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Abstract

The abnormal accumulation of fat in the liver is often related either to metabolic risk factors associated with metabolic
syndrome in the absence of alcohol consumption (nonalcoholic fatty liver disease, NAFLD) or to chronic alcohol
consumption (alcoholic fatty liver disease, AFLD). Clinical and histological studies suggest that NAFLD and AFLD share
pathogenic mechanisms. Nevertheless, current data are still inconclusive as to whether the underlying biological process
and disease pathways of NAFLD and AFLD are alike. Our primary aim was to integrate omics and physiological data to
answer the question of whether NAFLD and AFLD share molecular processes that lead to disease development. We also
explored the extent to which insulin resistance (IR) is a distinctive feature of NAFLD. To answer these questions, we used
systems biology approaches, such as gene enrichment analysis, protein–protein interaction networks, and gene
prioritization, based on multi-level data extracted by computational data mining. We observed that the leading disease
pathways associated with NAFLD did not significantly differ from those of AFLD. However, systems biology revealed the
importance of each molecular process behind each of the two diseases, and dissected distinctive molecular NAFLD and
AFLD-signatures. Comparative co-analysis of NAFLD and AFLD clarified the participation of NAFLD, but not AFLD, in
cardiovascular disease, and showed that insulin signaling is impaired in fatty liver regardless of the noxa, but the putative
regulatory mechanisms associated with NAFLD seem to encompass a complex network of genes and proteins, plausible of
epigenetic modifications. Gene prioritization showed a cancer-related functional map that suggests that the fatty
transformation of the liver tissue is regardless of the cause, an emerging mechanism of ubiquitous oncogenic activation. In
conclusion, similar underlying disease mechanisms lead to NAFLD and AFLD, but specific ones depict a particular disease
signature that has a different impact on the systemic context.
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Introduction

The abnormal accumulation of fat in the liver–or hepatic

steatosis–is often related either to metabolic risk factors associated

with metabolic syndrome (MetS) in the absence of alcohol

consumption (nonalcoholic fatty liver disease, NAFLD) or to

chronic alcohol consumption (alcoholic fatty liver disease, AFLD).

Despite the fact that the causative noxa for each clinical entity is

different, both the diseases share the same natural history; e.g., the

evolution of liver histology of NAFLD and AFLD varies from

simple steatosis to cirrhosis, including an increased risk of

hepatocellular carcinoma [1,2]. The clinical features are strength-

ened by the liver pathology as NAFLD and AFLD share a number

of histological changes, including the presence of lobular

inflammation, morphological changes in liver mitochondria,

perivenular and perisinusoidal fibrosis, and even hepatocellular

ballooning [3,4]. In fact, nonalcoholic steatohepatitis (NASH) was

initially regarded by Lugwig J et al. as a histological picture that

mimics alcoholic hepatitis [5].

Interestingly, advances in genome analysis have shown that

rs738409 C/G, a nonsynonymous coding (I148M) gene variant

located in human patatin-like phospholipase domain containing 3

gene (PNPLA3, also known as adiponutrin), is critically involved in

the genetic susceptibility of fatty liver in both NAFLD [6,7] and

AFLD [8]. Furthermore, rs738409 not only modulates the amount

of intrahepatic triglyceride content, but also the histological disease

severity, including necroinflammation and fibrosis in both NAFLD

[7,9] and AFLD [10,11].

In addition, it has also been suggested that NAFLD and AFLD

might have similar pathogenic mechanism because both are

associated with hepatic inflammatory changes and local upregula-

tion of cytokine production, along with increased fibrogenesis.

Nevertheless, there is still inconclusive data regarding whether the

underlying biological process and disease pathways of NAFLD and
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AFLD are identical; in fact, the differences between them have

been suggested [12]. Consequently, some critical questions remain

unanswered, such as whether insulin resistance (IR) is associated

with both NAFLD and AFLD, whether hepatic necroinflamma-

tion is related to similar triggering events, and whether cardio-

vascular disease is equally associated with both the liver disorders.

The omics revolution (genomics, proteomis, transcriptomics, and

metabolomics) has significantly changed our understanding about

the pathogenesis of complex diseases.

