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Abstract

The detection of small amounts (nanomoles) of inorganic phosphate has a great interest in biochemistry. In particular,
phosphate detection is useful to evaluate the rate of hydrolysis of phosphatases, that are enzymes able to remove
phosphate from their substrate by hydrolytic cleavage. The hydrolysis rate is correlated to enzyme activity, an extremely
important functional parameter. Among phosphatases there are the cation transporting adenosinetriphosphatases
(ATPases), that produce inorganic phosphate by cleavage of the c-phosphate of ATP. These membrane transporters have
many fundamental physiological roles and are emerging as potential drug targets. ATPase hydrolytic activity is measured to
test enzyme functionality, but it also provides useful information on possible inhibitory effects of molecules that interfere
with the hydrolytic process. We have optimized a molybdenum-based protocol that makes use of potassium antimony (III)
oxide tartrate (originally employed for phosphate detection in environmental analysis) to allow its use with phosphatase
enzymes. In particular, the method was successfully applied to native and recombinant ATPases to demonstrate its
reliability, validity, sensitivity and versatility. Our method introduces significant improvements to well-established
experimental assays, which are currently employed for ATPase activity measurements. Therefore, it may be valuable in
biochemical and biomedical investigations of ATPase enzymes, in combination with more specific tests, as well as in high
throughput drug screening.
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Introduction

Adenosinetriphosphatases (ATPases) are enzymes that produce

inorganic phosphate (Pi) by cleavage of the c-phosphate of ATP.

Main representative members of this large family are the cation-

transport ATPases, e.g. sarcoplasmic reticulum Ca-ATPase

(SERCA) [1,2] and Na,K-ATPase [3,4]. These proteins couple

ATP hydrolysis to the transport of ionic species against their

electrochemical potential gradient.

Ion translocation is normally coupled to ATP hydrolysis

through a cyclic sequence of chemical reactions denoted as

‘‘enzymatic cycle’’. The enzymatic cycle includes initial enzyme

activation triggered by cation binding, followed by ATP utilization

to form a phosphorylated intermediate. The free energy derived

from ATP is then utilized by the phosphoenzyme for a

conformational transition, that favors displacement and release

of the bound cation. Binding of counter-transported ions induces

dephosphorylation of the enzyme, followed by release of the

counterions during a conformational transition to the initial state

[5]. Therefore, Pi detection is useful to evaluate the rate of Pi

production by ATPases and the related enzyme activity, an

extremely important functional parameter.

Phosphate detection is fundamental in environmental analysis

too. In particular, phosphate is an important routine parameter in

water analysis, being simultaneously an essential macronutrient

and a possible pollutant, when its concentration is abnormally

high. The quantification of phosphate in different water bodies is

important since an increase in phosphate concentration in surface

waters is usually linked to diffuse sources [6]. On the other hand,

phosphorus determination in soil samples provides important

information on phosphorus availability for plants [7].

Due to the broad relevance of phosphorus, different phosphate

detection methods have been optimized during years. These

methods are usually based on the chemistry of molybdenum. In

fact, it is well known that phosphate and molybdic acid form a

complex that can be reduced to produce a deep-blue-colored

complex called molybdenum blue [8]. Classical experimental

protocols for Pi detection involve the use of ammonium

heptamolybdate in acid environment (HCl or H2SO4), together

with a reducing agent such as sodium sulfite [9], stannous chloride

[10], phenylhydrazine [11], aminonaphtholsulfonic acid [9],

ascorbic acid [12], r-methylaminophenolsulfate [13], N-phenyl-

r-phenylenediamine [14] or ferrous sulfate [15]. The choice of the

reducing agent is critical for determining the stability of the

reduced complex and, moreover, affects the spectroscopic

properties of the produced molybdenum blue species [16].

A modified protocol involving potassium antimony (III) oxide

tartrate as an additional reagent exists. The use of this compound

has been described in environmental analysis on soil samples

[7,17] or water [6,18], but never in enzymology. Potassium

antimony (III) oxide tartrate reacts with ammonium heptamolyb-

date in an acid medium with diluted solutions of phosphate to
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form an antimony-phosphomolybdate complex. This complex can

be reduced to an intensely blue-colored complex by one of the

reducing agents mentioned above [7,18].

This paper presents, for the first time, the application of the

method based on the formation of the antimony-phosphomolyb-

date complex to the determination of the hydrolytic activity of

ATPases. Following an optimization of the experimental protocol,

the method was applied to native and recombinant ATPases to

demonstrate its validity, sensitivity and versatility.

