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Abstract

Despite detailed knowledge about the anatomy and physiology of neurons in primary visual cortex (V1), the large numbers
of inputs onto a given V1 neuron make it difficult to relate them to the neuron’s functional properties. For example, models
of direction selectivity (DS), such as the Energy Model, can successfully describe the computation of phase-invariant DS at a
conceptual level, while leaving it unclear how such computations are implemented by cortical circuits. Here, we use
statistical modeling to derive a description of DS computation for both simple and complex cells, based on physiologically
plausible operations on their inputs. We present a new method that infers the selectivity of a neuron’s inputs using
extracellular recordings in macaque in the context of random bar stimuli and natural movies in cat. Our results suggest that
DS is initially constructed in V1 simple cells through summation and thresholding of non-DS inputs with appropriate
spatiotemporal relationships. However, this de novo construction of DS is rare, and a majority of DS simple cells, and all
complex cells, appear to receive both excitatory and suppressive inputs that are already DS. For complex cells, these
numerous DS inputs typically span a fraction of their overall receptive fields and have similar spatiotemporal tuning but
different phase and spatial positions, suggesting an elaboration to the Energy Model that incorporates spatially localized
computation. Furthermore, we demonstrate how these computations might be constructed from biologically realizable
components, and describe a statistical model consistent with the feed-forward framework suggested by Hubel and Wiesel.
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Introduction

The primary visual cortex (V1) takes an important position in

visual processing, receiving both feed-forward input from the

lateral geniculate nucleus (LGN) and cortico-cortical connections,

and forms the basis for further processing in higher cortical areas

[1]. The diversity of connections to a given V1 neuron confers

selectivity to a rich repertoire of stimulus features, such as

orientated bars and direction of motion [2,3].

Direction selectivity (DS) is often found in cells whose

response is invariant to the spatial phase of a moving grating,

and thus is a relatively accessible example that demonstrates

more general principles of hierarchical computation. Namely,

selectivity to a higher-order visual feature (motion direction) is

paired with invariance to other aspects of the visual stimulus

irrelevant to DS [4]: in this case spatial phase. Furthermore,

such a representation in V1 forms the basis of further

processing along the dorsal stream [5], which becomes

increasingly invariant to all but motion [6]. The change in

response properties from phase-dependent simple cells to phase-

invariant complex cells within V1 therefore has been the subject

of a range of modeling studies, beginning with Hubel and

Wiesel’s feed-forward hypothesis [7], which suggested that

phase-invariant complex cells pool over a distribution of

similarly tuned (but phase-dependent) simple cells. This original

hypothesis has been reflected in the ‘‘Energy Model’’ [8,9],

whereby DS phase-invariance is constructed by a quadrature pair

of simple cell filters: adding the squared output of two simple

cell receptive fields that thereby reflects the phase-invariant

power (‘‘motion energy’’) at a particular spatiotemporal

frequency.

Beyond an abstract classification of both inputs and

corresponding computation [10–13] it has, however, been very

difficult to validate such models experimentally, in part due to

the large number of inputs onto a given V1 neuron. Here we

use a statistical approach based on extracellularly recorded V1

spike trains, which can infer both the properties of individual

inputs and describe how they are combined to yield the

properties of the recorded neuron. This approach is based on

spike-triggered covariance analysis (STC, [14,15]), combined

with maximum-likelihood methods [16,17], and advances

previous work in two ways. First, we extend STC to find a

set of ‘‘localized’’ features that the neuron is selective to. Unlike

many of the STC filters, which are multi-lobed and spatially

extensive, the resulting localized filters are more consistent with

those expected of classical simple cells [9,18], and are self-

consistent with those observed across the broad dataset that we
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analyze. Second, applying this method to simple and complex

cell responses allows for the inference of how different types of

DS are constructed: while the responses of a few simple cells are

computed through summation and thresholding of non-DS

‘‘LGN-like’’ inputs, the majority of DS simple cells already

appear to receive DS input. Similarly, complex cells are found

to receive a relatively balanced pool of inputs that results in the

observed phase invariance typical of complex cells. Based on

this new method to reliably infer characteristic input properties

and associated nonlinearities, our results both reconcile previous

observations of V1 processing and suggest an implementation of

the Energy Model for V1 DS based on pooling over local

stimulus energy through a biologically plausible computation.

Materials and Methods

Experimental Recordings with Random Bar Stimuli
This work is primarily based on a dataset recorded by N. Rust,

with full details described in [15]. Briefly, following surgery, male

macaque monkeys were anesthetized with 4–12 mg/kg/hr sufen-

tanyl citrate and paralyzed with Vecuronium bromide (Norcuron,

Organon), administered intravenously at 0.15 mg/kg/hr. Single

units with receptive fields centered between 3u and 20u from the

fovea were recorded in V1 using quartz-glass electrodes while

visual stimuli were presented on a CRT monitor. All experiments

were performed in compliance with the National Institutes of

Health Guide for the Care and Use of Laboratory Animals and

within the guidelines of the New York University Animal Welfare

Committee.

After determination of a cells preferred direction, spatial and

temporal frequency, black and white bars matched to these

preferences were presented at 100 Hz and a mean luminance of

33 cd/m2 at spatial locations determined pseudo-randomly by a

binary m-sequence [19]. For a subset of cells, the Modulation

Index (MI = F1/DC, i.e. the first Harmonic F1 divided by the

average response level) and the Direction Selectivity Index (DSI)

were measured using drifting gratings. The DSI is defined as

[Rp-Rnp]/[Rp+Rnp] with Rp and Rnp being the average firing

rates at the preferred and non-preferred directions [20]. Depend-

ing on responsiveness of the cell, recordings lasted 15–80 min and

contained 3,000–250,000 spikes.

Experimental Recordings with Naturalistic Stimuli
In order to confirm our results in a more complex stimulus

context, we also used data from anesthetized, paralyzed cats,

described in detail in [21]. Extracellular multi-neuron spike trains

were recorded with a 54-channel high-density silicon polytrode

array implanted in the primary visual cortex of anesthetized

(Isofluorane, 0.25–1.5%) and paralyzed (Pancuronium bromide

(2 mg/kg) adult cats. All experiments were performed in

accordance with the guidelines established by the Canadian

Council for Animal Care.

Visual stimuli were presented on a CRT monitor at a resolution

of 8006600 pixels and a refresh rate of 200 Hz. Neural responses

were evoked with drifting sinusoidal gratings (for computing MI

and DSI), 1/f ‘pink’ spatiotemporal noise, and dynamic natural

scene movies that were captured by attaching a small CCD

camera to a cat’s head while it roamed freely in the woods [22]. All

stimuli were presented at 50 Hz, subtended 12 degrees of visual

angle, and had a mean luminance of 52 cd/m2. The models in this

study were applied to spike trains recorded during the pink noise

and natural movie stimulation, a combined duration of 26

minutes. Neurons had receptive fields within 10u of the area

centralis, and fired between 2,300,42,000 spikes.