Nevertheless, the multi-level high-throughput omics data are

growing exponentially, sometimes negatively impacting our

capacity of extracting and interpreting biological insights from

them. Fortunately, interesting computational resources have been

developed, such as data-mining techniques, which not only help us

in assembling information from the biomedical literature, but are

also devoted to uncover details that are of practical value for

reveling disease pathogenesis.

Hence, our primary aim was to integrate genomic, molecular,

and physiological data about NAFLD and AFLD to answer the

question of whether both the diseases share the same underlying

pathogenic mechanisms. In addition, we explored the biological

processes and associated-disease pathways behind NAFLD and

AFLD to evaluate the extent to which IR is (or is not) a distinctive

feature between them.

To answer these questions, we used data mining and systems

biology approaches, such as a gene enrichment analysis and

protein–protein interaction networks.

Materials and Methods

Data collection and computational data mining
To assemble the available evidence about NAFLD- and AFLD-

associated biological processes in a systematic manner, we used the

text mining platform PESCADOR (Platform for Exploration of

Significant Concepts Associated to co-Occurrence Relationships)

[13]. This resource allows collecting information about NAFLD/

AFLD-related pathobiology to predict further biomolecular

interactions among genes and proteins associated with them.

PESCADOR selects gene/protein co-occurrence pairs based on

their relatedness to biological concepts, bringing together, under a

common perspective, protein interactions that have not been

studied under the same research focus [13].

Thus, with the queries ‘‘alcoholic AND (steatosis OR fatty liver)

NOT (non or nonalcoholic)’’ for AFLD and ‘‘nonalcoholic OR

non-alcoholic AND fatty liver OR steatosis’’ for NAFLD, we

retrieved 823 papers and 1345 co-occurrences for AFLD, and 868

papers and 2217 co-occurrences for NAFLD. The query involves

retrieving extensible markup language (XML) PubMed abstracts

for PMID list, passing XML PubMed abstracts for NLPROT

analysis (a tool for finding protein names in natural language text),

and tagging protein names and performing co-occurrences

analyses. After carrying out terms’ tagging, a total of 228 gene/

protein terms were identified for AFLD (Table S1) and 314 terms

were found for NAFLD (Table S2).

Of note, the data mining method implemented in PESCADOR

is based on the LAITOR (Literature Assistant for Identification of

Terms co-Occurrences and Relationships) tool [14] that ensures

the users the analysis of the meaning of the text, not just the

presence of key words. Actually, LAITOR identifies biointeraction

terms in the text of the abstracts according to a dictionary of

biointeraction terms [13,14]. In addition, other available platforms

are not flexible enough as PESCADOR to filter interactions

extracted from a PubMed query.

Systems biology approaches for gene enrichment
analysis and protein–protein interaction networks

Based on the list of genes/proteins identified as explained

earlier, we decided to explore the interactions between them in an

integrative fashion to provide a ‘‘functional molecular map’’ of

both the clinical disorders. Thus, functional enrichment analysis

was performed by the bioinformatic resource ToppGene Suite

(http://toppgene.cchmc.org) and ToppCluster (http://toppcluster.

cchmc.org), which could detect functional enrichment of the

candidate genes/proteins list based on Transcriptome, Proteome,

Regulome (TFBS and miRNA), Ontologies (gene ontology GO,

Pathway), Phenotype (human disease and mouse phenotype),

Pharmacome (Drug-Gene associations), literature co-citation, and

other features [15].

This application was selected because the gene functional

annotations are based on a comprehensive list of databases that

includes among others, annotation for drugs, disease and mouse

phenotype, miRNAs, and allows the identification and prioritiza-

tion of novel disease candidate genes in the interactome.

Furthermore, the statistical methods for quantitative enrichment

are reliable [16].

In addition, we used a strategy of gene prioritization under the

hypothesis that the already known associated disease loci and

proteins might be useful as a template to look for unknown

molecular targets involved in the pathogenesis of NAFLD and

AFLD. Thus, we performed a comprehensive analysis of candidate

regions generated by the freely accessible ENDEAVOUR software

available at http://homes.esat.kuleuven.be/̃bioiuser/endeavour/

endeavour.php.

