7C 86'0SY 08960 €vr0'0 o'l L0 SL'L LE Wd
96 LEEYS 6996'0 9/¥0°0 'l 66'L 6L 0€ Wd
- €C°L09 69960 9100 ol 66'L vl 0€ 3sva 0505°0=2/1 L =wuog ‘Inqism
Il'6l L8'79€ 8960 6/¥0°0 8¢’L 00T 08'L 0€ Wd
€9'6 v8'L0V €696'0 LS00 Vel 00¢ Lyt 0€ Wd
- 8T’ LSy €696'0 LS00 vEL 00T (9L 0€ 3sva ST5T0=2/1 L =wJod ‘|Inqism
856 €8'99C €960 LL€0°0 L 60'C e LE Wd
18, €0'cLT €596'0 €9%0°0 oL 00T €CE 0€ Wd
- 60'56C 0696'0 L6€0°0 9¢'L oL'e €0'C LE 3svd 0L0L0=2/1 L =wuo4 ‘Inq3Mm
6L/ ¢E'60C SL/6'0 €EVO'0 €L €0'C €Ly [43 Wd
L 18'80C 71860 90100 8¥'L 96°¢ 44 [44 Wd
- §'See 71860 90100 8L 98¢ s8¢ (44 3svd 50500=2/1 L =wlog ‘|Inqism
€6'LC 9865 ¥186'0 68800 SEL L2l 9S'L 123 Wd
L9 €E°6YS ¥86'0 £S80°0 vEL Ll Al 123 Wd
- €0'68S 00¥6°0 98600 Lec oL aL'L 14 3sva 0505'0=Y |epusuodxy
8091 v0'CLE 0¥86°0 €¥80°0 vEL Ll 9T 123 Wd
649 6L'ELY 81860 S90L°0 6¢'L [4°X] 8C'C [43 Wd
- LEEYY ¥Z€6'0 S¥80°0 (VA4 L Sv'L LT 3sva SCST0=Y |e1pusuodxy
v9'L 66°'LLC 8186'0 €850°0 vl 68'L e LE Wd
LY'S 8€'8/¢C €786'0 S¥90°0 L7l S8'L €Ce 9€ Wd
- 05'v6¢C L6560 s00 Lt v6'L 0ce [43 3svda oLoLo=v |e1>usuodxy
Ll [4: x4 ¥4 9586°0 LE90°0 [4 4t 98°L 18 LE Wd
€L'E 0C'L0C L2860 80400 8L L8l €Ly S€ Wd
- [44-1%4 6€96°0 €S5¥0°0 91T 00T 96°C 133 3sva S0S00=Y |epusuodxg
%uondNpay % g-1 © Sy Xy y u s|spon si9jawesed uonnqusig ainjreq

's|easa1u| Buidwes juelsuod) yum [Spoy paresbalu] sy JO s1Nsay € djqel

March 2013 | Volume 8 | Issue 3 | 59039

14

PLOS ONE | www.plosone.org



X-bar-S Control Chart with Preventive Maintenance

- I'8CE .60 o0LL0 9s'L 09°L 6S°L 0€ 3sve 0s0s'0=Y 7 =wJo4 ‘ewwen
0€'8 86'00C L7860 ¥680°0 Vel (44} €8¢ €€ Wd
€L §S'€0C 65860 G€L0°0 or'L 6L'L SS'E 9€ Wd

- L16le 06£6'0 85800 €S°L L €v'e €€ 3sva SCST0=Y T =Wlo ‘ewwes
98'C— S6'6€L ¥86'0 £50°0 Syl 06'L YL LE Wd
1444 670l 65860 76500 LEL 06'L 899 LE Wd

- 909¢lL 9€86'0 S0L0°0 or'L 18l SLE S€ 3sva oloro=vy 7 =wlo4 ‘ewwen
LeL— 96'60L 90660 00700 6¢'L 90°¢C 6S'LL 34 Wd
L LE0ol £886'0 8¥¥0°0 L L0 o¥'ol A4 Wd

