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Abstract

Radiative heat exchange at the nanoscale presents a challenge for several areas due to its scope and nature. Here, we
provide a thermokinetic description of microscale radiative energy transfer including phonon-photon coupling manifested
through a non-Debye relaxation behavior. We show that a lognormal-like distribution of modes of relaxation accounts for
this non-Debye relaxation behavior leading to the thermal conductance. We also discuss the validity of the fluctuation-
dissipation theorem. The general expression for the thermal conductance we obtain fits existing experimental results with
remarkable accuracy. Accordingly, our approach offers an overall explanation of radiative energy transfer through
micrometric gaps regardless of geometrical configurations and distances.
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Introduction

There is a general consensus that the search for clean sources of

energy with no climatic and environmental impact constitutes a

major strategic objective at present. In this sense, nanoscale

thermal radiation conversion offers a source for intensive clean

energy generation. Thermal radiation has always been an active

field of study. Throughout the 19th century, great scientists

(Boltzmann, Stefan, Rayleigh, etc.) dedicated a considerable effort

to this problem which was completely solved at the turn of the 20th

century due to Planck’s contribution to the founding of quantum

mechanics. After this, it seemed to be a well-established fact that

the maximum power extracted from a hot body depended on the

temperature as T4.

However, recently, thanks to modern technological advances, it

has been shown that energy exchange through thermal radiation

at nanometric distances breaks by several orders of magnitude the

limits posed by Stefan-Boltzmann law for black body radiation.

Moreover, near-field thermal radiation is approximately mono-

chromatic and reveals itself coherent in space and time, which may

lead to stationary interference phenomena in a micro-cavity.

Therefore, this monochromaticity and coherence along with the

overcoming of Stefan-Boltzmann limits, all of these distinguishing

features together confer near-field radiation a great potential for

future applications in nanotechnology and, as we have said at the

beginning, energy conversion as well. Several reviews on this issue

have been written recently, see Ref. [1–3] by way of example.

An ever-increasing number of investigators has marked the

recent history of the research on near-field radiation. Polder and

van Hove [4] first studied heat transfer between two objects at

nanometric scales maintained at different temperatures by

following a stochastic or fluctuational electrodynamics formalism

established by Rytov et al. [5]. Recently, it has been emphasized

[6] that surfaces modes as included in the solution of Maxwell’s

equations in Ref [4] can greatly enhance the heat flow.

Experiments showing that the heat flow at the nanoscale is indeed

greater than the blackbody radiation limit among materials

supporting surface modes were reported in Ref [7,8] and between

two gold surfaces in Ref [9]. Likewise, Pendry [10] gave a simple

derivation of the expression found by Polder and van Hove and

some interpretation in terms of heat transfer channels in addition

to a discussion of the maximum heat flux. The problem was

reformulated by using a Landauer-like approach by Biehs et al.

[11]. Finally, Sasihithlu and Narayanaswamy [12] performed a

discussion of the proximity approximation. All these approaches

have something in common: the linear response regime and,

consequently, the fluctuation-dissipation theorem (FDT), whose

validity is not guaranteed at this level. Thus, an approach based on

the contributions of fluctuating dipole effects seems to be the heart

of a considerably simplified treatment of energy transfer at the

nanoscale [7,8,13]. These approaches include a wide range of

phenomena in which the energy between molecules is dominated

by dipole-dipole interactions, also known as the Förster energy

transfer [14].

Nonetheless, as two nanostructures thermalized at different

temperatures come closer to each other, the distribution of charges

and currents becomes asymmetric and therefore, defies description

in terms of dipolar interactions. Hence, it becomes clear that one

must bear in mind higher order effects beyond the dipole [14] and

also include other contributions to thermal conductance quite

common in disordered amorphous materials, leading to a

generalization of the FDT mentioned above [16].
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In this article, we will go deeper into these aspects by showing

how phonon-photon coupling effects account for microscale

radiative energy transfer by considering non-Debye relaxation

due to the excess of modes in the low and high frequencies in the

bulk material [15–17]. In the current literature on disordered

systems, the non-Debye refers to an excess of modes of vibration

over the Debye level observed in inelastic light (Raman) and

neutron scattering. From here, we obtain a general expression for

the heat transfer coefficient including both Debye and non-Debye

contributions, providing an overall explanation of the energy

transfer through micrometric gaps. The findings of our theory fit

existing experimental results with a high degree of accuracy.