ENDEAVOUR is a software application for the computational

prioritization of candidate genes underlying biological processes or

diseases, based on their similarity to known genes involved in a

disease as previously described [17]. The hypothesis of prioritiza-

tion by ENDEAVOUR is that candidate test genes are ranked

based on their similarity with a set of known training genes; this

strategy allows expansion of the selection of putative molecular

targets and prediction of new targets. Terms lists for NAFLD and

AFLD, shown in Table S1 and Table S2, were used as training

genes in the Endeavour platform; subsequently, the application

prioritized the entire human genome looking for similarities

between the candidates and the models built with the training

genes. This prioritization covers most of the aspects of knowledge

available on genes and gene products (functional annotations,

protein interactions, expression profiles, regulatory information,

sequence-based data, and literature mining) [18].

This application was selected because its system was validated

experimentally by extensive leave-one-out cross-validations show-

ing an excellent performance [18]. In addition, the platform

ENDEAVOUR allows users to prioritize candidate genes not only

with respect to their biological processes but also diseases of

interest. Furthermore, we have experimentally validated the

putative associations of variants of IGF1R with arterial hyperten-

sion and HNF4a with type 2 diabetes after being predicted by this

tool [19,20].

Figures were constructed under the graphical platforms for

exploring the biological networks, MEDUSA [21] or Cytoscape

v2.8 [22].

Results

The results of text mining for biomolecular interactions among

terms associated with AFLD and NAFLD are shown in Figures 1
and 2, respectively.

NAFLD and ALFD Common Pathways
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Once AFLD-associated terms and interactions were displayed

graphically, a dendriform hierarchical hub appeared centered on

CYP2E1, TNFa, CD14 (a surface antigen that is preferentially

expressed on monocytes/macrophages), IL10, PPARa, and the

apoptosis regulator BCLXL (Figure 1). On the contrary, once

NAFLD-associated terms were displayed graphically, a stepwise

hierarchical central hub appeared centered on the apoptosis-

mediating surface antigen FAS, the protein kinase AMP-activated

AMPK (an energy sensor protein kinase that plays a key role in

regulating cellular energy metabolism), insulin, and C-reactive

protein (Figure 2); in addition, two-side nodes centered on IL6

and CD36 were also displayed.

Furthermore, based on the candidate gene/protein lists

identified by the text-mining tool (Table S1 and Table S2),

we performed a functional enrichment analysis. Interestingly, the

analysis showed that AFLD-reported loci and proteins are

integrated into several similar functional pathways and biological

processes that did not significantly differ from those of NAFLD

(Table 1). For example, analysis of GO molecular function

showed that ‘‘receptor binding,’’ ‘‘cytokine receptor binding’’ and

‘‘lipid binding,’’ among other GO terms, were highly predicted for

both AFLD and NAFLD. In fact, there was an almost perfect

match between AFLD and NAFLD GO Molecular function

terms, except for GO term ‘‘monocarboxylic acid binding’’ that

was only predicted for AFLD (Table 1).

Functional analysis of the top 10 GO Biological Process showed

that AFLD was significantly associated with the modulation of

immune function because the highly significant terms were

GO:0002376 Immune system process, GO:0002682 Regulation

of immune system process, and GO:0006955 Immune response

(Table 1). In contrast, functional analysis of the top 10 GO

Biological Process showed that NAFLD was significantly associ-

ated with GO:0009725 Response to hormone stimulus,

GO:0009893 Positive regulation of metabolic process,

GO:0006629 Lipid metabolic process, and GO:0042981 Regula-

tion of apoptotic process.

Accordingly, AFLD was significantly associated with toll-like

receptor signaling and cytokine related pathways, while NAFLD

showed significant association with adipocytokine and apoptosis

signaling pathway (Table 1). It is worth mentioning that pathways

in cancer were highly predicted for both the diseases, and

keratinocyte differentiation was a distinctive pathway only

predicted for NAFLD.

Among the highly ranked gene families, CD (cluster of

differentiation) molecules as well as interleukins and interleukin

receptors were overrepresented in both AFLD and NAFLD, but

ATP-binding cassette transporters, caspases, and acyl-CoA syn-

thetases were only significantly predicted in NAFLD (Table 1).

Remarkably, predicted interactions among candidate terms for

AFLD showed mitogen-activated protein kinases as highly ranked.