Spike-triggered Analyses
To characterize the relationship between the stimulus and a

given V1 neuron’s response to the random-bar stimulus, we began

by computing the spike-triggered average (STA), which gives the

linear (first order) model of this relationship. The STA was

computed as the average 14 stimulus frames preceding a spike

across all spatial positions, and is displayed as a two-dimensional

x-t plot (Fig. 1A). Because most V1 neurons appear to respond to

more than a single stimulus feature [15], the STA alone cannot

fully represent their stimulus selectivity, and thus we used spike-

triggered covariance (STC) analysis [14,15,23,24] which is

sensitive to information about spatiotemporal stimulus correla-

tions, i.e., second-order effects. The stimulus covariance matrix

was computed over the entire experiment, and this overall

covariance was subtracted from the covariance of stimuli

triggering spikes. The eigenvectors of this matrix provide a concise

abstract description of the cell’s selectivity and are naturally

ordered by their associated eigenvalues. They represent the

‘‘directions’’ in the stimulus space (which we refer to as ‘‘STC

filters’’) that can be directly related to the probability that the cell

will fire. Note that we did not enforce the STC filters to be

orthogonal to the STA, which is a choice made in some

applications [24] but not others [23]. In our application, enforcing

orthogonality does not affect our results, particularly considering

the often-negligible STA of complex cells. The resulting STC

filters that have eigenvalues significantly different than zero are

classified as ‘‘excitatory’’ (increased variance) or ‘‘suppressive’’

(decreased variance) [24].

Which of these eigenvectors effectively contribute to a cell’s

selectivity can be decided by testing whether they significantly

improve a model’s ability to predict a new data set [24,25] or via

computationally less demanding heuristics based on the distribu-

tion of eigenvalues [26]. Because our results do not strongly

depend on the exact number of included STC dimensions, we took

inclusive sets of STC filters consisting of the eigenvectors with the

Npos largest and Nneg smallest eigenvalues, with Npos = 2–8 for

simple cells, 4–10 for complex cells, Nneg = 0–10 for simple cells,

4–10 for complex cells.

Dimensionality Reduction and Spatiotemporal Whitening
of Natural Movies

For the correlated noise sequences and naturalistic movies, it

was necessary to first ‘‘whiten’’ the stimulus [27] in order to

eliminate correlations in the stimulus, and reduce the dimension-

ality of the original stimulus space (dspace*dtime = dst

1024*6 = 6144). To this end, the stimuli st were ‘‘temporally

embedded’’ into a design matrix S, such that each row of S
contained the preceding spatiotemporal stimulus that might

contribute to the response at time t, including the 6 preceding

time bins across all spatial positions. Principal Component

Analysis (PCA) was then used to generate the ‘‘whitened’’ design

matrix, to which spike-triggered analyses could be applied [27,28].

More specifically, the whitened matrix Z is obtained using

Z = SV’D21/2 where V is an NstxM matrix containing the first

M eigenvectors of the stimulus covariance matrix S’S, and D is a

diagonal matrix containing the corresponding eigenvalues. Such a

reduced representation Z requires less data to obtain reliable

estimates of the STC filters {bi} and M = 600 is chosen to balance

reliability of estimated filters against resolution of the resulting

filters. With this approach, the STC filters can be computed in the

whitened space {bi,w} [28]. Because of the noise inherent in the

large numbers of dimensions in this analysis, we found that

performance improved by accentuating stimulus dimensions with
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large variability, and used bi = VD1/2bi,w, effectively smoothing

the resulting estimates.

Determination of Localized Filters from STC Filters
The STC filters bi provide a succinct basis to describe a

neuron’s selectivity to different inputs. However, although they

provide an efficient representation of the stimulus subspace related

to the neuron’s response, the spatiotemporal structure of these

basis vectors suggests that they are not describing synaptic inputs,

raising the question as to whether there is an alternative

description of this stimulus subspace using a set of filters {kb}

that more closely resemble the types of inputs cortical neurons are

known to receive. Such filters would be contained in the same

stimulus subspace and therefore be representable by linear

combinations kb =Si bibi of the M STC basis vectors B[b1, uK,

bM]. In addition to existing within the STC subspace, here we also

incorporate prior assumptions about the spatiotemporal profiles of

the filters [29], thereby providing additional information about the

putative inputs to the cell. To this end, we devised a method that

finds spatially localized excitatory and suppressive filters consistent

with the observed STC results. The method can be applied

separately to the subspaces spanned by just excitatory or just

suppressive filters, or to the combined space. Because we expect

that excitatory and suppressive effects stem from different cell

types, we applied this method to each space separately, which is

easier and slightly more robust in general, while yielding

qualitatively similar results.

To identify localized filters in the space spanned by STC filters,

we find the linear combinations of the STC filters that have the

most compact spatial profile centered on each spatial location c.

To characterize the spatial profile of a particular filter in the STC

subspace, we define the temporal power of the filter kb at position x to

be Rb (x) = 1/T St[,kb(x,t).t – kb(x,t)]2. Starting from randomly

initialized b we then numerically minimize the cost function

L(c,b) =SxRb(x)*(c-x)2 with respect to b under the constraint

Si bi
2 = 1. The cost function determines the degree to which kb

is localized around the spatial location c, because it minimizes the

distance (c-x) to the target location weighted by the power profile

Rb(x). Beyond this term quantifying the spatial localization of

temporal power, no other constraints were imposed when

optimizing this cost function. To avoid local minima, we took

the most localized filter from 20 different initializations of b for

each of 40 spatial positions c evenly covering the stimulus domain.

We find that our results are not sensitive to the exact cost function

used, and other measures of localization give very similar results.

Note that this method also can extract multiple localized filters at a

specific location, by projecting out the first filter and then

searching for the next most localized filter at the same location

in the resulting orthogonal subspace.