Methods

Our theoretical framework has been described in previous

publications [16,17] and is briefly summarized here. We consider

a gas of quanta distributed in phase space according to the

probability density r(C,t), where C~(p,x), p: pj j, and x: xj j,
with p and x being the momentum and position of a quanta,

respectively. Here, we must pay attention to the fact that r(C,t)

possesses dimensions of h{3, h being Planck’s constant. The

thermodynamic description that we propose entails the formula-

tion of the second law of thermodynamics, which can be carried

out by means of the Gibbs entropy postulate [18],

S(t)~{kB

ð
r(C,t)ln

r(C,t)

req(C)
dpdxzSeq: ð1Þ

This equation gives us the nonequilibrium entropy of the gas of

quanta plus the bath, with Seq being the equilibrium entropy and

req the equilibrium probability density.

In general, entropy is produced due to irreversible processes, in

such a manner that irreversible processes in nonequilibrium

systems are described by means of currents, thermodynamic forces

(affinities), and the entropy production rate, which is always

positive. It is precisely this positive character of the entropy

production that enables us to derive relaxation equations. Since

the probability density is conserved the existence of a density

gradient Lr(C,t)=LC~ Lr=Lx,Lr=Lpð Þ yields a current

J C,tð Þ~(Jx,Jp) which unleashes a relaxation process

Lr=Lt~{LJ=LC. In addition, this current satisfies the relation

J C,tð Þ~{D(r):Lr(C,t)=LC, derived from the entropy produc-

tion, which can be obtained from Eq. (1) [16,18]. Here, D(r) is a

material-dependent quantity, the matrix of diffusion coefficients,

satisfying Onsager’s symmetry principle. In general, due to the

tensorial character of the diffusion matrix, both currents Jx and Jp

are coupled

Ja~{Dab
Lr

Lb
; with a,b~x,p, ð2Þ

where Dab are the diffusion matrix components.

The main contribution of this article is to apply this formalism

to the description of the radiative heat transfer between a

nanosphere and a plate at different temperatures, T1 (hot) and

T2 (cold), separated by a distance d (see Fig. 1). We assume that

heat transfer results from two different mechanisms. (I) On one

hand, we consider a conventional radiative heat exchange

involving the dynamics of quasiparticles as the result of two

simultaneous processes: elastic emission and absorption of hot

photons from the medium at T1 and elastic emission and

absorption of cold photons from the medium at T2; these

processes also involve the presence of surface modes [6,10]. (II)

The second mechanism behind heat transfer has to do with the

excitation of coupled resonant modes from the collection of

acoustic states related to defective soft structures in a disordered

regime [19–21]. This process encompasses inelastic scattering of

the impinging radiation, which is linked to nonequilibrium

contributions. In both scenarios, there is no diffusion in

configuration space since quanta are massless particles [16], and

as a consequence Jx~0, which brings about J C,tð Þ?Jp C,tð Þ.
Hence, from Eq. (2) one obtains the appropriate diffusion current

in momentum space

Jp C,tð Þ~ DppDxx

Dxp

{Dpx

� �
Lr C,tð Þ

Lx
:{

B

t(r)

Lr(C,t)

Lx
, ð3Þ

where t(r) is the relaxation time, which depends on the diffusion

matrix components.

Near-field analysis
In the near-field regime, confinement of the electromagnetic

waves in a micrometric gap separating neighboring nanostructures

introduces peculiar effects in the spectrum of the thermal

radiation. Here is where the collective modes (phonons) excited

in the material by the impinging radiation come into play. To

discern whether confinement effects are important or absent we

shall assume a cut-off wavelength, the thermal wavelength of a

photon lT~hc=kBT , which is proportional to the Wien’s

displacement law through a proportionality constant, i.e.

lT~b=T , where here b&2:82143937212. Actually, when

d&lT we have a blackbody spectrum of radiation. One may

wonder what happens when d lT . Since according to Heisen-

berg’s principle DxDp ¼> h, assuming that the maximum value of

Dx is d , one obtains Dp ¼> h=d , and thus the minimum value of Dp

is h=d , leading to DE ¼> h"c=d, with 0v"v1. Here, " is, precisely,

the inverse of the refractive index. Hence, not all frequencies are

possible and the frequency of resonance vR~2p"c=d appears.

