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Radiative heat exchange at the nanoscale presents a challenge for several areas due to its scope and nature. Here, we
provide a thermokinetic description of microscale radiative energy transfer including phonon-photon coupling manifested
through a non-Debye relaxation behavior. We show that a lognormal-like distribution of modes of relaxation accounts for
this non-Debye relaxation behavior leading to the thermal conductance. We also discuss the validity of the fluctuation-
dissipation theorem. The general expression for the thermal conductance we obtain fits existing experimental results with
remarkable accuracy. Accordingly, our approach offers an overall explanation of radiative energy transfer through
micrometric gaps regardless of geometrical configurations and distances.
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Introduction

There is a general consensus that the search for clean sources of
energy with no climatic and environmental impact constitutes a
major strategic objective at present. In this sense, nanoscale
thermal radiation conversion offers a source for intensive clean
energy generation. Thermal radiation has always been an active
field of study. Throughout the 19" century, great scientists
(Boltzmann, Stefan, Rayleigh, etc.) dedicated a considerable effort
to this problem which was completely solved at the turn of the 20™
century due to Planck’s contribution to the founding of quantum
mechanics. After this, it seemed to be a well-established fact that
the maximum power extracted from a hot body depended on the
temperature as T4,

However, recently, thanks to modern technological advances, it
has been shown that energy exchange through thermal radiation
at nanometric distances breaks by several orders of magnitude the
limits posed by Stefan-Boltzmann law for black body radiation.
Moreover, near-field thermal radiation is approximately mono-
chromatic and reveals itself coherent in space and time, which may
lead to stationary interference phenomena in a micro-cavity.
Therefore, this monochromaticity and coherence along with the
overcoming of Stefan-Boltzmann limits, all of these distinguishing
features together confer near-field radiation a great potential for
future applications in nanotechnology and, as we have said at the
beginning, energy conversion as well. Several reviews on this issue
have been written recently, see Ref. [1-3] by way of example.

An ever-increasing number of investigators has marked the
recent history of the research on near-field radiation. Polder and
van Hove [4] first studied heat transfer between two objects at
nanometric scales maintained at different temperatures by
following a stochastic or fluctuational electrodynamics formalism
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established by Rytov et al. [5]. Recently, it has been emphasized
[6] that surfaces modes as included in the solution of Maxwell’s
equations in Ref [4] can greatly enhance the heat flow.
Experiments showing that the heat flow at the nanoscale is indeed
greater than the blackbody radiation limit among materials
supporting surface modes were reported in Ref [7,8] and between
two gold surfaces in Ref [9]. Likewise, Pendry [10] gave a simple
derivation of the expression found by Polder and van Hove and
some interpretation in terms of heat transfer channels in addition
to a discussion of the maximum heat flux. The problem was
reformulated by using a Landauer-like approach by Biehs et al.
[11]. Finally, Sasihithlu and Narayanaswamy [12] performed a
discussion of the proximity approximation. All these approaches
have something in common: the linear response regime and,
consequently, the fluctuation-dissipation theorem (FD'T), whose
validity is not guaranteed at this level. Thus, an approach based on
the contributions of fluctuating dipole effects seems to be the heart
of a considerably simplified treatment of energy transfer at the
nanoscale [7,8,13]. These approaches include a wide range of
phenomena in which the energy between molecules is dominated
by dipole-dipole interactions, also known as the Forster energy
transfer [14].

Nonetheless, as two nanostructures thermalized at different
temperatures come closer to each other, the distribution of charges
and currents becomes asymmetric and therefore, defies description
in terms of dipolar interactions. Hence, it becomes clear that one
must bear in mind higher order effects beyond the dipole [14] and
also include other contributions to thermal conductance quite
common in disordered amorphous materials, leading to a
generalization of the FDT mentioned above [16].
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In this article, we will go deeper into these aspects by showing
how phonon-photon coupling effects account for microscale
radiative energy transfer by considering non-Debye relaxation
due to the excess of modes in the low and high frequencies in the
bulk material [15-17]. In the current literature on disordered
systems, the non-Debye refers to an excess of modes of vibration
over the Debye level observed in inelastic light (Raman) and
neutron scattering. From here, we obtain a general expression for
the heat transfer coefficient including both Debye and non-Debye
contributions, providing an overall explanation of the energy
transfer through micrometric gaps. The findings of our theory fit
existing experimental results with a high degree of accuracy.