Nonlinear Modeling
Firing responses of cells in sensory areas resulting from visual

stimulation can be predicted by models that cascade stages of

filtering and nonlinear combination [30,31]. To predict individual

spike trains of cells in V1, we used a Generalized Nonlinear Model

Figure 1. Spike triggered analysis of direction selective simple and complex V1 cells. A. The Spike Triggered Average (STA) for a simple
cell (left) and a complex cell (right), shown as ‘‘x-t’’ plots: the horizontal axis corresponds to the spatial location perpendicular to a bar oriented in the
neuron’s preferred direction, and the vertical axis indicates the time preceding a spike (10–140 ms). The grayscale value represents the magnitude of
the STRF, indicating how strongly an increased/decreased luminance value at a spatiotemporal location increases or decreases the probability to
spike. The tilt in the simple cell STA (left) demonstrates that it is direction selective, but the STA cannot capture the direction selectivity of the
complex cell (right). B. V1 DS complex cells are sensitive to large numbers of motion features but the specific number of significant STC filters
strongly depends on the amount of available data. With increasing data, more and more filters are detected (lines correspond to 8423, 28435, and
117097 spikes, respectively). However, the filters added (both ‘‘excitatory’’ and ‘‘suppressive’’) with more data do not resemble those first detected,
having higher spatial frequencies and less spatial localization (suppressive filters for smaller amounts of data are present but not shown). Note that
the suppressive filters (bottom row, right) have opposite direction selectivity from the excitatory filters (left). The thin frame indicates the filters with
the largest positive and negative eigenvalues, corresponding to the red dots in (C). C. The corresponding eigenvalue spectra of the spike-triggered
covariance (STC) matrices estimated from 6% and 100% of the data indicate two vs. eight significant filters (red circles), respectively. D. The profiles of
temporal power along each pixel position for the three STRFs indicated in B (last row) are diverse, ranging from relatively localized and unimodal to
spatially extensive and multimodal.
doi:10.1371/journal.pone.0058666.g001

Pooling of Local Features in Primary Visual Cortex

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e58666



(GNM, [17]) based upon the filters derived from the STC and

localization procedures described above. For such a model, the

time varying firing rate is given as r(t) = F[SiSt(hit*fi(ki*st-t))-h],

where F[?] = log[1+exp(?)] is the spiking nonlinearity that maps the

summed output of the individual terms to a firing rate. The terms

fi(ki*st) are nonlinear functions fi of the stimulus st convolved with

the different filters ki, and the parameters hit allow for modeling of

temporal integration of these nonlinearly filtered inputs fi(ki*st-t).

This model class represents an extension of Generalized Linear

Models (GLM, [31]), which is similar to Generalized Additive

Models [32], and given the filter estimates ki, allows for

simultaneous estimation of their nonlinear impact on the firing

rate via optimization of the model likelihood [16,17]. The GNM

framework easily incorporates prior assumptions about the

estimated parameters and we included penalty terms enforcing

smoothness of temporal integration and nonlinear combination

[17].

Selection of Relevant Localized Directions Using
Regression with a Sparseness Prior

The above-mentioned method for the identification of localized

filters generates a large number of candidate filters. The subset of

features most effectively describing the cells’ selectivity can then be

determined using a regularization approach. We filtered the

stimulus with each of the localized filters, along with its negative

counterpart, and used logistic regression with a sparseness prior

[33,34] on their rectified output. The optimal value for the

sparseness parameter was determined via cross-validation, typi-

cally resulting in a slightly larger set of localized filters than

corresponding STC filters. The nonlinearities for the resulting set

of filters were subsequently fit using the GNM framework.

Prediction of the Direction Selectivity Index (DSI)
The spatiotemporal selectivity of the STC and localized filters

described above can also be used to predict classical measures of a

neuron’s selectivity such as its Direction Selectivity Index (DSI)

and Modulation Index (MI). As described in [35], the DSI of

simple cells can be predicted from spatiotemporal receptive fields

such as the STA, STC filters, or localized filters as: DSIRF = (Q1–

Q2)/(Q1+Q2), where Q1 and Q2 are the upper right and left

quadrants of the two dimensional Fourier transformation of the

receptive field.

Construction of Direction Selective Features from
Spatiotemporally Separable Inputs

The STC filters for DS simple and complex cells exhibit

oriented x-t plots that are spatiotemporally inseparable (i.e., cannot

be constructed via simple multiplication of a spatial and a

temporal kernel, see Figs. 1A,B). As described in [8], such DS

filters can, however, be constructed by addition and subtraction of

spatiotemporally separable inputs. We use singular value decom-

position (SVD, [34]) to decompose such DS filters into putative

separable filters, yielding non-DS inputs that could explain the

observed DS filter. Furthermore, while phase-invariant DS

responses of complex cells cannot be described by just one simple

DS filter, they can easily be constructed via nonlinear combination

of two matched DS filters [8].

Results

Direction selectivity of V1 neurons is classically characterized

using simple motion stimuli such as drifting gratings or bars, where

the firing rate in response to different motion directions can be

unambiguously measured. Such stimuli have relatively simple

spatiotemporal properties and therefore would not be able to

constrain models with many parameters, such as those describing

the construction of DS from component spatiotemporal elements.

The use of more complex stimuli can provide more information to

fit models with a larger number of parameters, but of course

requires more advanced statistical approaches to reliably estimate

them. Using such approaches, we will first analyze V1 spike trains

recorded in the context of ‘‘random bar’’ stimuli, comprised of

random combinations of black and white bars covering the

classical receptive field at the neuron’s preferred orientation [15].

While the random bar stimulus does not confine the analysis of DS

to the restricted subspace of moving gratings, it is still much

simpler than the natural stimuli we consider later, and therefore

allows for the derivation of a detailed picture of V1 neurons’

sensitivity to spatiotemporal patterns in a simplified stimulus

context.

For some V1 neurons, the linear receptive field - calculated in

this context from the spike-triggered average (STA) - demonstrates

the neuron’s selectivity for a particular direction. For the simple

cell in Figure 1A (left), the STA shows that the neuron’s preferred

spatial position systematically changes with latency, resulting in a

tilted spatiotemporal profile. Likewise, the neuron’s spatial and

temporal frequency preferences can also be derived from this x-t

plot [35] using the horizontal and vertical widths of the STA

features. In contrast, the complex cell’s STA shows no structure

and fails to describe its robust response to motion direction

(Fig. 1A, right panel). The lack of structure in the STA is emblematic

of the phase-invariance of complex cells, and results from the fact that

the neuron responds equally well to black or white bars moving in

the preferred direction, which - because they both evoke spikes -

average to a uniformly gray STA. Thus, nonlinear operations are

necessary in order to respond to both a stimulus and its opposite,

and DS complex cells therefore require nonlinear analyses to

understand the origins of their selectivity [14,15].