In these circumstances, integrating by parts the resultant

continuity equation gives us

ðp

{?
{

Lr

Lt

� �
dp
0
~Jp ð4Þ

with Jp*p=th3, where we have assumed that Jp C,tð Þ~0 at

p~{?. Performing a second integration of Eq. (3) through from

1 to 2, we find the net current

J(p,t)~{
B

t�(t)
r2{r1ð Þ, ð5Þ

where rj(p,t)~r p,x~xj ,t
� �

is related to the population of

quasiparticles at xj and r1zr2~1. Moreover,

J(p,t): 1=t�ð Þ
Ð 2

1
t(r)Jpdx, with t�(t)~

Ð
rt(r)dpdx correspond-

ing to a hierarchy of relaxation times ubiquitous in complex

systems.

In the stationary state, once the system has thermalized at

temperatures T1 and T2, rj(p,t)?2N(v,Tj)=h3; the factor 2
comes from the polarization of a photon and N(v,T) being the

averaged number of quasiparticles in a elementary cell of volume

h3 of the phase-space given by Planck’s distribution [22],

N(v,T)~1= exp Bv=kTð Þ{1½ �. Besides, t�(t)?t�(v); therefore

leading to a stationary value, i.e. J(p,t)?Jst(v). Thus, the heat

flow Q can be obtained from the sum of all the contributions as

Radiative Transfer at the Nanoscale
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Q~

ð
"cJst(v)dp~

1

2
h3"c

ð?
vR

Jst(v)g vð Þdv, ð6Þ

where p~ Bv="cð ÞVp, with Vp being the unit vector in the

direction of p, and the distribution of frequencies is given by

g(v)~
v2

p2("c)3
: ð7Þ

At this point, it is worthwhile to make a short digression about

the physical meaning of the time scale t� vð Þ. It has been known

for a long time [23] that for most condensed systems in time-

dependent fields, the orientation polarization behavior can, as a

good approximation, be characterized by a relaxation time

distribution (t� tð Þ); this behavior is generally meant as dielectric

relaxation. In harmonic fields, this implies that the complex

dielectric permittivity in the frequency range corresponding to the

characteristic times for the molecular reorientation can be written

as

E vð Þ~E?z Es{E?ð Þ
ð?

0

f(t)

1zivt
dt, ð8Þ

where "s is the static dielectric constant and E? is the permittivity

at the infinite frequency. Here, the relaxation time distribution

f tð Þ satisfies the normalization condition,
Ð?

0
f tð Þdt~1 and Eq.

(8) constitutes a generalization of the Debye treatment based on

Clausius-Mossotti equation [24]

E vð Þ~E?z Es{E?ð Þ 1

1zivt
: ð9Þ

This Debye’s equation, Eq. (9), follows after Fourier-transforming

the relaxation function w tð Þ~exp {t=tð Þ which coincides with the

normalized dielectric function Es{E tð Þð Þ= Es{E?ð Þ. Note that if

we assume a time-independent time scale t in Eq. (5), after

integration we shall obtain the Debye relaxation function in terms

of exp {t=tð Þ. Hence, we can understand t� vð Þ as defined

through the relation

ð?
0

f tð Þ
1zivt

dt:
1

1zivt� vð Þ ð10Þ

which shows that the Callen-Welton FDT [25] is not valid at this

level. In fact, unlike here, the FDT is related to decaying

equilibrium fluctuations characterized, precisely, by a single

relaxation time.

Now, let’s return to the main topic after that brief digression.