- L¥'20l 6€86°0 8¢S0°0 Sl v6'L SS9 8¢ asve S0S00=Y 7 =WwJo4 ‘ewwen
LESL 76'6€C £596'0 ¥9€0°0 'L oLz 66°'L LE Wd
L€ V8'€LT ¥2/6'0 9€¥0'0 or'L €0'C 9L @ Wd

- 05°€8¢ €996'0 L¥¥0'0 L L0 00'L LE 3sva 0505°0=2/1 ¥ =uwiod ‘InqiIM
S6'0— 95'9/1 ¢L96'0 S/¥0°0 L'l 66'L e o€ Wd
65'C LEOLL 9096'0 900 09°L 66'L SLT 0¢ Wd

- 06'7LL 9096'0 9700 09°'L 66'L S6'L o€ 3sva STST0=2/1 ¥ =wio4 ‘InqieM
8/0L— LULLL 0€96°0 9100 €Sl 66'L 44 0€ Wd
L6'0 L8101l 98960 L£€00 sl [4N4 8¢9 €€ Wd

- ££°501 9896'0 LEEOO el [4%4 86'¢€ €€ 3sva 0L0L'0=2/1 ¥ =uwlod ‘InqiIm
8EVL— L6'06 8€L6°0 LZv0'0 L 0T SLLL €€ Wd
€6'0— o8 98960 or¥0°0 vl L0 60l LE Wd

- 8¥'6L 0996'0 89€0°0 Sv'L 60°C 6€'L LE 3sva S0500=2/1 ¥=wio4 ‘InqIeM
€8°0C welLe 62L6'0 €00 Lyl v0'C 98l 23 Wd
0L°L 6E'LLE 68960 LEVO'O [ e 'l [43 Wd

- 98'eve L2L6'0 L¥€00 erl [4N4 00°'L €€ 3sve 0505°0="2/1 €=wlod ‘|Inqism
60'¢ 6,661 78960 98¥0°0 LEL 66'L [£°X4 0¢ Wd
89°¢ L5861 61960 79¢0°0 LS oLe 89C Le Wd

- 91'90C 15960 €9%0°0 Lyl 00'C 8L 0€ asvd S75T0=2/1 €=wlo4 ‘|Inqism
€90L— 88eel /60 w00 Wl 9Tt 79 13 Wd
9€’L 8¢'6Ll €960 LLY00 L7l 66'L V'S 0€ Wd

- el €596'0 €9€0°0 Lyl oLe oce LE 3sva 0L0L'0=2/1 € =wlo4 ‘|IngIIMm
9G'LL— 69001 68960 S8€0°0 8¢’L 60°C 901 LE Wd
0€'0 66'68 €696'0 09€0°0 vl olL'e 6.6 [43 Wd

- 9C06 €696'0 09¢€0°0 il oLe 6L'S [43 3sve S0500=2/1 €=Wlo4 ‘|Inqism
6'SC 6€'€CE L1960 9v€0’0 8L Lz L [43 Wd

%UuondNpay % g-1 » Sy Koy y u s|opon siajpweled uonnquisiqg snjey

0D € 9jqel

March 2013 | Volume 8 | Issue 3 | 59039

15

PLOS ONE | www.plosone.org



X-bar-S Control Chart with Preventive Maintenance

h as long as the process is in-control state (or the out-of-control is
not detected). For such case, a new sampling interval is established

L
H that includes the associated PM:
HIAE
el s W =h+1Z,. (55)
If the process is not interrupted (/ =0) while performing the PM
then there is no delay, hence // =h from the original cost model.
C|g E E Now, for variable sampling intervals, the same principle can be
SIS applied:

W= phj_1 +12Z. (56)

B
0.9821
0.9828

Because it is considered that PM is constant for each sampling
interval, the Eq. 31 for w; is adjusted as follows:

J
Wy = Zh; (57)
i=1

0.0866
0.0885

Thus, Eq. 37 for E(T) with PM is modified as:

m m—1
s a E(T)="_HF(w;_1)+aZo Y _ F(w;)
=< = = j=1 =1
J J (58)
m—1 m o
(v 35 )z
j—1 i=j+1
s|EE
. Eq. 50 for E(C) is modified when adding PM given by
P=(1-)M,+IM>:
¢ R
< [N N m _ m—1 _
E(C)=Dyg ) WF(wj—1)+aY > F(w)+
j=1" j=1
m—1 _ "
clm @ Py F(le)+(DofDl)(‘[(;tm xf(x)dx)+
j=1
m m—1 m i1
(D1 *Do) Z WjVF(Wj)—i-Dlﬁ Z VF(W]') Z /’l;/)n_]_ (59)
~|o - j=1 j—1 i=j+1
m—2
+PB > VE(w)Qi+
i i=1
S = = m—2 _ m—2 _
2|z & W+(a+bn)<l+ S Fw)+p > VF(W,—)Q,-) —F(wp)SOwy,).
j=1 i=1
w
g
o 3
g g where:
g 8 m—1 . ~ .
Py . PZ/‘:l F(wj) is the cost of performing PM when the process
E is in-control state.
o ,§ ;f.— e P 2?;2 VF(w;)Q; is the cost of performing PM when the
S § £ process is in out-of-control state and there is no detection.
e £ 2 Hence, this cost depends on the number of samples taken
: ‘a:: 5 while there is no true alarm.
3 3 =
e £ 3
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Figure 13. Main Effects Plots for E(C)/E(T) and Constant Sampling Intervals - All Failure Distributions. Three main factors were
considered: Failure distributions (three levels: Exponential, Weibull, and Gamma), Failure rate (four levels: 0.0505, 0.1010, 0.2525, and 0.5050), and PM
(three levels: no implementation -, implementation with /=0, and implementation with /=1). The first plot shows that overall costs decrease based
on the failure distribution used to model the failure behavior. The cost model with Exponential distribution has the higher costs (given by the ratio
E(C)/E(T)) while the Gamma has the lowest costs considering all the other factors. The second plot shows that as failure rate increases from 0.0505
to 0.5050 the cost increases considering the other factors. The third plot shows that, considering failure distributions and failure rates, PM is
responsible for decreasing costs from the base model where no PM is performed (-). The maximum reduction is achieved when PM is performed with
interruption of the production process (/=1).

doi:10.1371/journal.pone.0059039.g013

Results and Discussion

Effect of PM on the Failure Distribution Unit of Time = Initial Unit +0+/2;. (61)

It is expected that, as PM involves continuous adjustments and
replacements of soon-to-be faulty parts, it would increase the
reliability of the process in the long term. This could be reflected as
a decrease in the number of failures in a given time period. Hence,

Hence, the adjusted parameter A for the time between failures
can be expressed as:

this can have a direct effect on the life expectancy of the process, .
which is associated with the parameters of the failure distribution l= known number of failures
modelled by f(2). Initial Unit 4+ 0+ /2,

In this paper three probability distributions are considered for
the failure mechanism of the process: Exponential, Weibull, and
Gamma, and the effect of PM on these distributions are presented
in the following sections.

Exponential Distribution. For the Exponential distribution:

(62)

Because F(f) represents the probability that a unit selected
randomly from a population will fail at most in time ¢, for the
Exponential distribution F(¢) is expressed as:

f(t)=ie_i’. (60) F(l)=1—€_)'[. (63)

where 4 is the main parameter of the distribution and represents
the known number of failures per unit of time. When PM is
performed it is assumed that the life expectancy of the process can
be increased, changing the length of the unit of time in which
failures would occur.

It is considered that, by performing PM a gain 0 in the life
expectancy is obtained. Additionally, if the process is stopped
during the performance of PM (/=1) the associated delay /Z, can
be considered as another gain in the life expectancy of the process.
Thus, the unit of time where failures would occur can be expressed F(=1 _ e t/om (64)
as:

In Figure 10, it is observed that for A=A'=! and 1=2'=° (PM
with/without interruption of the process), the failure probabilities
decreased at time ¢. Thus a process with such patterns would be
more reliable. Note that the lowest failure probability is
accomplished when the process is stopped while performing PM,
and the highest when there is no PM.