Nonlinear Analysis of Direction Selectivity in Simple and
Complex Cells

While the first-order (STA) characterization of stimuli driving

complex cell spikes fails due to the overlapping, roughly equal

response to light and dark stimuli, complex cell selectivity can be

detected using higher-order statistical analyses, such spike-

triggered covariance (STC) analysis. This approach can detect

selectivity to stimulus features based on the second-order

relationship between stimulus and spikes. For example, responding

to a spatiotemporal pattern and its opposite equally will result in a

zero spike-triggered average stimulus, but is detectable by looking

at the direction where the variance of the spike-triggered stimulus

is highest. The first V1 study to apply STC analysis to random-bar

data found two spatiotemporal filters underlying complex cell

responses [14], which is consistent with our measurements when

using only 6% of data (8,423 spikes) (Fig. 1B, top row, 1C left). In

this case, STC analysis finds that complex cell selectivity is well

described by a quadrature pair of filters (Fig. 1B, filters E1 and E2),

representing two simple-cell-like DS filters with roughly the same

spatiotemporal tuning, but 90 degrees phase difference. They both

have a clear spatiotemporal tilt, resulting in selectivity for direction

of motion. Such selectivity for complex cells was explicitly

predicted by the Energy Model [8], and directly measured with

this approach in [14].

Unfortunately, this easily interpretable picture of complex cell

selectivity in the context of the Energy Model becomes less clear

with more data (Fig 1B). In fact, the much richer description of

complex cell selectivity demonstrated in [15] appears to be simply

related to the amount of data - applying STC analysis to the full

Pooling of Local Features in Primary Visual Cortex
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recording (27 minutes, 117,097 spikes) reveals many more

spatiotemporal filters contributing to the neuron’s response

(Fig. 1B bottom row and 1C right panel).

The much longer recordings in [15] in fact reveal many more

spatiotemporal elements in a majority of recorded neurons: nearly

all complex cells have more than two filters, with more than half

having four or more excitatory filters and up to nine suppressive

filters [15]. These additional filters typically exhibit higher spatial

frequency and broader spatial extent than the filters found with

less data.

Is the Energy Model then just an approximation to a more

ornate computation performed by the neuron using many multi-

lobed filters with a range of spatiotemporal frequencies? Further-

more, what is the source of these spatially extensive, multi-lobed

spatiotemporal elements? Such spatiotemporal filters with large

numbers of subfields (Fig. 1B, D) are not seen for simple cells in our

dataset (see below), and in general not typical for V1 simple cells

([36,37]; for quantitative analysis of RF properties see [18]).

However, here we will show that the computation captured by

STC analysis is in fact consistent with a more physiologically

realistic elaborated version of the Energy Model, as well as the

diversity of spatiotemporal filters observed in this dataset [15], and

arises from the spatial scale of the inputs to a complex cell,

compared with the extent of the overall receptive field.

Localized Filters Yield a Consistent Model for the
Construction of Direction Selectivity

Understanding the computation suggested by the STC analysis

requires considering the STC filters as a coordinate system for the

stimulus subspace that the neuron is sensitive to, rather than

considering the filters individually [15,25,38]. Just as one can

rotate a coordinate system, one can describe this stimulus subspace

with a different set of filters in this subspace (e.g., Fig 2A), raising

the possibility that there is an alternative description of the

neuron’s sensitivity that is consistent with the STC analysis, but

maps to a physiologically more plausible description of the

neuron’s inputs.

We search the subspace determined by STC for filters that more

closely resemble those seen for simple cells in the dataset (see

below), using a cost function that favors filters that are as spatially

localized as possible at any given location (see Methods). The

excitatory and suppressive subspaces are analyzed separately,

resulting in corresponding sets of excitatory and suppressive

localized filters (for examples of excitatory filters, see Fig. 2B last

row). These filters provide an alternative and more localized

representation of the excitatory and suppressive subspaces

identified by STC. In contrast to the STC solution, this set of

filters is not constrained to be orthogonal, and thus there can be

many more localized filters than STC filters.

Although the localization penalty could in principle lead to

wildly different types of filters found at each location, the set of

localized filters centered at each location is typically composed of

filters with very similar spatiotemporal structure (Fig. 2B),

including nearly identical spatial frequency and speed selectivity.

Furthermore, their power profiles have similar shapes (Fig. 2C),

and tile the larger area of the neuron’s receptive field. The

similarity of the localized filters across space is further demon-

strated by performing principal component analysis (PCA) on the

spatially aligned localized features, which reveals that the entire set

of excitatory or suppressive filters can each be well represented by

two basis vectors (Fig. 2D,E). These basis vectors have nearly

identical spatiotemporal profiles yet are orthogonal to one

another, constituting a quadrature pair. This suggests that motion

energy is computed at a smaller spatial scale and pooled across the

neuron’s receptive field, and that the additional STC filters

revealed by more data reflect the multiple spatial locations that

such pooling occurs over.

In addition to providing a concise description of V1 complex

cell computation as a ‘‘Localized Energy Model’’, this description

is more robust to the amount of data used for analysis. As more

data is used to produce the STC filters, new spatiotemporal

selectivity emerges in the additional resulting filters, which have

more lobes and less spatial localization (compare Fig. 1B and D).

In contrast, the localized filters tend to maintain similar

spatiotemporal properties, while their features become less noisy

(Fig. 2B). The stability of the properties of the localized filters as

more data is added suggests they are capturing the actual

integrative properties of the neuron, which would not be expected

to change with the length of the experiment.

Nonlinear Construction of Direction Selectivity
The construction of complex cell computation depends both on

the spatiotemporal elements that are input, and the nonlinear

computations performed on these inputs. In fact, a crucial

component of the Energy Model is the squaring computation

applied to its quadrature pair elements, in addition to the

spatiotemporal relationships between these elements. Alternatively

such computation can be comparable to multiplicative combina-

tions of non-DS cells [8,39], as in the Reichardt model [40]. With

the identification of plausible spatiotemporal elements that

comprise complex cell computation, we can now infer how these

elements are nonlinearly combined to produce complex cell

output, using a previously established nonlinear modeling frame-

work [17].

Using this framework, we measure how the output of the

relevant filters contribute to the response by fitting nonlinear

functions to the output of each filter in order to maximize the

likelihood of the model given the observed data (see Methods,

Fig. 3A). Similar to [33] we use a sparseness prior to first determine

this relevant subset from the larger number of localized filters

found by the method shown in Figure 2. As these localized filters

span the same space as STC, both alternatives allow for the

prediction of the spiking response equally well (Fig. 3B). Note,

however, that in all but the simplest simple cells, we find that

models including multiple filters best accounts for the detailed

feature sensitivity needed to predict the spiking response. For the

example cell shown in Figure 2, taking filters beyond E1 and E2

(Fig. 2B, top row) into account results in a much better prediction

of responses to new stimuli than the simple Energy Model (Fig. 3B,

compare columns EM vs. STC).