Note that according to Eq. (6), in the limit d??,

Q~
1

2
h3"c

ð?
0

Jst(v)g vð Þdv, ð11Þ

giving us the blackbody radiation limit provided t�(v){1!v,

Q! kBT1ð Þ4{ kBT2ð Þ4
h i

. On the other hand, in the limit d?0,

Q?0 which in contrast to the descriptions based on evanescent

surface waves avoids divergences in the heat flux in a self-

consistent way. Nonetheless, for finite d we can rephrase the

expression of the heat current given by Eq. (6) introducing a new

varible v~1=s

Q~
1

2
h3"c

ðv{1
R

0

Jst v sð Þ½ �g v(s)½ � ds

s2

^
h3"cvR

2x2
Jst v xv{1

R

� �� �
g v xv{1

R

� �� �
,

ð12Þ

where the mean value theorem has been used to approximate the

integral, with 0vxv1. Hence, since v xv{1
R

� �
~x{1vR, Eq. (12)

Figure 1. Schematic diagram of the radiation exchanged via conventional radiative transfer. Elastic collision of photons with atoms or
molecules of materials and phonon-photon coupling contributions between a sphere and a plate maintained at different temperatures, T1 and T2 ,
separated by a distance d .
doi:10.1371/journal.pone.0058770.g001
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reduces to

Q~
h3"cvR

2x2
Jst x{1vR

� �
g x{1vR

� �
: ð13Þ

In terms of Planck’s distribution, Eq. (13) can be rewritten

Q~
B"cvR

x2

g x{1vR

� �
t� x{1vRð Þ N x{1vR,T1

� �
{N(x{1vR,T2)

� �
, ð14Þ

while t�(v) must be determined in a more general way, by

scrutinizing the interaction processes between light and bulk

material.

For first order in the temperature difference DT ,

Q~
kBDT"c

x

g x{1vR

� �
t� x{1vRð Þ

Bx{1vR=2kBT0

sinh Bx{1vR=2kBT0ð Þ

� 	2

, ð15Þ

with DT~T1{T2, and T0~ T1zT2ð Þ=2. Thus, it follows that

the heat transfer coefficient, the quantity usually measured in

experiments and defined by Q=DT , is given through

H d,T0ð Þ~ kB

p2"2c2x

x{1vR

t� x{1vRð Þ
Bx{1vR=2kBT0

sinh Bx{1vR=2kBT0ð Þ

� 	2

: ð16Þ

When the mechanism of heat exchange is through elastic

collisions, which is similar to Rayleigh scattering, it is known that

the intensity of radiation is proportional to v4 [26]. Therefore,

t�(v){1~t{1
o =4, ð17Þ

where the time scale to is a material-dependent parameter. On the

other hand, regarding the inelastic contribution to the near-field

heat exchange, this is the analogue to the Raman scattering of

light. In this case, the distribution of modes presents anomalies

which result from states located at a lower energy region [21]. The

Raman spectra is fitted using a lognormal function first proposed

by Denisov and Rylev [19]. This lognormal distribution is a

statistical model, which can describe collective motions causing

extremely slow structural relaxation, thereby fitting the non-Debye

anomalies [27]. Therefore, this accounts for the high nonlinear

behavior of the thermal conductance between both materials. For

the proposed case, we assume that the density of vibrational states

is achieved through the use of a lognormal distribution, which

corresponds to

t�(v){1~t{1
o

v

4
ffiffiffiffiffiffi
2p
p

sv0

exp {
ln2 v=v0ð Þ

2s2

" #
: ð18Þ

Here, v0 (characteristic frequency) and s (standard deviation) are

two fitting parameters characterizing the lognormal distribution.

The lognormal in Eq. (18) stems from the existence of a hierarchy

of relaxation mechanisms in the material, related to the presence

of collective effects. This distribution, results from the fact that the

energy of the system consists of a large number of contributions

and the application of the central limit theorem of probability

theory (see Appendix S1). In view of the properties of the

lognormal distribution, it must be noticed that

ð?
{?

1

vt�(v)
d ln v=v0ð Þð Þ~ 1

4tov0
, ð19Þ

being a kind of closure relation for the relaxation times.