Weibull Distribution. For the Weibull distribution:

PLOS ONE | www.plosone.org 19 March 2013 | Volume 8 | Issue 3 | 59039
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Figure 14. Interaction Plots for E(C)/E(T) and Constant Sampling Intervals - All Failure Distributions. Three main interactions are
considered: (1) Failure Distribution vs. Failure Rate - All costs increase as failure rate increases. Costs are the highest for the Exponential distribution,
and the lowest for the Gamma distribution; (2) Failure Distribution vs. PM - PM decreases costs for the Exponential, Weibull, and Gamma distributions;
(3) Failure Rate vs. PM - In general, if the failure rate is small (0.0505, 0.1010) there are no savings or cost reductions. As the failure rate increases the
savings become more significant when PM is performed.

doi:10.1371/journal.pone.0059039.9014

where ¢ represents the time when the process is likely to fail, Gamma Distribution. For the Gamma distribution:
identifying in this way the life expectancy of the process. ¢ is

known as the scale parameter and m as the form parameter. Note that e

when m=1 the Weibull distribution is approximated to the f (I)ZT (66)

Exponential distribution with 2=1/c.
Similar to Eq. 62 with PM, the time at which the system would

2 where 7 is termed as the_form parameter, and / the scale parameter. For
fail is expressed as:

convenience, in this paper =2 is used, which gives the following
expression for F(?):

c=Initial c+0+12,. (65)
F(t)=1—=(At+ e (67)

As in the Exponential case, in Figure 11 the behavior of the
Weibull failure distribution is shown when PM is performed.
Although all cases achieve the same probability level by =100,
there is a marked delay when PM is performed. While in the
original case with no PM the failure probability is 50% by = 35,
when PM is performed without interruption the probability at
t=35 1s 40% (50% is reached when #=40). When there is PM
with interruption, in #= 35 the failure probability is 27%, reaching
50% in t=45.

For real purposes, 0 depends on the type of process, and it can 1 = Initial Unit of Time + 0+ /Z>. (68)
be estimated from experiments performed to measure the strength ’
or resistance of the system before and after the PM. In this work
Z>=0.75 and 0=0.5¢ were used.

A is related to the life expectancy of the process which is
considered to be increased PM by 0 when PM is implemented. If
PM is performed with interruption of the production process
(I=1) then the associated time to this task Z, can be considered as
another gain in the life expectancy. If A=1/(Unit of Time until
Failure) then:

As presented in Figure 12, the failure distribution follows the
same pattern as in the Exponential and Weibull cases. PM with
interruption presents the lower probability of a failure for
t=1,..,100. For example, for t=40, the failure probability is

PLOS ONE | www.plosone.org 20 March 2013 | Volume 8 | Issue 3 | 59039
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Figure 15. Main Effects Plots for £(C)/E(T) and Constant Sampling Intervals - Weibull Distribution. Three main factors were considered:
Failure rate (four levels: 0.0505, 0.1010, 0.2525, and 0.5050), Form parameter (four levels: 1, 2, 3, 4), and PM (three levels: no implementation -,
implementation with /=0, and implementation with /=1). As presented, the cost ratio E(C)/E(T) increases as the failure rate does. However there
is an inverse relationship between the form parameter and the cost given by E(C)/E(T). Considering the failure rate and the form parameter,

performing PM decreases the ratio E(C)/E(T).
doi:10.1371/journal.pone.0059039.g015

approximately of 48% and 53% for PM with /=1 and /=0
respectively. However if no PM is implemented, the failure
probability is near 60%.

Effect of the PM on the ESD of X —S Control Charts

Matlab 2008b was used as the programming platform required
to compute the cost models and perform the algorithm to achieve
the ESD of the joint X — S control chart. Diverse algorithms have
been used to optimize the chart parameters for a given case.
Among them, Genetic Algorithms (GAs) [8,24,31] and Tabu
Search (T'S) [32] have shown success for these tasks.