Conversely, STAT3, IRS1, NCOR2 (a transcriptional co-repres-

sor of NR4A2/NURR1 that acts through histone deacetylases,

HDACs), and EP300 (E1A-binding protein p300 that functions as

HDAC regulating transcription via chromatin remodeling during

cell proliferation and differentiation) were significant for NAFLD

(Table 1), suggesting, as we recently reported, that epigenetic

factors play a critical role in the disease progression, not only

involving nuclear DNA [23], but mitochondrial DNA as well [24].

Figure 1. Graphic illustration of genes/proteins co-occurrence and their relatedness to biological concepts with the query
‘‘alcoholic AND (steatosis OR fatty liver) NOT (non or nonalcoholic)’’. Prediction was performed by PESCADOR (available at http://cbdm.
mdc-berlin.de/tools/pescador/), a web-based tool to assist large-scale integration text-mining of biointeractions extracted from MEDLINE abstracts.
The graph was constructed using the free available program MEDUSA, which is a Java application for visualizing and manipulating graphs of
interaction (www.bork.embl.de/medusa) [21,33].
doi:10.1371/journal.pone.0058895.g001

NAFLD and ALFD Common Pathways
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Prediction of relatedness with mouse phenotype showed that

candidate AFLD genes/proteins were significantly associated with

abnormal liver and hepatobiliary system morphology, and to a

lesser extent with lipid metabolism; on the other hand, candidate

NAFLD gene/ proteins were significantly associated with glucose

and lipid homeostasis (Table 1).

We further performed a multiple genes/ proteins analysis that

simultaneously encompassed the candidate list of AFLD and

NAFLD to obtain a functional modular map that identifies shared

and specific features of each disease, including potential regulatory

mechanism relationships. Figure 3 summarizes the disease

pathways shared by AFLD and NAFLD, and those that are

overrepresented specifically for each disease. Remarkably, apop-

tosis, IL6-mediated signaling, NF-k-b and JAK-STAT pathways,

metabolism of lipids and lipoproteins, and pathways in cancer

were placed in the overlapping zone and were shared between the

two data sets. Accordingly, interleukins (1A, 3, 4, 10, and 18),

adiponectin, PPARs (a and c), sirtuin 1, TNFa, STAT3, INSR,

SERBP1 or PAI-1, ICAM1, among the others, were also shared

between the two sets (Figure 3).

Cross-comparing enrichment analyses showed that NAFLD is

associated with a myriad of complex pathways that include among

the others, insulin signaling, caspases and mitochondrial-related

apoptosis, stress induction of heat shock proteins, cellular

proliferation, hypoxia induction, and protein associated with

epigenetic regulation (Figure 3).

Conversely, cross-comparing enrichment analyses showed that

AFLD is associated with a more reduced network of disease

pathways, mostly focused on modulation of the immune response,

toll-like receptor signaling, and cytokines (Figure 3).

Interestingly, cardiovascular-related pathways were more en-

riched in NAFLD in comparison with AFLD (platelet plug

formation and endothelins), as shown in Figure 3. Regarding

lipid metabolism, AFLD pathways were associated with glycer-

olipids and ceramid signaling, and NAFLD pathways were

associated with lipoprotein metabolism and chylomicron-mediated

lipoprotein transport (Figure 3). Details about clusters of

function-disease-related genes and proteins are given in Figure
S1, and a functional modular map of the multiple gene/ protein

analysis encompassing the candidate list of NAFLD and AFLD

based on cellular component is shown in Figure S2. Of note,

although there are specific genes associated with either AFLD or

NAFLD, there is not a specific pathway for both of the diseases.

Is alcohol associated with impaired insulin signaling and
IR?

Our secondary aim was to explore whether impaired insulin

signaling is a molecular process associated with both the

conditions, regardless of the insult (either metabolic or alcohol),

or if IR is restricted to NAFLD and thereby to MetS.