The models comprised of multiple identified filters and their

associated nonlinearities can also be used to generate predicted

responses to arbitrary stimuli, and therefore to validate their

degree of DS and phase invariance (MI) based on the observed

responses to moving gratings (Fig. 3C). To this end, we fit

nonlinear models with the random bar stimulus to then predict

individual cell responses to drifting gratings. The predictions are in

good agreement with the empirical DSI and MI measurements

(Fig. 3D; correlation coefficients (CC) between predicted and

measured DSI are CC = 0.93 for simple and CC = 0.84 for

complex cells, CC = 0.9 across cells for MI).

The Feed-forward Construction of Direction Selectivity
With the ability to characterize two crucial elements of the

construction of DS, the spatiotemporal filters and the nonlinear

computation, we can now infer how DS is constructed across the

population of V1 neurons in this study, ranging from the

‘‘simplest’’ simple cells to the most complex cells. This range is

Pooling of Local Features in Primary Visual Cortex
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shown using a subset of 51 cells for which the Direction Selectivity

Index (DSI) and Modulation Index (MI) were separately measured

using drifting gratings (see Methods) (Fig. 4A).

Across the different types of responses - ranging from simple to

complex and differing regarding their direction selectivity (Fig. 4A),

we find STRFs that are consistently explained by pooling of simple

localized features (Fig. 4B).

Along the continuum of simple to complex cells, these nonlinear

characterizations suggest that the contrast-invariant DS of

complex cells is built up over one or more intermediate stages

and we identify three distinct stages of direction selectivity:

1. Direction Selectivity in the ‘Simplest’ Simple Cells can
be Constructed from non-DS Inputs

Of the 17 DS simple cells in the random bar study, only two

have a single excitatory filter. Such a filter has a spatiotemporal tilt

indicative of DS and thus is ‘‘non-separable’’ (Fig. 5A), but can be

decomposed into two non-DS filters with their spatial and

temporal kernels shifted relative to each other (Fig. 5A, lower

panel). For these simplest neurons in the recorded DS population

such construction provides a model capturing the first stage of DS

construction in V1 that is both in line with LGN response

characteristics as well as consistent with the population data

reported in this study (Fig. 4B). Nonlinear modeling applied to this

two-filter ‘‘non-DS input’’ model finds each filter associated with a

rectifying nonlinearity (Fig. 5A lower panel), and it can predict the

Figure 2. Localized filters provide a biologically plausible alternative description of the STC subspace. A. The subspace defined by the
STC filters can be used to find a set of localized filters, where each localized filter (right) is a linear combination of the set of STC filters (left). The small
filters (STC and localized) are taken from 1B and 2B (last row) and exemplify the different features that can be used to represent a cells sensitivity. Red
arrows illustrate an orthogonal vector space defined by the STC filters, while blue arrows illustrate a larger number of non-orthogonal localized filters
that span the same subspace. B. Localization detects a large number of filters within the STC subspace, and 10 (from 47) localized solutions spanning
the RF are shown. As more data is used for the analysis, the properties of the filters remain relatively constant, but their features become less polluted
by noise. The localized solutions show similar spatiotemporal sensitivity, with the main differences between the filters amounting to differences in
position and phase. C. The power profiles of 47 localized excitatory filters (left) have been aligned (right) to compare the similarity of their spatial
envelopes. D. The 47 excitatory and 47 suppressive localized solutions form 2 homogeneous populations of spatially confined features that are
succinctly described by four eigenvectors - two spanning the excitatory subspace, and two spanning the suppressive subspace - as determined by
PCA applied to the set of spatially shifted localized filters in D. E. The filters are well represented by these PCA eigenvectors (98% exp, 97%
suppressive) and evenly cover the range of possible combinations of these vectors.
doi:10.1371/journal.pone.0058666.g002
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observed response with equivalent accuracy as the one-filter DS

input model (Fig. 5B). Although this comparison is not definitive

proof that DS is constructed in this neuron, the ability of separable

models to reproduce the neuron’s response as accurately as non-

separable models only occurred for these neurons, and not any of

the multi-filter neurons in this study.

Furthermore, the ‘‘rectifying’’ nonlinearities associated with

each non-DS filter suggest that cortical DS can be constructed

using the simple biologically plausible mechanism of integration

with a spiking nonlinearity, without necessitating the more

complex computations implied by abstract models of DS such as

the Energy Model and the Reichardt model ([8,40], see

Discussion).

Extending this construction to the next stage of DS computa-

tion, the simplifying pair of complex cell input filters (E1 and E2,

Fig. 1B) can be decomposed into four separable RFs representing

different combinations of two spatial and temporal filters (see

Methods, Fig. 5C), as predicted by the Energy Model [8].

2. Multiple Excitatory DS Filters Imply DS Inputs
Most simple cells are best described using multiple excitatory

and suppressive filters, illustrated here with a typical example with

seven excitatory and two suppressive filters (Fig. 6A). The

nonlinearities associated with the individual filters show a variety

of shapes ranging from rectifying to bowl-shaped (note the

inverted bowls in the suppressive directions). Similar to the

complex cells, including these additional filters beyond the STA

leads to a much better prediction of the response to random bar

stimuli (Fig. 6B). Contrary to previous proposals based on the

interplay of excitation and delayed asymmetric inhibition [41], the

relative spatiotemporal placement of excitatory and suppressive

Figure 3. Nonlinear modeling predicts spike timing direction selectivity and modulation index for simple and complex cells. A.
Schematic of the nonlinear model structure. The stimulus is filtered by a set of receptive fields ki and further processed by associated nonlinearities
fi(.) and temporal combination term hi. Outputs of multiple expanding and suppressive modules are summed together and converted into a firing
rate prediction r(t) via the spiking nonlinearity F. B. Cross-validated log-likelihood (LL) improvement compared to a model based on the average firing
rate. The different levels of STC-based models demonstrate that models with two filters (STC2 and EM) offer large improvements in LL over a model
based on the STA alone. However, including the full set of detected filters (STC and loc) more than doubles model performance. STC2 refers to the
model containing only the first two STC filters shown in 1B, (last row), EM to the two STC filters found for small amounts of data (Fig. 1B, first row),
STC to all filters shown in Fig. 1B (last row), and loc to the localized features (Fig 2B, last row). C. Simulated responses of a simple and a complex cell
(model as shown in Figure 3A) to optimally oriented drifting gratings demonstrate the ability of models fit to random bar stimuli to predict response
properties to gratings consistent with their cell classification. The responses of the simple cell (gray) and complex cell (black) are shown relative to the
temporal stimulus modulation at a given spatial location (top). D. Modulation index (MI) and direction selectivity measurements for 51 V1 cells
stimulated with optimally oriented drifting gratings (Rust et. al. 2005). The models of all neurons in the study were used to generate predicted
Direction Selectivity Index (DSI) and MI (vertical axis), which are in agreement with those values measured experimentally (horizontal axis), for simple
(red, correlation coefficient CC = 0.93) and complex (black, CC = 0.84) cells, with CC = 0.85 overall. MI is predicted with similar fidelity (right, CC = 0.9).
doi:10.1371/journal.pone.0058666.g003

Pooling of Local Features in Primary Visual Cortex

PLOS ONE | www.plosone.org 7 March 2013 | Volume 8 | Issue 3 | e58666



filters does not account for these cells’ DS, which we could probe

by shifting the relative positions of these filters (data not shown).