Methods

Our theoretical framework has been described in previous
publications [16,17] and is briefly summarized here. We consider
a gas of quanta distributed in phase space according to the
probability density p(I,f), where T'=(p,x), p=|p|, and x=|x|,
with p and X being the momentum and position of a quanta,
respectively. Here, we must pay attention to the fact that p(I',f)
possesses dimensions of h73, h being Planck’s constant. The
thermodynamic description that we propose entails the formula-
tion of the second law of thermodynamics, which can be carried
out by means of the Gibbs entropy postulate [18],

p(T,0)
Peg(D)

S(t)=—kg J p(T,)In dpdx+ Se,. (1)

This equation gives us the nonequilibrium entropy of the gas of
quanta plus the bath, with S, being the equilibrium entropy and
Peq the equilibrium probability density.

In general, entropy is produced due to irreversible processes, in
such a manner that irreversible processes in nonequilibrium
systems are described by means of currents, thermodynamic forces
(affinities), and the entropy production rate, which is always
positive. It is precisely this positive character of the entropy
production that enables us to derive relaxation equations. Since
the probability density is conserved the existence of a density
gradient  dp(T',¢)/0T' = (0p/0x,0p/dp) yields a  current
J(I',t)=(Jy,J,) which unleashes a relaxation process
0p/0t=—0J/0T. In addition, this current satisfies the relation
J(I',t)= —D(p)-dp(T’,t)/0T, derived from the entropy produc-
tion, which can be obtained from Eq. (1) [16,18]. Here, D(p) is a
material-dependent quantity, the matrix of diffusion coefficients,
satisfying Onsager’s symmetry principle. In general, due to the
tensorial character of the diffusion matrix, both currents J, and J,,
are coupled

JD( = 701/;27;7 with a,ﬂ:x’p’ (2)

where D, are the diffusion matrix components.

The main contribution of this article is to apply this formalism
to the description of the radiative heat transfer between a
nanosphere and a plate at different temperatures, 77 (hot) and
T (cold), separated by a distance d (see Fig. 1). We assume that
heat transfer results from two different mechanisms. (I) On one
hand, we consider a conventional radiative heat exchange
involving the dynamics of quasiparticles as the result of two
simultaneous processes: elastic emission and absorption of hot
photons from the medium at 77 and elastic emission and
absorption of cold photons from the medium at 73; these
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processes also involve the presence of surface modes [6,10]. (II)
The second mechanism behind heat transfer has to do with the
excitation of coupled resonant modes from the collection of
acoustic states related to defective soft structures in a disordered
regime [19-21]. This process encompasses inelastic scattering of
the impinging radiation, which is linked to nonequilibrium
contributions. In both scenarios, there is no diffusion in
configuration space since quanta are massless particles [16], and
as a consequence J, =0, which brings about J(I',#)—J,(T?).
Hence, from Eq. (2) one obtains the appropriate diffusion current
In momentum space

_ (DppDxx 5P(FJ)=_L5P(F,Z)
J,,(l",z)—< ) D,,X) o = W) A

3)

where 7(p) is the relaxation time, which depends on the diffusion
martrix components.

Near-field analysis

In the near-field regime, confinement of the electromagnetic
waves in a micrometric gap separating neighboring nanostructures
introduces peculiar effects in the spectrum of the thermal
radiation. Here is where the collective modes (phonons) excited
in the material by the impinging radiation come into play. To
discern whether confinement effects are important or absent we
shall assume a cut-off wavelength, the thermal wavelength of a
photon Ar=hc/kgT, which is proportional to the Wien’s
displacement law through a proportionality constant, i.e.
Ar=pB/T, where here [~2.82143937212. Actually, when
d>Jp we have a blackbody spectrum of radiation. One may
wonder what happens when d<Ar. Since according to Heisen-
berg’s principle AxAp = h, assuming that the maximum value of
Ax is d, one obtains Ap = /1/d, and thus the minimum value of Ap
is h/d, leading to AE = hec/d, with 0 <e <1. Here, ¢ is, precisely,
the inverse of the refractive index. Hence, not all frequencies are
possible and the frequency of resonance wg=2nec/d appears.