Previously a T'S algorithm was developed to solve cost models
for the ED and ESD of X, X — S charts. This algorithm improved
the ratio E(C)/E(T) when compared with GAs, Hooke and
Jeeves (H]) and Combinatorial Methods (CB) as presented in [34].
Because the T'S algorithm was validated with different cost models
(Rahim ¢t al. [21,28], Ruvalcaba [31], Saniga et al. [6]), it was used
for the optimization of the X —S with PM presented in this work.

In Table 2 the data used for the ESD of the X — S control chart
with PM and constant/variable sampling intervals with Exponen-
tial, Weibull, and Gamma failure distributions is presented. The
results, presented in Tables 3 and 4 were obtained with 20
iterations of the solving algorithm, and these are discussed in the
following sections.

Constant Sampling Intervals. The results of the tests with
constant sampling intervals are presented in Table 3, where BASE
represents the solution of the base cost function model (Eq. 27 and
30) applied for the ESD of X — S control charts. PM represents the
integrated cost function model (Eq. 52 and 54) with /=0,1.

PLOS ONE | www.plosone.org
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In Table 3 for the Exponential distribution with A=0.0505
there are reductions (savings) in the costs (3.73% and 1.12%) when
PM is implemented without interruption (/=0) or with interrup-
tion (I=1) of the process. These reductions are higher when the
failure rates increase: 5.47% and 7.64% for A=0.1010; 6.79% and
16.08% for A=10.2525; and 6.74% and 21.93% for 4=10.5050.

For the Weibull distribution, when the failure rate is small
(1/¢=0.0505) and m=2,3,4, small or no reductions are obtained
when PM is performed without interruption of the process: 1.88%,
0.30%, and —0.93% respectively. Reductions are obtained when
the failure rate increases to 1/¢=0.1010: 3.67%, 1.36%, and
0.91% respectively. However, if PM is performed with interrup-
tion of the process for 1/¢=0.0505 and 1/¢=0.1010, the costs are
higher than the baseline (BASE) and negative reductions are
obtained.

On the other hand, when the failure rate increases to
1/¢=0.2525 and 1/¢=0.5050 the reductions are consistently
high and positive for both scenarios (/ =0, /=1). For example, for
1/¢=0.5050 and /=1 the reductions are 25.92%, 20.83%, and
15.37% for m=234. In just one case, when m=4 and
1/c¢=10.2525, a negative reduction was obtained (—0.95%).

A similar pattern is observed for the Gamma distribution, where
there are reductions when the failure rate is small and the process
is not interrupted during PM: 2.11% for A= 0.0505 and 4.24% for
A=0.1010. Negative reductions are obtained when the process is
interrupted with the same failure rates: —7.31% and 2.86%
respectively. Consistent reductions are obtained when 4=0.2525
and A=0.5050: 7.13% and 9.65% when /=0, and 8.30% and
20.14% when [ =1 respectively. Note than in all cases with PM the
length of the sampling interval (h) was increased.
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Figure 16. Interaction Plots for E(C)/E(T) and Constant Sampling Intervals - Weibull Distribution. Three main interactions were
considered: (1) Failure Rate vs. Form parameter - As m increases the cost ratio E(C)/E(T) decreases for all failure rates although all costs increase as
failure rate increases; (2) Failure Rate vs. PM - Performing PM has no significant effect on cost reduction for small failure rates (1/c¢=0.0505,
1/¢=0.1010). Reductions are achieved for higher failure rates as 1/¢=0.2525 and 1/¢=0.5050; (3) Form vs. PM - There is no significant difference in
cost when m varies from 3 to 4 and thus no relationship between PM and the form parameter is evident. When m =1 the most significant reduction is
achieved, however this is the case where the Weibull distribution is approximated to the Exponential. When m =2 the reduction is less evident.

doi:10.1371/journal.pone.0059039.g016

A paired Student’s t-Test was performed to determine the
statistical significance of the results presented in Table 3. The
overall reduction obtained with /=0 was significant with a p-value
of 0.000035481 < 0.05, 0.01. For /=1 the reduction was
significant with a p-value of 0.003052452 < 0.05, 0.01.