Instead, the DS of the neuron appears to stem entirely from the

spatiotemporal structure within each filter (Fig. 4D).

Furthermore, we found that the neuron’s response could not be

as accurately predicted by models with separable inputs (Fig. 6B),

unlike the ‘‘simplest’’ simple cells described above (Fig. 5A). This

result makes sense intuitively, because a set of shifted DS filters will

Figure 4. Diversity of response properties across a population of simple and complex cells. A. Empirically measured modulation index
and direction selectivity values for 51 V1 cells (see Fig. 3, Rust et. al. 2005). The population contains simple and complex cells with varying degrees of
direction selectivity. B. Both simple and complex cells display sensitivity consistent with multiple localized inputs (shown are 7 localized filters
spanning the region RF of the individual cells indicated in A).
doi:10.1371/journal.pone.0058666.g004

Figure 5. Construction principles of direction selectivity in prototypical simple and complex cells. A. An example of a DS simple cell
described by a single excitatory filter (left). A single nonlinearity associated with this filter, comprising an LN model, offers a good description of its
observed response. lower right: An alternative model for the simple cell, comprised of two non-DS filters, each decomposable into spatial and
temporal projections (profiles shown at left and top). Each non-DS filter has a rectifying nonlinearity associated with it (right), which is fit to the data.
B. Performance of the two models of the simple cell from (A) are assessed by the log-likelihoods predicted for the left out samples in 10-fold cross-
validation. The model based on separable non-DS filters (‘‘sep’’) yields comparable predictions, and thus provides a reasonable explanation of the
simple cell’s DS. C. The two eigenvectors E1 and E2 corresponding to the two significant eigenvalues shown in Fig. 1B (top row) are both direction
selective. Furthermore, they form a ‘‘quadrature pair’’, and can be described by different combinations of the two sets of spatial (top) and temporal
(left) kernels via the sum of two sets of separable filters, which are obtained using singular value decomposition. As shown in Adelson & Bergen (1989)
and reflected in the data, 2 spatial and 2 temporal kernels suffice to form a quadrature pair. While this model performs significantly better than the
STA it clearly misses the complex selectivity captured by the model containing multiple localized features (see crossvalidation performance shown in
Fig. 3B).
doi:10.1371/journal.pone.0058666.g005
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decompose into a set of overlapping non-DS filters without clear

spatiotemporal relationships that maintain DS. While this

statistical validation cannot rule out non-DS inputs, it does imply

that either the neuron receives inputs that are already DS, and/or

performs a more complicated computation whereby particular

inputs with appropriate spatial and temporal phase relationships

are separately combined nonlinearly before a second stage of

nonlinear pooling across all inputs.

Thus, the presence of more than one DS excitatory filter, as well

as suppressive DS filters, implies a ‘‘second-order’’ computation

that relies on two stages of nonlinearities, with one preceding the

summation of different DS inputs. The fact that most simple cells

(15 out of 17) have multiple filters thus suggests that DS is

constructed through multiple stages, with only a fraction of cortical

neurons receiving solely non-DS input.

3. Pooling Local DS Subunits Explains Multiple Aspects of
Phase-invariant DS in Complex Cells

The fact that a large majority of simple cells have multiple

excitatory and suppressive features implies that most inputs to a

complex cell likely have multiple features, which would be a more

complex situation than implied by the complex cell models

described earlier (Fig. 2). While we cannot infer inputs with

multiple features from complex cell spike trains with this approach,

we can test how the presence of multiple excitatory and

suppressive filters would affect the selectivity of the resulting

complex cell. We consider a ‘‘second order’’ model of a complex

cell, constructed by pooling more typical simple cells that have

multiple filters themselves: in this case the more complicated

simple cell considered above (Fig. 6A), which has multiple

excitatory and suppressive filters. As suggested by earlier analysis

of complex cell inputs (Fig. 2E), we hypothesize that the simple-

cell-like inputs onto this cell are similar in their selectivity, but

spatially shifted relative to one another. Thus, our simulated

complex cell is created by spatial shifts of the entire multi-filter

model of the ‘‘complicated’’ simple cell (Fig. 7A), which are then

additively combined, weighted by a Gaussian spatial envelope, to

form a generator potential. To generate simulated spikes, the

generator potential is finally passed through a spiking nonlinearity

to yield a firing rate that is the input to a Poisson spike generator.

The resulting spike train can be analyzed like the experimentally

recorded data using the analyses presented in this work.

The extracted STC directions (Fig. 7B) mirror the characteristic

pattern found for most complex cells: a sequence of strongly

direction selective filters of increasing spatial frequency with

expanding and suppressive filters being sensitive to motion in

opposite directions. Note that no suppressive terms were added to

the simulated neuron, suggesting that the pattern of opposing DS

suppression observed in STC analyses of complex cells (Fig 1B;

[15]) may be an emergent property resulting from the integration

of the more complicated simple cell inputs, rather than direct

inhibition. Further simulations indicate that the observed oppo-

nency between excitatory and suppressive filters is not constructed

at this stage but derives from simple cells being suppressed by

motion in the null direction (data not shown). Similar to [42] we

wondered, to what degree the observed selectivity can be

Figure 6. Localized features explain direction selectivity in representative simple cells. A. The spike triggered analysis of a typical simple
cell identifies multiple excitatory and suppressive filters. The top row shows the relevant localized STRFs from the excitatory (left) and suppressive
(right) subspace and the lower row the associated nonlinearities. B. Although clearly a simple cell based on its modulation index (MI = 1.51),
comparison of cross-validated likelihood indicates that the neuron is best described by multiple filters (‘‘STC", ‘‘loc’’). Models just based on the spike
triggered average (‘‘STA’’, Fig. 5A) or models replacing the excitatory filters by non-DS inputs (as in Fig. 5A) yield lower performance.
doi:10.1371/journal.pone.0058666.g006
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explained by a purely excitatory feed-forward model and our

findings are consistent with the failure to observe opposite-

direction inhibition onto complex cells in intracellular studies [35].