Comparative co-analysis of both the data sets showed that

insulin signaling is impaired in both the liver disorders, but the

biological processes and putative regulatory mechanisms associat-

ed with NAFLD seem to encompass a large interconnected

network of genes and proteins, including, but not restricted to,

FOXO1, SIRT1, dipeptidylpeptidase IV (DPP4, a cell surface

glycoprotein receptor involved in the co-stimulatory signal

essential for T-cell receptor-mediated T-cell activation and also

an enzyme involved in neuropeptides and incretins degradation,

i.e. NPY and GLP1), PPARc, PER, and HDAC3 (Figure 4). By

Figure 2. Graphic illustration of genes/proteins co-occurrence and their relatedness to biological concepts with the query
‘‘nonalcoholic OR non-alcoholic AND fatty liver OR steatosis’’. Prediction was performed by PESCADOR (available at http://cbdm.mdc-berlin.
de/tools/pescador/), a web-based tool to assist large-scale integration text-mining of biointeractions extracted from MEDLINE abstracts. The graph
was constructed using the free available program MEDUSA, which is a Java application for visualizing and manipulating graphs of interaction (www.
bork.embl.de/medusa) [21,33].
doi:10.1371/journal.pone.0058895.g002

NAFLD and ALFD Common Pathways
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the contrary, insulin signaling in AFLD is highly related to and

specifically focused on TNFa, PPARc, and TGBFb (Figure 4).

Gene prioritizations shows that fatty liver either associated with

metabolic factors or alcohol is strongly associated with cancer

pathways and ubiquitously malignant cellular transformation

We used the above-explained approach of gene prioritization,

and based on the results of ENDEAVOUR output, we selected the

top-ranked candidate genes prioritized for NAFLD (Table S3)

and AFLD (Table S4), based on the top-ranked significant P-

values that reflect the significance of enrichment. Then, we

performed a new comparative co-analysis of both the data sets

generated by ENDEAVOUR, and we explored novel putative

disease pathways. Surprisingly, in addition to genes associated with

IR or type 2 diabetes, i.e. HNF4A [20], the integrative functional

analysis of the shared pathways between NAFLD and AFLD

showed a significant enrichment of biological processes associated

with cancer and neoplastic transformation of other nonhepatic

tissues, such as colorectal, prostate, pancreas, bladder, renal,

endometrial, and thyroid cancer (Figure S3). Moreover, growth

factors associated signaling pathways involved in cell proliferation,

cell migration, survival, and chemotaxis, such as IGF, PDGF or

their receptors, and growth factors active in angiogenesis and

endothelial cell growth, such as VEGF, were also highly enriched

(Figure S3).

Diseases-related microRNAs and regulation of gene
transcription in AFLD and NAFLD

Integrative functional analysis showed novel microRNAs

(miRNAs) that might modulate AFLD, such as miR-9, or NALFD,

such as miR-146a, miR-18a, and miR-22 (Figure 5). Remark-

ably, miR-7a and miR-199a-3p were found to be placed in the

shared area of AFLD and NAFLD, and were predicted as related

to apoptosis and inflammation-related network integrated by IL6,

BCL2, caspase 3, NF-k-b, CD40L, MAPKs, and PTEN

(Figure 5). Again, it was noted that there is no specific miRNA

associated with a gene involved in any particular disease.

Comparative co-analysis of both the data sets generated by

ENDEAVOUR platform showed an even more complex predic-

tion of miRNA (Figure S4). Interestingly, based on these different

targets, some miRNAs, such as miR-7a and miR-146a, were once

again predicted.

Discussion

NAFLD and AFLD are both leading causes of non-viral chronic

liver diseases, and the prevalence of these two clinical disorders is

constantly growing worldwide.

There is agreement about the fact that the clinical distinction

between NAFLD and AFLD is often challenging, and misclassi-

fication owing to difficulties in collecting reliable information

Figure 3. Graphic illustration of a functional modular map of the multiple gene/ protein analysis encompassing the candidate list of
NAFLD and AFLD based on disease pathways. Results of functional association analysis performed by the bioinformatics resource ToppCluster
(http://toppcluster.cchmc.org) based on pathways networks showing enriched terms from Gene Ontology, Mouse Phenotype, Co-expression,
microRNAs, and transcription factors for the NAFLD- and AFLD-specific gene/protein lists. Right side of the figure depicts the highly significant
enrichments for sets of genes and proteins of the NAFLD term list; left side of the figure depicts the highly significant enrichments for sets of genes
and proteins of the AFLD term list; and the analysis of genes and intersection of pathways between NAFLD and AFLD is shown in the center part of
the figure. Terms in red represent genes/proteins, and terms in green represent disease pathways in GO terms. The graph was constructed using the
free available program Cytoscape, a software project for integrating biomolecular interaction networks with high-throughput expression data and
other molecular states into a unified conceptual framework [22].
doi:10.1371/journal.pone.0058895.g003
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about the amount of alcohol consumption from patients is a source

of bias. Likewise, the pathogenic distinction between both the

disorders is not only fuzzy, but physicians agree that similar major

molecular mechanisms are shared between NAFLD and AFLD,

including inflammatory pathways and fibrogenesis [12,25].