A factorial analysis was performed on the data presented in
Table 3 to assess the effect of PM on the overall cost reductions
when considered with the other factors in the cost models. Minitab
ver.15.1.30.0. was used for this purpose and in Figure 13 the Main
Effects Plots for E(C)/E(T) are presented. Three main factors
were considered:

1. Failure distributions. Three levels: Exponential, Weibull, and
Gamma. For this analysis an 7 =2 was used for the Weibull
distribution.

2. Failure rate. Four levels: 0.0505, 0.1010, 0.2525, and 0.5050.

3. PM. Three levels: no implementation = BASE (-), implemen-
tation with /=0, and implementation with /=1.

The first plot shows that overall costs decrease based on the
failure distribution used to model the failure behavior. The cost
model with Exponential distribution has the higher costs (given by
the ratio E(C)/E(T)) while the Gamma has the lowest costs
considering all the other factors (failure rate and PM). The second
plot shows that as failure rate increases from 0.0505 to 0.5050 the
cost increases considering the other factors (failure distribution and
PM). The third plot shows that, considering failure distributions
and failure rates, PM is responsible for decreasing costs from the
base model where no PM is performed (-). The maximum
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reduction is achieved when PM is performed with interruption of
the production process (I =1).

In Figure 14 the Interaction Plots for E(C)/E(T) are presented
and the following is observed:

® Failure Distribution vs. Failure Rate. All costs increase as
failure rate increases. Costs are the highest for the Exponential
distribution, and the lowest for the Gamma distribution.

® Tailure Distribution vs. PM. PM decreases costs for the
Exponential, Weibull, and Gamma distributions.

® Failure Rate vs. PM. In overall, if the failure rate is small
(0.0505, 0.1010) there are no savings or cost reductions. As the
failure rate increases the cost reductions are more evident

when PM is performed.

The same analysis was performed for the results obtained with
the Weibull distribution. This was performed to assess the effect of
PM when considered with the form parameter of the failure
distribution. In Figures 15 and 16 the Main Effects Plots and the
Interaction Plots for E(C)/E(T) are presented. As presented in
Figure 15 the cost increases as the failure rate does. However there
is an inverse relationship between the form parameter and the cost
given by E(C)/E(T). Considering the failure rate and the form
parameter, performing PM decreases the ratio E(C)/E(T).

When analyzing the interaction plots (Figure 16) it is observed
that as m increases the cost decreases for all failure rates.
Performing PM has no significant effect on cost reduction for small
failure rates (1/¢=0.0505, 1/¢=0.1010). Reductions are achieved
for higher failure rates as 1/¢=0.2525 and 1/¢=0.5050. There is
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Figure 17. Main Effects Plots for E(C)/E(T) and Variable Sampling Intervals - All Failure Distributions. Two main factors were
considered: Failure distributions (two levels: Weibull and Gamma), Failure rate (four levels: 0.0505, 0.1010, 0.2525, and 0.5050), and PM (three levels:
no implementation -, implementation with /=0, and implementation with /=1). The first plot shows that overall costs decrease based on the failure
distribution used to model the failure behavior. The cost model with Weibull distribution has the highest costs (given by the ratio E(C)/E(T)) while
the Gamma has the lowest costs considering all the other factors. The second plot shows that as failure rate increases from 0.0505 to 0.5050 the cost
increases considering the other factors. The third plot shows that, considering failure distributions and failure rates, PM is responsible for decreasing
costs from the base model where no PM is performed (-). In contrast with constant sampling intervals, when failure rate is within 0.1010 and 0.2525

the most significant reduction is achieved when PM is performed without interruption of the production process (/=0).

doi:10.1371/journal.pone.0059039.g017

no noticeable difference in cost when m varies from 3 to 4 and thus
no relationship between PM and the form parameter of the
Weibull distribution is evident. When m=1 the highest reduction
is achieved, however this is the case where the Weibull distribution
is approximated to the Exponential. When m =2 the reduction is
less evident.

Thus, the m parameter of the Weibull distribution has no
significant effect on the performance of PM. Also, for all
distributions with failure rates over 0.15 the PM generates
reductions in E(C)/E(T).