Materials and Methods

Chemicals
Sodium azide (extra-pure), sulfuric acid (95–97%, pro-analysi),

ammonium heptamolybdate tetrahydrate (pro-analysi), tri-sodium

citrate dihydrate (pro-analysi), MgCl2 hexahydrate (pro-analysi),

tris(hydroxymethyl)aminomethane (TRIS; pro-analysi), potassium

antimony (III) oxide tartrate trihydrate (extra pure), KH2PO4

(suprapur), KCl (suprapur), NaCl (suprapur) and CaCl2 (suprapur)

were purchased from Merck. L(+)-ascorbic acid (normapur) was

from VWR BDH Prolabo. Na2-ATP hydrate and ouabain were

purchased from Fluka. Thapsigargin (TG), calcium ionophore

A23187 (calcimycin), ethylene glycol-bis(2-aminoethylether)-

N,N,N’,N’-tetraacetic acid (EGTA; 97%, for Molecular Biology)

and 3-(N-morpholino)propanesulfonic acid (MOPS) were obtained

from Sigma.

The water used for the preparation of all solutions was

produced by a purification system (Millipore, Direct-Q 5), that

eliminates bacterial content through a 0.22 mm sterile filter

(Millipak 40), reduces Total Organic Carbon content to less than

10 mg/l (Quantum EX Ultrapure Organex Cartridge) and lowers

ionic concentration, thus increasing resistivity to a maximum value

of 18.2 MV?cm (Progard 2 Pre-treatment pack).

Ethics Statement
Isolation of proteins from rabbit was performed in the

Department of Pharmacology, University of Florence, Italy.

Animal manipulations were carried out according to the Italian

Guidelines for Animal Care (DL 116/92, application of the

European Communities Council Directive 86/609/EEC) and

approved by the local IACUC (Advisory Committee for Ethical

and Juridical Control of the Center for Housing of Laboratory

Animals of the University of Florence). All efforts were made to

minimize animal sufferings.

Protein preparation
SERCA was isolated from rabbit hind-leg skeletal muscle in the

form of native vesicles according to [19]. The obtained vesicles are

not permeable to calcium ions. The total protein concentration,

determined by the Lowry procedure [20], was 8.4 mg/ml.

Membrane fragments containing the Na,K-ATPase were

isolated from rabbit kidneys following the procedure C described

in [21]. In this case, the total protein concentration was 2.07 mg/

ml.

Recombinant SERCA (WT and D351N mutant) was expressed

in COS-1 cells using adenoviral vectors as previously described

[22]. Total protein concentration was 2.6 mg/ml for the WT

enzyme (78 mg/ml of SERCA, corresponding to 3%) and

11.8 mg/ml for the D351N mutant (0.80 mg/ml of SERCA,

corresponding to about 7%). The content of expressed SERCA

was evaluated by SDS gel electrophoresis and Western blotting

[22].

Coloring solution
The coloring solution employed for Pi determination was

composed of sulfuric acid, ascorbic acid, ammonium heptamo-

lybdate and potassium antimony (III) oxide tartrate (herein

indicated as ‘‘tartrate’’). These compounds produce an antimo-

ny-molybdate complex that converts in antimony-phosphomolyb-

date when phosphorus is present as inorganic (orto)phosphate ion

[7,18]. The latter complex is blue-colored and therefore adsorbs

light in the visible range, allowing its use in quantitative analysis.

Solutions were always prepared from the following concentrated

stocks: 2.5 M H2SO4, 0.3 M ascorbic acid, 4 mM tartrate and

24 mM ammonium heptamolybdate.

Measurement of enzymatic activity
The enzyme (native or recombinant) was incubated (FALC

Thermoblock) in a buffer solution at 37uC and the reaction was

started by addition of 1 mM ATP. For SERCA, the buffer solution

contained 80 mM KCl, 25 mM MOPS (pH 7.0 by TRIS), 3 mM

MgCl2, 5 mM sodium azide, 0.2 mM EGTA, 0.2 mM CaCl2
(about 10 mM free calcium) and 2 mM A23187. In the case of

Na,K-ATPase, the buffer solution was composed by 20 mM KCl,

100 mM NaCl, 25 mM MOPS (pH 7.0 by TRIS) and 3 mM

MgCl2. Blank samples were prepared in the absence of calcium

ions and in the presence of 2 mM EGTA (SERCA) or in the

absence of sodium ions (Na,K-ATPase). Control experiments were

performed in the presence of 1 mM thapsigargin (SERCA) or

50 mM ouabain (Na,K-ATPase). The total protein concentration

was 10 mg/mL for native and recombinant (WT) SERCA, 1 mg/

mL for Na,K-ATPase and 4.5 mg/mL for mutant (D351N)

SERCA.

After incubation, aliquots were taken at subsequent times and

immediately added to the coloring solution contained in glass

disposable test tubes (Corning, mod. 99445-12). Usually, aliquots

of 100 mL were added to 900 mL of coloring solution, giving a total

final volume of 1 mL. This addition suddenly interrupts the

enzymatic ATP hydrolysis, and, therefore, Pi release, due to

enzyme denaturation produced by the strong acid conditions.