Nevertheless, the evidence is still questionable because the disease

Figure 4. Comparative co-analysis of NAFLD and AFLD data sets focused on insulin signaling. Results of functional association analysis
performed by the bioinformatics resource PESCADOR (available at http://cbdm.mdc-berlin.de/tools/pescador/), a web-based tool to assist large-scale
integration text-mining of biointeractions extracted from MEDLINE abstracts with a focus in the selected terms. The graph was constructed using the
free available program, MEDUSA, which is a Java application for visualizing and manipulating graphs of interaction (www.bork.embl.de/medusa)
[21,33]. The thickness of the green lines signifies greater significance.
doi:10.1371/journal.pone.0058895.g004

Figure 5. Functional enrichment analysis of putative miRNAs associated with NAFLD and AFLD. The network is shown as a cytoscape
graph [22] generated from ToppCluster (available at toppcluster.cchmc.org/) network analysis.
doi:10.1371/journal.pone.0058895.g005
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pathways and molecular process are often explored individually,

instead of working in concert, and these liver disorders are seldom

treated as what they truly are: complex diseases. In this study, we

proposed an exploration about the disease pathways associated

with NAFLD and AFLD based on systems biology under the

hypothesis that a more integrative analysis of the pathogenesis of

these diseases may have a strong impact not only on their clinical

and molecular knowledge, but also on the interventional programs

and putative emerging therapies. In that sense, our analysis

showed that vitamins (vitamin A, C, D, and E), natural substances

(resveratrol, genistein, hormones), or drugs (metformin, statins,

indomethacin) may have beneficial effects on fatty liver, indepen-

dently of the causative noxa (Figure S5).

What this study tells us about the pathogenesis of
NAFLD and AFLD?

Our primary result basically showed that the leading biological

process and disease pathways associated with NAFLD did not

significantly differ from those predicted for AFLD. Nevertheless,

systems biology revealed the weight of each molecular process

behind each of the two diseases, and dissected distinctive

molecular NAFLD and AFLD signatures.

For instance, apoptosis seems to be the common cell death

process in NAFLD and AFLD, but AFLD is mainly associated

with the so-called extrinsic pathway related to tumor necrosis

family, which would be modulated by proapoptotic BCl2 family

members. In contrast, NAFLD seems to be primary associated

with FAS-induced apoptosis, which is highly interconnected to an

intricate network of metabolic stressors, activation of caspases, and

a collection of proteins that modulate apoptosis, necrosis, and

inflammation. It is worth mentioning that changes in mitochon-

drial membrane permeabilization and endoplasmic reticulum

stress are central features in both AFLD and NAFLD, as shown in

the prediction of the cellular compartment (Figure S2).

Moreover, integration of the biological process and disease

pathways associated with NAFLD showed that the fatty liver of the

MetS reprograms the body lipid and glucose metabolism, and

these events might be mediated, among the others, by hypoxia and

epigenetic changes. The latter observation is in agreement with

previous novel findings of our group, which demonstrated that

DNA methylation of gene promoters in the liver tissue is critically

involved in the modulation of peripheral IR [23], and epigenetic

changes in mitochondrial DNA mediates NAFLD disease

progression [24]. Furthermore, the integrative analysis focused

on interactions among terms significantly predicted histone

acetyltransferase p300 (EP300), which is a co-activator of

hypoxia-inducible factor 1a and is an acetyltransferase for histone

and nonhistone targets, all of which are highly involved in the

endogenous circadian clock pathway. It is noteworthy that CLOCK

variants were reported to be associated with NAFLD [26].

NAFLD was also found to be associated with keratinocyte

differentiation pathway, which suggests the involvement of MAPK

pathway in the disease biology; this finding is plausible with the

molecular cascades involved in apoptosis, inflammation, cell

growth, and differentiation observed in this disease.

Conversely, integration of the biological process and disease

pathways associated with AFLD showed that the insult triggers a

strong local immune response that is associated with the release of

a plethora of cytokines. Thereby, all further metabolic changes in

the liver tissue are downstream events of the local and powerful

immune response.