Finally, the localized filters based on these STC directions (Fig. 7B)

match the dominant excitatory filters of the first-order inputs

(Fig. 6A), providing further evidence that the localized solutions

infer characteristic properties of the neuron’s inputs.

In summary, our results suggest that the computation

performed by individual complex cells is likely constructed over

several stages of cortical processing, and reflects previous nonlinear

computation performed in simple cells as well as that performed

by the complex cell itself.

Estimating Receptive Fields from Responses to
Naturalistic Movies

While the one-dimensional random bar stimulus is particularly

effective for identifying and characterizing the fundamental

aspects of the DS computation, one might imagine that such

findings might be a product of the random bar context, and not

generalize to more realistic stimuli. To demonstrate that our

previous results are not limited to the specific dataset, we verified

that the above description holds for much more complex stimuli,

using neurons recorded from cat V1 in the context of spatiotem-

poral pink noise and short natural movies [22]. In order to do so,

we adjusted the STC analysis to account for stimulus correlations

[27,28], and then adapted the search for localized filters within the

STC subspace to a two-dimensional grid of spatial positions

(Fig. 8A and B) (see Methods).

Applying the adapted method to these ‘‘three-dimensional’’ (two

dimensions of space plus one of time) naturalistic stimuli results in

spatially localized filters with temporal power profiles of similar

shape, which together tile a larger region of the visual field: now in

both spatial directions (Fig. 8C). However, despite searching for

localized filters over an area extending well beyond the classical

receptive field, the localized filters are concentrated on a limited

spatial area. To compare results of this method with earlier results

derived from the random bar experiments, the preferred

orientation of each neuron is estimated from the localized filters

(Fig. 8D), and each two-dimensional spatial slice is projected along

the axis perpendicular to this preferred orientation. This produces

x-t plots (Fig. 8E) that are directly comparable with those measured

from the random bar experiments (Figs. 1B, 2B, 4B).

As in the one-dimensional case, the aligned excitatory features

can be succinctly described by two basis features, indicating a

homogeneous population of inputs with similar properties (not

shown). As with the DS neurons studied thus far, the x-t plots of

the DS neuron (Fig. 8E, bottom) have a distinct spatiotemporal tilt

that is similar across filters. In contrast, the filters of the non-DS

cell have no tilt, and resemble those of non-DS neurons from the

random bar dataset.

Thus, while the analysis of 3D receptive fields recorded in

natural and naturalistic movies requires more data, the localiza-

tion and modeling methods described above reveal a very similar

picture to that found in the random bar data.

Discussion

The construction of direction-selectivity (DS) in V1 by the

cortical circuitry of carnivores and primates is well established by

experiment, including its experience-dependent emergence during

the cortical critical period [43] and the rarity of robust DS tuning

observed in primate retina [44,45]. However, unlike DS

constructed in the retina of rodents [46] and in the fly [47], the

construction of phase-invariant DS in cortex is a network

phenomenon, involving at least two processing stages within the

cortex and the likely combination of feed-forward and recurrent

cortical inputs [48,49]. Such network phenomena have led to a

variety of DS models [8,50], but provide a challenge for

experimental validation, which is typically limited to recording

the bulk properties of many inputs [35] or targeting single

connections [51].

Our approach has been to use nonlinear modeling coupled with

statistical validation to understand how the observed response

properties of a given neuron to complex stimuli likely emerge from

pooling over biologically plausible inputs. We focus in this study

Figure 7. Construction of DS complex cells by pooling over inputs from typical DS simple cells. A. A complex cell model is constructed
from a population of typical simple cell models having multiple excitatory and suppressive filters themselves. The family of simple cells is created by
spatially shifting all filters of a prototypical simple cell model (see Fig. 6A) over a spatial envelope representing the complex cell receptive field. These
inputs are summed and processed by a spiking nonlinearity to generate a firing rate prediction, and a Poisson spike generator then produces
simulated data for further analysis. B. Upper panel: the STC filters for the simulated complex cell display a range of different spatiotemporal
frequencies and opposing DS for excitatory and suppressive directions, as observed for all complex cells in this study (e.g., Fig. 1E). Lower panel: The
localized features inferred from these STC directions comprise a set of homogeneous, spatially shifted units, which closely resemble the dominant
excitatory and suppressive directions from the first-order model (Fig. 6A).
doi:10.1371/journal.pone.0058666.g007
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on direction-selective (DS) neurons because the construction of

phase-invariant DS necessarily incorporates two types of nonlinear

processing and thus more greatly constrains models that might

produce it. By studying this across a population of recorded

neurons ranging from simple to complex cells, our results suggest

multiple nonlinear feed-forward stages of stimulus processing

within V1. Our results are consistent with DS initially being

constructed from non-DS inputs with particular spatiotemporal

relationships (Fig. 5A). Similar to the construction of orientation

selectivity [42], such de novo construction however only appears to

occur in a minority of simple cells, with the rest appearing to

receive at least some amount of distinct DS input, which can be

both excitatory and suppressive (Fig. 6A). Finally, complex cells

appear to be a special (although quite numerous) case, with inputs

that are balanced in phase across a larger receptive field (Figs. 2C).

Complex cell filters, and the corresponding nonlinearities,

effectively extract local motion energy from different spatial

locations and pool this information to get a phase-invariant

estimate of motion energy over a wider portion of visual space. In

fact, the apparent complexity of the STC filters observed in

previous studies [15] (also Fig. 1B) likely reflects the scale

difference between the local calculation of motion energy and

the overall region of the receptive field.

These results are in line with current consensus about the

construction of complex cell receptive fields [7,52]. More

specifically, they support a hierarchical model in which all but

the simplest cells do not receive purely non-DS inputs, as well as

the idea that simple and complex cells exist along a continuum

[53]. However, our results go beyond these observations by

providing a more detailed view of the properties of putative inputs,

and how they are combined within the observed neuron.

Because the resulting description is based on statistical analysis

of experimental data, it can only reflect which models are more

consistent with the observed data. Such validation might be

viewed as a complementary approach to experimentally isolating

single inputs, which allows a statistical picture of a given neuron’s

inputs over many paired recordings [51,54,55], but cannot address

how they interact. However, because this modeling approach can

incorporate other experimental details directly, such as the spike

trains of simultaneously observed neurons (e.g., [56]), it might be

utilized in future experiments where multiple observed spike trains

and functional modeling are combined to test these findings. In

this sense, our results make a closer link between empirically

measurable statistical properties of complex cell inputs and the

Energy Model with its functional interpretation.