In these circumstances, integrating by parts the resultant
continuity equation gives us

[ (— ";—f)dp’ —J, @)

with J,~p/th®, where we have assumed that J,(I,f)=0 at
p= —o0. Performing a second integration of Eq. (3) through from
1 to 2, we find the net current

h
J(P,f)=—r*—(t)(ﬂ2—/01)a (%)

where p;(p,f)= p(p,xzxj,t) is related to the population of
quasiparticles at X; and p1+pr=1.
Jp.0)=(1/7") [} w(p)J,dx, with T(1)= [ pt(p)dpdx correspond-
ing to a hierarchy of relaxation times ubiquitous in complex
systems.

In the stationary state, once the system has thermalized at
temperatures 77 and T3, pj(p,t)—>2N(w,Tj)/h3; the factor 2
comes from the polarization of a photon and N(w,T) being the
averaged number of quasiparticles in a elementary cell of volume

Moreover,

I of the phase-space given by Planck’s distribution [22],
N(w,T)=1/lexp(hw/kT)—1]. Besides, t*(f)>1*(w); therefore
leading to a stationary value, i.e. J(p,t)—Jy(w). Thus, the heat
flow Q can be obtained from the sum of all the contributions as
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Figure 1. Schematic diagram of the radiation exchanged via conventional radiative transfer. Elastic collision of photons with atoms or
molecules of materials and phonon-photon coupling contributions between a sphere and a plate maintained at different temperatures, 7 and 73,

separated by a distance d.
doi:10.1371/journal.pone.0058770.9001

0= |ettorip=3iec|  suopet)do. (6

@R

where p=(hw/ec)Q,, with &, being the unit vector in the
direction of p, and the distribution of frequencies is given by

2

glw)=

B n2(ec)’’

™)

At this point, it is worthwhile to make a short digression about
the physical meaning of the time scale T*(®). It has been known
for a long time [23] that for most condensed systems in time-
dependent fields, the orientation polarization behavior can, as a
good approximation, be characterized by a relaxation time
distribution (t*(#)); this behavior is generally meant as dielectric
relaxation. In harmonic fields, this implies that the complex
dielectric permittivity in the frequency range corresponding to the
characteristic times for the molecular reorientation can be written
as

e(w)=eoc—|—(es—eoo)J~OC {(v) dr. 8)

0 1+iot
where ¢; is the static dielectric constant and €, is the permittivity
at the infinite frequency. Here, the relaxation time distribution
{(7) satisfies the normalization condition, [;° {(t)dt=1 and Eq.
(8) constitutes a generalization of the Debye treatment based on
Clausius-Mossotti equation [24]

1
1+iwt

©)

e(w)=¢€p+(65—€x)

This Debye’s equation, Eq. (9), follows after Fourier-transforming
the relaxation function ¢(#) =exp(—¢/1) which coincides with the
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normalized dielectric function (¢;—¢(#))/(¢s—¢s). Note that if
we assume a time-independent time scale T in Eq. (5), after
integration we shall obtain the Debye relaxation function in terms
of exp(—t/7). Hence, we can understand t*(w) as defined
through the relation

Jw HUNE ! (10)

o l+iomt E1+icu‘z:*(co)

which shows that the Callen-Welton FDT' [25] is not valid at this
level. In fact, unlike here, the FDT is related to decaying
equilibrium fluctuations characterized, precisely, by a single
relaxation time.