Some comments about the limitations of this study may be

added. For example, despite the fact that NAFLD and AFLD are

processes that have been studied for decades, some unpublished

aspects yet to be uncovered were not included in data mining.

Hence, the results of this study only integrate the published

knowledge about both the diseases. Nevertheless, although the

functional exploration and enrichment analysis have largely

expanded the pre-existing knowledge, the term list of each disease

has the limitations of any method that relies on literature analysis.

What this study tells us about the impact of NAFLD and
AFLD on the risk of systemic diseases?

Functional enrichment analysis showed interesting areas of

putative future research, such as the role of the predicted

miRNAs–let-7a, miR-146a, and miR-199a–in the pathogenesis

of both the diseases. Remarkably, miR-199a has been recently

found to be involved in myocardial infarction and other cardiac

diseases [27], and miRNA-let-7a has been noted to be involved in

epigenetics-miRNA regulatory pathways [28]. These findings

remain unexplored and deserve follow-up and exploration in

human studies, particularly because we do believe that miRNAs

may constitute a novel endocrine system [24].

Although there are numerous studies showing molecular

mechanisms associated with NAFLD and AFLD, they have not

explained how molecular mediators interact with each other and

how these interactions perturb the systemic homeostasis. In this

study, we showed that both NAFLD and AFLD are strongly

associated with cancer-related pathways that do not seem to be

restricted to the liver. Surprisingly, comparative co-analysis of

NAFLD- and AFLD- related biological terms showed a cancer-

related functional map that suggests that the fatty transformation

of liver tissue, regardless of the insult, is an emerging mechanism of

oncogenic activation. These findings are supported by previous

clinical observations [29–31]. Moreover, our data may explain

previous reports about NAFLD patients predisposed to hepato-

cellular carcinoma in the absence of cirrhosis [32]. It would be

interesting to answer this question in clinical studies that explore

for instance, patterns of gene expression in hepatocellular

carcinoma and surrounding nonneoplastic liver tissue in noncir-

rhotic patients with NAFLD and AFLD.

Finally, two remarkable findings were emphasized by this study.

First, systems biology shed light on the participation of NAFLD,

but not AFLD, in cardiovascular disease, because the integrative

analysis highlighted the role of NAFLD in thrombotic events and

modulation of vasculature behavior by the release of endothelins.

Second, NAFLD and AFLD were found to be associated with

impairment of insulin signaling and IR; while NAFLD-linked IR

was noted to be a multifaceted process that involves several

molecular processes working in concert; on the other hand,

AFLD-linked IR was observed to be rather the consequence of

TNFa-related signaling and subsequent local modulation of the

insulin receptor-activated pathways.

In conclusion, over the past 40 years many advances have been

made in our understanding of fatty liver and the mechanisms by

which it develops. New evidence from the clinical classification of

NAFLD and AFLD suggests that there are shared mechanisms

between them. Hence, taken together, these data suggest that

similar disease mechanisms lead to the clinical outcome of NAFLD

and AFLD, but specific ones depict a particular signature that

correlates to the impact of each phenotype in the systemic context.

The molecular understanding of the shared and specific mecha-

nisms will improve our knowledge of how fatty liver and disease

progression occur, eventually leading to the development of

improved noninvasive diagnostic tools and novel therapeutic

agents.

For instance, the analysis of putative drugs associated with the

explored disease pathways might suggest that some natural
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substances, like resveratrol, or some drugs like metformin, losartan

or statins, might be equally beneficial to improve fatty liver,

independently of the causative noxa. On the other hand, in order

to envision non invasive diagnostic tools for monitoring the disease

severity, one might speculate that pathways associated with TNFa-

mediated immune response might be useful for AFLD and

pathways associated with FAS-induced apoptosis and caspases

activation might be effective for NAFLD.

Likewise, this knowledge would help to relax our restrictions on

NAFLD/AFLD disease classification based specifically on the

amount of alcohol consumption when limits are not toxic

quantities, but barely exceed the NAFLD classification limits

(,60–120 g/day of alcohol).

Implications and future directions
An integrative knowledge about the disease pathogenesis of

NAFLD and ALFD will pave the way towards formulation of new

hypothesis. In addition, if underlying mechanisms are common,

the same future therapeutic approaches may improve both

conditions. Nevertheless, more experimental data and clinical

studies are needed in order to accomplish this observation.