Phenomenological versus Biological Descriptions
Phase-invariant DS clearly shows the limits of linear models to

account for the DS responses of complex cells. As a result, the

Energy Model [8] succinctly describes how phase-invariant DS

can emerge from a simple nonlinear computation on the visual

stimulus. It predicts cortical responses to a range of parametric

stimuli [9,57], and also appears to capture the basis for

downstream motion processing [58,59]. Studies using noise stimuli

instead of patterned motion find quadrature pair inputs with

Figure 8. Receptive fields can be estimated from responses to naturalistic movies. A. Two filters found by applying the STC and
localization methods to a V1 complex cell recorded in the context of naturalistic movies. To represent the three dimensions of the filters (two spatial
and one temporal), the filters are shown as a series of two-dimensional (2-D) spatial plots across latencies. B. The set of localized filters across space
for an example non-DS neuron (14,664 spikes, DSI = 0.05, left) and DS neuron (2,628 spikes, DSI = 0.51, right). Here, each filter is represented by its 2-D
spatial slice at 40 ms latency, which is the latency with maximal spatial power, i.e., variance across pixels (green and red outlined frames in A). The 15
spatial maps shown in each case are examples of localized filters centered on different spatial locations. C. A density plot showing the total temporal
power across all localized filters for the non-DS (top) and DS (bottom) neurons, demonstrating that - despite using a range of locations for the
localization method - localized filters only exist in a defined region. Rectangular insets indicate the relative size and position of the spatial filter, and
the colored contours overlaid on density plot show the outline of three example localized filters. D. To compare with the results from the analysis on
the random bars data (Figs. 1–5), spatiotemporal slices oriented in the neuron’s preferred direction (red arrows) are computed, and spatially projected
on the axis perpendicular (red tick marks). E. Projections along the direction indicated in (D) for each neuron’s localized filters reveal x-t plots that are
consistent with the 1-D dataset and illustrate differences in direction selectivity between the cells shown in (B) and (C).
doi:10.1371/journal.pone.0058666.g008
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squaring nonlinearities [14], also consistent with the basic tenets of

the Energy Model.

However, previous applications of the Energy Model do not

directly address how such computation is implemented by the

cortical circuitry. For example, the original formulation of the

Energy Model suggested combinatorial multiplicative interactions

of separate spatial and temporal filtering, which might be

mathematically equivalent to squaring nonlinearities applied to

two quadrature pair inputs [8,14]. While the presence of apparent

quadrature pairs has been the subject of some models [60], it is

likely a mathematically compact description of a much larger pool

of similarly oriented filters across multiple phases and/or positions

(e.g., Figs. 2,7). Such a possibility was explicitly mentioned as an

interpretation of the initial high-dimensional STC analysis [15]

and the techniques presented here allow such a description to be

derived directly from the data, consistent with other recently

developed methods [61,62]. Our results regarding DS in cat and

monkey therefore contribute more detailed evidence in favor of

localized energy computations previously found with other stimuli

[10] but do not support alternative mechanisms such as relative

placement of untuned excitation and asymmetric inhibition [41]

or the multiplicative combination of filter outputs underlying the

construction of DS in the original Reichardt model favored for

other species [47]. Given the computational equivalence of both

approaches to construct phase invariant opponent DS [8], the

concrete mechanism we propose reconciles those two seemingly

incompatible proposals.

Comparisons to Alternative Nonlinear Approaches
Applied to V1

Here, we model V1 responses explicitly using biologically

plausible filters and nonlinearities. These constraints are intro-

duced through the GNM model structure, which implicitly

assumes summation over a neuron’s inputs, and provides

straightforward methods to estimate the nonlinearities associated

with individual inputs from the data. This allows for the validation

of models with explicit rectification against more general

nonlinearities (Fig. 5A), and the ability to gauge the effects of

pooling recorded simple cells into complex cells (Fig. 7).

The modeling framework employed in this study is a novel

hybrid of previous analyses based on spike-triggered covariance

(STC) [23,24] and maximum-likelihood methods applied to linear

[31] and nonlinear [17] models. This approach can be divided

into two separate components, where extensions of STC are used

to find a set of localized filters using the STC subspace (Fig. 2A),

and then the nonlinear components of the model are identified by

leveraging techniques in maximum likelihood estimation

[16,17,31] given these filters.

The first component of our method relies on STC analysis. STC

filters are typically considered as identifying the important stimulus

subspace that affects the neuron’s response, although the

individual filters themselves do not necessarily have direct meaning

in this context [23]. Previous methods have proposed searching

this subspace for ‘‘directions’’ optimizing their informativeness

[25], statistical independence [26], or maximum entropy [63]. We

perform a similar search within this STC subspace but use a

biologically motivated objective: the spatial localization of filters

across the overall receptive field. The resulting localized estimates

span the same subspace as the STC filters and possess comparable

predictive performance, but provide a straightforward interpreta-

tion of the high-dimensional subspaces identified by STC

[29,61,62]. Although our optimization objective does not explicitly

constrain other RF measures (such as preferred spatial or temporal

frequency), the resulting filters are also consistent with respect to

these additional properties, both across the population as well as

regarding other studies [18,36,37].

The second component of our method associates an individual

nonlinearity with each filter, which can be directly estimated using

maximum likelihood. While this assumption does constrain the

potential computation allowable compared to high-dimensional

joint nonlinearities, such as in more general formulations of STC-

based models [24], these more flexible formulations are practically

limited to at most joint two-dimensional nonlinearities [15,64] due

to data limitations. Furthermore, in assuming separate nonlinear

functions associated with each filter, the GNM allows for the

application of biologically plausible constraints, and a directly

interpretable effect of each filter as the properties of potentially

observable inputs onto a given V1 neuron. While this approach

shares interpretability [65] and flexibility [66] with neural network

approaches, the nonlinearities associated with individual subunits

are estimated from the data and parameter estimation does not

require specification of additional parameters like training

schedule, number of hidden units, or inclusion of weight decay

and momentum terms. Similar subunit based models have recently

been shown to efficiently capture the nonlinearities observed at

other stages of early sensory processing [62,67,68].

Thus, this study provides an example of how statistical

approaches applied to readily available extracellular data can be

used to learn about network-level computation, at a level that

might be explicitly validated experimentally. Explaining the

construction of DS responses in different cells ranging from simple

to complex, our results more generally provide an important step

to understand how increasingly abstract information is extracted

across different cortical areas to form invariant representations.

Determining the inputs to a neuron and modeling how they are

combined forms an important part of understanding how specific

computations are implemented by the interplay of individual cells

in the circuits they are embedded in.
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