Now, let’s return to the main topic after that brief digression.
Note that according to Eq. (6), in the limit d— o0,

0= iz | Iwig(w)do, (1)
e,

giving us the blackbody radiation limit provided ™(w) oo,
Qoc [(kBT1)4— (kBTz)q. On the other hand, in the limit d—0,
0—0 which in contrast to the descriptions based on evanescent
surface waves avoids divergences in the heat flux in a self-
consistent way. Nonetheless, for finite d we can rephrase the

expression of the heat current given by Eq. (6) introducing a new
varible o=1/s

—1
1 ) ds
0= —Wec Julo(s)]g[o(s)] =
32 JO SZ (12)
h
= 1ol e oor ).

where the mean value theorem has been used to approximate the
integral, with 0 <y < 1. Hence, since a)(;{w;l) =y log, Eq. (12)
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reduces to

3
hecog

Tﬁjs,(xfle)g(;fle). (13)

0=

In terms of Planck’s distribution, Eq. (13) can be rewritten

_ hecor g(xile)
XZ T*(X—le)

0 [N(¢ 'or.T) =N 'or.T2)].  (14)

while 7°(®w) must be determined in a more general way, by
scrutinizing the interaction processes between light and bulk
material.

For first order in the temperature difference AT,

0

_kBATscg(x’le) fiy 'or/2ksTy 2 (15)
~ z (¢ 'op) [sinh(hy'or/2ksTy)]

with AT=T;—T,, and To=(T1+ T2)/2. Thus, it follows that
the heat transfer coefficient, the quantity usually measured in
experiments and defined by Q/AT), is given through

fl}(ile/ZkBT()

2
H(d,Ty)= sinh(hxfle/szTo)} - (19

kB Zile
7'525262%‘[*(%71(1)[3)

When the mechanism of heat exchange is through -elastic
collisions, which is similar to Rayleigh scattering, it is known that
the intensity of radiation is proportional to w* [26]. Therefore,

r*((u)_lz‘c(}_l/4, (17)

where the time scale 7, is a material-dependent parameter. On the
other hand, regarding the wnelastic contribution to the near-field
heat exchange, this is the analogue to the Raman scattering of
light. In this case, the distribution of modes presents anomalies
which result from states located at a lower energy region [21]. The
Raman spectra is fitted using a lognormal function first proposed
by Denisov and Rylev [19]. This lognormal distribution is a
statistical model, which can describe collective motions causing
extremely slow structural relaxation, thereby fitting the non-Debye
anomalies [27]. Therefore, this accounts for the high nonlinear
behavior of the thermal conductance between both materials. For
the proposed case, we assume that the density of vibrational states
1s achieved through the use of a lognormal distribution, which
corresponds to

o ol 1 w lnz(w /o)

™(w) =1, oo exp{ 792 } (18)
Here, wg (characteristic frequency) and o (standard deviation) are
two fitting parameters characterizing the lognormal distribution.
The lognormal in Eq. (18) stems from the existence of a hierarchy
of relaxation mechanisms in the material, related to the presence
of collective effects. This distribution, results from the fact that the
energy of the system consists of a large number of contributions
and the application of the central limit theorem of probability
theory (see Appendix Sl). In view of the properties of the
lognormal distribution, it must be noticed that
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ro ! d(In(w/wy)) = ! (19)

_ o 0T*(w) T Ar,mp°

being a kind of closure relation for the relaxation times.

Hence, the excitation of a mode constitutes a photoinduced
cooperative phenomenon. It is plausible to assume that the
cumulative effect of incident photons ends perturbing the material,
thus triggering collective oscillations. In addition, the lognormal
accounts for an excess of ways of adsorbing energy by the system
with respect to the ways obtained when merely the Debye
squared-frequency law describes the relaxation. Therefore, this
provides a reasonable description of the non-Debye law [20,21],
which as in Raman scattering also becomes manifests in radiation
problems.

Accordingly, the heat transfer coeflicient, Eq. (16), results from
the addition of the elastic and wnelastic contributions mentioned
above

H(d,To) =
kg Q2n)?ve In(2mve/wod)]?
o [”mod p{{ Vi ] (20)

hve/2kpTod  \*
sinh(hve/2kgTod)) ’

where T; =31, and v=ey~!. In Eq. (20), the first term inside the
square brackets corresponds to the usual contributions found up to
now in the current literature [6], taking into account surface
phonon-polaritons owing to the presence of evanescent waves
close to the interface. As we have mentioned above, the second
term takes into account cooperative phenomena, becoming
manifest through the existence of collective modes of vibration
in the system, which appear in the density of states. Consequently,
a more general formulation for the radiative heat transfer
problems must come from the superposition of Debye and non-
Debye relaxation mechanisms, combining in this way the
contributions from the material surfaces as well as the bulk.