Supporting Information

Figure S1 Graphic illustration of a functional modular map
of the multiple gene/ protein analysis encompassing the
candidate list of NAFLD and AFLD based on functional
genes. Results of functional association analysis performed by the

bioinformatics resource ToppCluster (http://toppcluster.cchmc.org).

Right side of the figure depicts the highly significant enrichments

for sets of genes (red hexagon) of the NAFLD term list; left side of

the figure depicts the highly significant enrichments for sets of

genes of the AFLD term list; and the analysis of the intersection of

genes and gene functions (green squares) between NAFLD and

AFLD is shown in the center of the figure. The network is shown

as a cytoscape graph.

(TIF)

Figure S2 Graphic illustration of a functional modular map
of the multiple gene/ protein analysis encompassing the
candidate list of NAFLD and AFLD based on cellular
component. Results of functional association analysis performed

by the bioinformatics resource ToppCluster (http://toppcluster.

cchmc.org). Right side of the figure depicts the highly significant

enrichments for cellular components (green squares) of the

NAFLD-term list; left side of the figure depicts the highly

significant enrichments for cellular components of the AFLD term

list; and the genes (red hexagons) and analysis of the intersection

between NAFLD and AFLD is shown in the center of the figure.

The network is shown as a cytoscape graph.

(TIF)

Figure S3 Computational prioritization of candidate
genes underlying NAFLD and AFLD and comparative co-
analysis of genes pathways (green squares). Prioritization

was done by the bioinformatic tool ENDEAVOUR, and the figure

shows the results of the cluster analysis of the first top 200

prioritized candidate genes from the whole human genome

(23.712 genes), with a significant association with the training set

of NAFLD and AFLD. Functional association analysis was

performed by the bioinformatics resource ToppCluster (http://

toppcluster.cchmc.org). Right side of the figure depicts the highly

significant enrichments for sets of genes (red hexagons) of the

NAFLD term list; left side of the figure depicts the highly

significant enrichments for sets of genes of the AFLD term list; and

the analysis of the intersection of functional genes between

NAFLD and AFLD is shown in the center of the figure. The

network is shown as a cytoscape graph.

(TIF)

Figure S4 Computational prioritization of candidate
genes underlying NAFLD and AFLD and comparative co-
analysis of predicted miRNAs (violet squares). Prioritiza-

tion was done by the bioinformatic tool ENDEAVOUR, and the

figure shows the results of the cluster analysis of the first top 200

prioritized candidate genes (red squares) from the whole human

genome (23.712 genes), with a significant association with the

training set of NAFLD and AFLD. Functional association analysis

was performed by the bioinformatics resource ToppCluster (http://

toppcluster.cchmc.org). The network is shown as a cytoscape

graph.

(TIF)

Figure S5 Computational prioritization of candidate
genes underlying NAFLD and AFLD and comparative co-
analysis of predicted drugs (orange squares). Prioritiza-

tion was done by the bioinformatic tool ENDEAVOUR, and the

figure shows the results of the cluster analysis of the first top 200

prioritized candidate genes (red squares) from the whole human

genome (23.712 genes), with a significant association with the

training set of NAFLD and AFLD. Functional association analysis

was performed by the bioinformatics resource ToppCluster (http://

toppcluster.cchmc.org). The network is shown as a cytoscape

graph.

(TIF)

Table S1 Genes terms identified in 823 published
abstracts by the PESCADOR platform (Platform for
Exploration of Significant Concepts Associated to co-
Occurrence Relationships) with the query ‘‘alcoholic
AND (steatosis OR fatty liver) NOT (non or nonalcohol-
ic)’’ for AFLD.

(DOC)

Table S2 Genes terms identified in 868 published
abstracts by the PESCADOR platform (Platform for
Exploration of Significant Concepts Associated to co-
Occurrence Relationships) with the query ‘‘nonalcoholic
OR non-alcoholic) AND (fatty liver OR steatosis)’’ for
NAFLD.

(DOC)

Table S3 Results of gene prioritization: the top ranked
candidate genes prioritized for NAFLD.

(DOC)

Table S4 Results of gene prioritization: the top ranked
candidate genes prioritized for AFLD.

(DOC)
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