For each protein, five aliquots, each as triplicate, were taken at

different times to plot an activity curve (Pi vs time). Blank was also

evaluated as a triplicate. Where indicated, sodium citrate was

added from a 10% (w/w) stock 10 minutes after aliquot addition.

The calibration curve was determined by preparing standard

solutions of Pi from 1 or 0.1 mM aqueous stock solutions.

All measurements were carried out by an UV/Vis spectropho-

tometer (Jasco, mod. V-560) provided with a stirring and

thermostatable holder (Jasco, mod. EHC-477S). The bandwidth

was settled to 2 nm. Acquisition data pitch was 1 s for kinetic

measurements and 0.5 nm for spectra registration. Quartz

semimicro cuvettes (Hellma, 109.004F-QS) were used to allow

continuous stirring of the solution. The temperature was always

maintained at 20uC by a Peltier temperature controller (Jasco,

mod. EHC-477T).

Statistics
UV/Vis spectra were reproducible with a standard deviation of

less than 2%.

For activity measurements, error bars shown in figures indicate

standard deviation of at least three measurements for a represen-

tative experiment. Where indicated, errors were expressed as

standard error of the mean (SEM) of a number of independent

measurements.

Measurement of ATPase Activity
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Results

In the present work, the optimal experimental conditions

(concentration of reagents and detection wavelength) for absor-

bance measurements were first determined. The method was then

tested on different ATPase enzymes, both in native and

recombinant form.

Optimization of the experimental conditions
To determine the optimal concentrations of reagents in the

coloring solution, the formation of the antimony-phosphomolyb-

date complex and its spectroscopic properties were examined by

varying the concentration of a single reagent and maintaining

constant that of the other three. Moreover, the amount of Pi was

kept constant at 15 nmol for all experiments.

We started by considering the dependence on sulfuric acid

concentration. The reaction mixture contained 0.48 mM ammo-

nium-heptamolybdate, 6 mM ascorbic acid and 40 mM tartrate,

plus the desired amount of H2SO4. The reaction was started by

addition of Pi to the cuvette under continuous stirring at 20uC.

Color development, indicating complex formation, was followed

by measuring the absorbance at 710 nm as a function of time.

Fig. 1A shows representative color-development curves for

different H2SO4 concentrations, whereas Fig. S1 shows the

corresponding visible spectra between 400 and 900 nm taken

15 minutes after addition of Pi. We considered a concentration

range from 12.5 to 625 mM H2SO4 (Table 1). The color

developed more slowly when the acid concentration was higher,

whereas a faster initial color development was observed by

decreasing acid concentration (Fig. 1A and B). Color development

rates were determined as the reciprocal of the time needed to

reach half of the stationary absorbance value. Below 80 mM

H2SO4 a stationary value of the absorbance could not be obtained

(Fig. 1A). Therefore, the optimal range of H2SO4 concentration

for fast and stable color development was 100–140 mM (Fig. 1B

and Table 1).

Similar experiments were carried out by varying the concen-

trations of the other three reagents one by one within a certain

concentration range according to Table 1. For each reagent, an

optimal concentration range was found.

By varying the concentration of ammonium heptamolybdate,

we observed that color developed very slowly or not developed at

all at molybdate concentrations lower than 0.35 mM (Fig. 2A and

2B). On the contrary, color developed rapidly but without

attaining a stable absorbance value at concentrations higher than

0.70 mM (Fig. 2A). Therefore, the optimal concentration range

for ammonium molybdate was 0.35–0.70 mM (Fig. 2B and Table

1). Representative visible spectra between 400 and 900 nm are

reported as (Fig. S2).

Ascorbic acid is the reducing agent that is required for the

formation of the molybden-blue complex. Therefore, color

development should be slower and/or not complete by decreasing

ascorbic acid concentration. This was confirmed in our experi-

ments, as reported in Fig. 3A. On the other hand, color

development becomes independent on ascorbic acid at concen-

trations greater than 3 mM and remains fast and stable in time

(Fig. 3A and 3B). Examples of acquired visible spectra between

400 and 900 nm are reported as (Fig. S3). Ascorbic acid should

then be present at concentrations greater than 3 mM (Fig. 3B and

Table 1).

Finally, tartrate concentration was varied in the range 0.88–

400 mM (Table 1). Complex formation was significantly slower

and less efficient at low tartrate concentrations, and became

apparently independent on tartrate concentration at higher values

(Fig. 4A and 4B). As a matter of fact, visible spectra show

significant changes in the blue-edge region at tartrate concentra-

tion higher than 100 mM (Fig. S4). This suggests that a different

complex was formed under those conditions. Therefore, the

optimal concentration range for tartrate was 20–100 mM (Fig. 4B

and Table 1).