Results and Discussion

The thermal conductance is obtained by integrating the heat
transfer coefficient over the surface of a sphere of radius R divided
by its arca (4=4nR?), i.c. G=(1/A) jOR H|d(r), To)2rrdr. Since
the distance d between both surfaces depends on geometrical
characteristics, the local distance between the sphere and the plane
surface must be measured through the local radius r, assuming the
effective distance as d(r)=d+b+R—VR2—r2, with b being a
surface roughness parameter [7].

We have calculated numerically the surface average by
adjusting the parameters mentioned above to the experimental
results obtained in the Ref [9], which takes into account only the
near-field contribution when decreasing the sphere-plate distance.
In Fig. 2, we show the near-field conductance fitting the values of
the integral of Eq. (20) to the data for glass-glass [8] and gold-gold
materials [9]. For both the material we have used
(1) '=2.1x10" Hz, wy=1.7x10""% Hz, and 6=6.0x 10'%.
For the glass-glass material we have obtained v=3.2x 1073 and
for gold-gold v=7.9x 107%. The near-field heat transfer de-
scribed using evanescent waves as solutions of classical electrody-
namics equations leads to heat flux divergences as the gap vanishes
[28]. However, in our approach this divergence does not occur,
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Figure 2. Sphere-plate near-field heat transfer coefficients between a gold (or glass) sphere and a gold (or glass) substrate versus
gap distances. The data are from Ref [9] for the 50 um diameter spheres. The dotted lines are comparisons with the theoretical predictions from the
proximity theorem. The inset shows a non-divergent regime as the gap vanishes.

doi:10.1371/journal.pone.0058770.g002

reaching a constant-conductance value as the distance between the
nanoparticles decreases (shown in the inset). In essence, this is due
to the fact that the time relaxation distribution herein described by
lognormal distribution incorporates two effects: (I) Phonon
branches in a real structure affecting the density of states in
different frequency regions, similar to actual behavior observed in
metals [29]; and (II) the vibrational modes in the bulk material
absorbing the energy excess. Hence, since our assumption of a
distribution of relaxation times accurately describes the dynamics
of radiative systems at the microscale, we conclude that the FDT
in the Callen-Welton formulation [25] is not applicable at the
nanoscale and must be modified. By going beyond the Debye
theory, a way for this generalization is offered here.

Conclusions

In summary, we have evaluated thermal conductance in the
near-field, giving a thermokinetic description of some experiments
involving heat radiation through a very narrow gap. Although
near-field radiative transfer is a highly complex phenomenon, we
have been able to provide a unified and highly accurate

References

1. Zhang Z (2007) Nano Microscale Heat Transfer. New York: McGraw-Hill.

2. Morozhenko V (2012) Nanoscale radiative heat transfer and its applications. In
infrared radiation. InTech.

3. S Basu YBC, Zhang ZM (2007) Microscale radiation in thermophotovoltaic
devices - a review. Int J Energy Res 31: 689-716.

4. Polder D, van Hove M (1971) Theory of radiative heat transfer between closely
spaced bodies. Phys Rev B 4: 3303-3314.

5. Rytov SM (1959) Theory of electric fluctuations and thermal radiation. Bedford:
AFCRC-TR. Air Force Cambridge Research Center, Air Research and
Development Command, U.S. Air Force.

PLOS ONE | www.plosone.org

explanation of heat exchange processes at the nanoscale. Our
theory covers all distances from the far-field up to contact. Since
the experiments examined may involve a great variety of
nanostructures, our theory possesses a wide scope of applications.
The general methodology presented here may also be used in the
study of other heat exchange processes such as those occurring in
phonon systems and in the analysis of thermal contributions to
Clasimir forces, even in charge conduction problems in nanosys-
tems.