Variable Sampling Intervals. The results of the tests with
variable sampling intervals are presented in Table 4, where BASE
represents the solution of the base cost function model (Eq. 37 and
50) applied for the ESD of X — S control charts. PM represents the
integrated cost function model (Eq. 58 and 59). As presented in
Table 4, Weibull and Gamma distributions with small failure rate
(0.0505) have some instances where the reductions in costs are
very small or even negative when PM is implemented with /=1.
For higher failure rates the reductions increase to approximately
10% of the BASE model when /=0.

In general, the results presented in Table 4 for PM with /=0
were statistically significant with a p-value of 0.0000033257 <
0.05, 0.01. For PM with /=1, the results were significant with a p-
value of 0.0096247835 < 0.05, 0.01.

In the Main Effects Plot of Figure 17 is observed that the cost
model with Gamma distribution has a lower ratio E(C)/E(T)
than the Weibull distribution. Also, in general terms, the ratio
increases as the failure rate does. Note however that, in

PLOS ONE | www.plosone.org

comparison with constant sampling intervals, when failure rate is
within 0.1010 and 0.2525 the highest reduction is achieved when
PM i1s performed without interruption of the production process
(I=0). In addition, the length of the sampling intervals is increased
(in this case, starting from /).

In Figure 18 the Interaction Plots for E(C)/E(T) are presented
and the following is observed:

® Jailure Distribution vs. Failure Rate. All costs increase as
failure rate increases. Costs are higher for the Weibull
distribution.

® Jailure Distribution vs. PM. PM decreases costs for the
Weibull and Gamma distributions, being the highest for the
model with Weibull distribution. For the Gamma distribution
there is no observable difference in the performance of PM
with or without interruption in the production process.

® Failure Rate vs. PM. In overall, if the failure rate is small
(0.0505) there are no savings or cost reductions. As the failure
rate increases the savings increase when PM is performed. For
failure rates of 0.1010 and 0.2525 the highest reduction is
obtained when PM is performed without interruption of the
process. However, for the highest failure rate (0.5050) the
maximum reduction is achieved when PM is performed with
interruption as observed in the case of constant sampling
intervals.

The TS algorithm and the estimation of parameters led to lower
levels of o and f than those specified for the restrictions in the ESD
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Figure 18. Interaction Plots for E(C)/E(T) and Variable Sampling Intervals - All Failure Distributions. Three main interactions were
considered: (1) Failure Distribution vs. Failure Rate - All costs increase as failure rate increases. Costs are higher for the Weibull distribution; (2) Failure
Distribution vs. PM - PM decreases costs for the Weibull and Gamma distributions, being the most significant for the model with Weibull distribution.
For the Gamma distribution there is no observable difference in the performance of PM with or without interruption in the production process; (3)
Failure Rate vs. PM - In general, if the failure rate is small (0.0505) there are no savings or cost reductions. As the failure rate increases the savings
become more significant when PM is performed. For failure rates of 0.1010 and 0.2525 the highest reduction is obtained when PM is performed
without interruption of the process. However, for the highest failure rate (0.5050) the maximum reduction is achieved when PM is performed with

interruption as observed in the case of constant sampling intervals.
doi:10.1371/journal.pone.0059039.g018

(see Table 2). This is achieved for constant and variable sampling
cost models with all failure distributions.

Conclusions

The deduction of the models of Rahim et al. [21,28] and the
adaptation to incorporate PM in the renewal equations can be
used for future research or adaptation to other control charts. The
ESD of X — S considering these cost models is important because
a joint control chart with the same values for 7 and /1 can monitor
both, the mean and the variability, of the quality characteristic of
the process, thus keeping a better SPC. By keeping also control on
the probabilities of the errors Type I and II, the presented ESD
can provide parameters that would lead to control charts with low
rates of false alarms (error Type I, unnecessary interruptions), and
low production of faulty products (prompt detection).

From the results presented in Tables 3 and 4 it was observed
that, when the failure rates were small, there was little or no cost
benefit in performing PM with different failure probability
distributions. This can be attributed to the concept that a “good”
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