Hence, the excitation of a mode constitutes a photoinduced

cooperative phenomenon. It is plausible to assume that the

cumulative effect of incident photons ends perturbing the material,

thus triggering collective oscillations. In addition, the lognormal

accounts for an excess of ways of adsorbing energy by the system

with respect to the ways obtained when merely the Debye

squared-frequency law describes the relaxation. Therefore, this

provides a reasonable description of the non-Debye law [20,21],

which as in Raman scattering also becomes manifests in radiation

problems.

Accordingly, the heat transfer coefficient, Eq. (16), results from

the addition of the elastic and inelastic contributions mentioned

above

H d,T0ð Þ~

kB

t
0
od2

1z
(2p)1=2nc

sv0d
exp {

ln 2pnc=v0dð Þffiffiffi
2
p

s

� 	2
( )" #

hnc=2kBT0d

sinh hnc=2kBT0dð Þ

� �2

,

ð20Þ

where t
0
o~x3to and n~"x{1. In Eq. (20), the first term inside the

square brackets corresponds to the usual contributions found up to

now in the current literature [6], taking into account surface

phonon-polaritons owing to the presence of evanescent waves

close to the interface. As we have mentioned above, the second

term takes into account cooperative phenomena, becoming

manifest through the existence of collective modes of vibration

in the system, which appear in the density of states. Consequently,

a more general formulation for the radiative heat transfer

problems must come from the superposition of Debye and non-

Debye relaxation mechanisms, combining in this way the

contributions from the material surfaces as well as the bulk.

Results and Discussion

The thermal conductance is obtained by integrating the heat

transfer coefficient over the surface of a sphere of radius R divided

by its area (A~4pR2), i.e. G~(1=A)
ÐR

0
H½~dd(r),T0�2prdr. Since

the distance d between both surfaces depends on geometrical

characteristics, the local distance between the sphere and the plane

surface must be measured through the local radius r, assuming the

effective distance as ~dd(r)~dzbzR{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2{r2
p

, with b being a

surface roughness parameter [7].

We have calculated numerically the surface average by

adjusting the parameters mentioned above to the experimental

results obtained in the Ref [9], which takes into account only the

near-field contribution when decreasing the sphere-plate distance.

In Fig. 2, we show the near-field conductance fitting the values of

the integral of Eq. (20) to the data for glass-glass [8] and gold-gold

materials [9]. For both the material we have used

(t
0
o){1~2:1|107 Hz, v0~1:7|10{13 Hz, and s~6:0|1018.

For the glass-glass material we have obtained n~3:2|10{3 and

for gold-gold n~7:9|10{4. The near-field heat transfer de-

scribed using evanescent waves as solutions of classical electrody-

namics equations leads to heat flux divergences as the gap vanishes

[28]. However, in our approach this divergence does not occur,

Radiative Transfer at the Nanoscale
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reaching a constant-conductance value as the distance between the

nanoparticles decreases (shown in the inset). In essence, this is due

to the fact that the time relaxation distribution herein described by

lognormal distribution incorporates two effects: (I) Phonon

branches in a real structure affecting the density of states in

different frequency regions, similar to actual behavior observed in

metals [29]; and (II) the vibrational modes in the bulk material

absorbing the energy excess. Hence, since our assumption of a

distribution of relaxation times accurately describes the dynamics

of radiative systems at the microscale, we conclude that the FDT

in the Callen-Welton formulation [25] is not applicable at the

nanoscale and must be modified. By going beyond the Debye

theory, a way for this generalization is offered here.

Conclusions
In summary, we have evaluated thermal conductance in the

near-field, giving a thermokinetic description of some experiments

involving heat radiation through a very narrow gap. Although

near-field radiative transfer is a highly complex phenomenon, we

have been able to provide a unified and highly accurate

explanation of heat exchange processes at the nanoscale. Our

theory covers all distances from the far-field up to contact. Since

the experiments examined may involve a great variety of

nanostructures, our theory possesses a wide scope of applications.

The general methodology presented here may also be used in the

study of other heat exchange processes such as those occurring in

phonon systems and in the analysis of thermal contributions to

Casimir forces, even in charge conduction problems in nanosys-

tems.

Supporting Information

Appendix S1 Supporting Information.

(PDF)
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