Supporting Information

Appendix S1 Supporting Information.
(PDE)

Author Contributions

Conceived and designed the experiments: APM LCL JMR. Performed the
experiments: APM LCL JMR. Analyzed the data: APM LCL JMR.
Contributed reagents/materials/analysis tools: APM LCL JMR. Wrote the
paper: APM LCL JMR.

6. Mulet JP, Joulain K, Carminati R, Greffet JJ (2002) Enhanced radiative heat
transfer at nanometric distance. Microscale Thermophys Eng 6: 209-222.
7. Rousseau E, Siria A, Jourdan G, Volz S, Comin F, et al. (2009) Radiative heat
transfer at the nanoscale. Nature Photon 3: 514-517.
8. Shen S, Narayanaswamy A, Chen G (2009) Surface phonon polaritons mediated
energy transfer between nanoscale gaps. Nano Lett 9: 2909-2913.
9. Shen S, Mavrokefalos A, Sambegoro P, Chen G (2012) Nanoscale thermal
radiation between two gold surfaces. Appl Phys Lett 100: 233114.
10. Pendry JB (1999) Radiative exchange of heat between nanostructures. J Phys:
Condens Matter 11: 6621-6633.

March 2013 | Volume 8 | Issue 3 | e58770



. Biehs SA, Rousseau E, Greffet JJ (2010) Mesoscopic description of radiative heat

transfer at the nanoscale. Phys Rev Lett 105: 234301.
Sasihithlu K, Narayanaswamy A (2011) Proximity effects in radiative heat
transfer. Phys Rev B 83: 161406(R).

. Domingues G, Volz S, Joulain K, Greffet JJ (2005) Heat transfer between two

nanoparticles through near field interaction. Phys Rev Lett 94: 085901.

. Forster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann

Phys (Leipzig) 437: 55-75.

. Pérez-Madrid A, Rubi JM, Lapas LC (2008) Heat transfer between

nanoparticles: Thermal conductance for near-field interactions. Phys Rev B
77: 155417.

. Pérez-Madrid A, Lapas LC, Rubi JM (2009) Heat exchange between two

interacting nanoparticles beyond the fluctuation-dissipation regime. Phys Rev
Lett 103: 048301.

. Pérez-Madrid A, Rubi JM, Lapas LC (2010) Non-equilibrium stefan-boltzmann

law. J Non-Equilib Thermodyn 35: 279-288.

. de Groot SR, Mazur P (1984) Nonequilibrium thermodynamics. New York:

Dover.

. Denisov YV, Rylev AP (1990) Frequency dependence of the density of

vibrational states in glasses: Lognormal distribution. JETP Lett 52: 411-414.

PLOS ONE | www.plosone.org

20.
21.
22.
23.

24.
25.

26.

27.

28.

Radiative Transfer at the Nanoscale

Shintani H, Tanaka H (2008) Universal link between the boson peak and
transverse phonons in glass. Nature Mater 7: 870-877.
Chumakov A, Monaco G, Monaco A, Crichton WA, Bosak A, et al. (2011)
Equivalence of the boson peak in glasses to the transverse acoustic van hove
singularity in crystals. Phys Rev Lett 106: 225501.
Planck M (1991) The theory of heat radiation. New York: Dover.
Yager W (1936) The distribution of relaxation times in typical dielectrics. Physics
7: 434-450.
Debye P (1929) Polar molecules. New York: Chemical Catalog Co.

“allen H, Welton T (1951) Irreversibility and generalized noise. Phys Rev 83:
34-40.

Graebner JE, Golding B, Allen LC (1986) Phonon localization in glasses. Phys
Rev B 34: 5696-5701.
Zanatta M, Baldi G, Caponi S, Fontana A, Gilioli E, et al. (2010) Elastic
properties of permanently densified silica: A raman, brillouin light, and x-ray
scattering study. Phys Rev B 81: 212201.
Pan JL (2000) Radiative transfer over small distances from a heated metal. Opt
Lett 25: 369-371.

. Lynn JW, Smith HG, Nicklow RM (1973) Lattice dynamics of gold. Phys Rev B

8: 3493-3499.

March 2013 | Volume 8 | Issue 3 | e58770