Figs. 1B, 2B, 3B, and 4B also compare absorbance values at 710

and 890 nm. The dependence on reagent concentration is similar

at both wavelengths, but the signal is significantly higher at 890

nm. We observed that the signal-to-noise ratio at 890 nm is lower

than that at 710 nm (3.5?102 with respect to 1?104, see Fig. S5),

probably due to the fact that the maximal detection wavelength of

our spectrophotometer is 900 nm. Therefore, we selected a

detection wavelength of 850 nm to obtain a high signal (.85%

with respect to 700 nm, Fig. S5) with a good signal-to-noise ratio

(2?103, Fig. S5).

In conclusion, based on the experiments described above we

decided to perform absorbance measurements at 850 nm and to

prepare a coloring solution with the following composition:

125 mM H2SO4, 0.50 mM ammonium-molybdate, 10 mM

ascorbic acid and 40 mM tartrate.

Figure 1. Dependence on H2SO4 concentration. (A) Color
development curves determined at 710 nm for different concentrations
of sulfuric acid: 12.5 mM (a), 41.7 mM (b), 55.6 mM (c), 139 mM (d),
167 mM (e), 194 mM (f), 222 mM (g) and 625 mM (h). The arrow
indicates the addition of 15 nmol of Pi to the cuvette. (B) Dependence
of absorbance (N, m, &) or color development rate (#) on acid
concentration. Absorbance data were taken from the color develop-
ment curves at t = 15 min (N) or from the visible spectra (Fig. S1) at
710 nm (m) or 890 nm (&). The dashed lines indicate the optimal
concentration range (see also Table 1).
doi:10.1371/journal.pone.0058615.g001

Measurement of ATPase Activity
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Table 1. Optimization of experimental conditions.

Reagent Solution composition Concentration range Optimal concentration range

H2SO4 0.48 mM ammonium-heptamolybdate 12.5–625 mM 100–140 mM

6 mM ascorbic acid

40 mM tartrate

Ammonium heptamolybdate 125 mM H2SO4 0.048–4.8 mM 0.35–0.70 mM

6 mM ascorbic acid

40 mM tartrate

Ascorbic acid 125 mM H2SO4 0.1–100 mM .3 mM

0.48 mM ammonium heptamolybdate

40 mM tartrate

Tartrate 125 mM H2SO4 0.88–400 mM 20–100 mM

0.48 mM ammonium heptamolybdate

6 mM ascorbic acid

Experimental conditions employed during the optimization procedure.
doi:10.1371/journal.pone.0058615.t001

Figure 2. Dependence on ammonium heptamolybdate con-
centration. (A) Color development curves measured at 710 nm in the
presence of different concentrations of ammonium molybdate:
0.048 mM (a), 0.24 mM (b), 0.36 mM (c), 0.96 mM (d), 1.28 mM (e)
and 4.8 mM (f). Inorganic phosphate (15 nmol) was added where
indicated by the arrow. (B) Dependence of absorbance (N, m, &) or
color development rate (#) on ammonium heptamolybdate concen-
tration. Absorbance data were taken from the development curves at
t = 15 min (N) or from the visible spectra (Fig. S2) at 710 nm (m) and
890 nm (&). The optimal concentration range is indicated by the
dashed lines (Table 1).
doi:10.1371/journal.pone.0058615.g002

Figure 3. Dependence on ascorbic acid concentration. (A) Color
development curves for different concentrations of ascorbic acid at 710
nm: 0.1 mM (a), 0.6 mM (b), 1.5 mM (c), 3 mM (d), 6 mM (e), 30 mM (f)
and 100 mM (g). The arrow indicates addition of 15 nmol of Pi to the
cuvette to start the reaction. (B) Dependence of absorbance (N, m, &)
or color development rate (#) on acid concentration. Absorbance data
were taken from the color development curves at t = 15 min (N) or from
the visible spectra at 710 nm (m) and 890 nm (&) (Fig. S3). The dashed
and the arrowed line indicate the optimal concentration range (Table
1).
doi:10.1371/journal.pone.0058615.g003

Measurement of ATPase Activity
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Hydrolysis of ATP and color stability
It is known that ATP undergoes hydrolysis in acid conditions.

This might be a problem for activity measurements on ATPase

enzymes, since acid-released-Pi may be produced, causing a

chemical interference [23]. For this reason, we quantified the

amount of Pi released by ATP under the acid conditions of the

coloring solution (Fig. 5).

Results show that after 1 hour the absorbance increased of

about 3% using 1 mM ATP and 30% using 5 mM ATP.

Percentages are expressed with respect to the stationary absor-

bance value attained in the presence of 15 nmol Pi (Fig. 5). The

corresponding amounts of released Pi were 0.45 nmol and 4.5

nmol, respectively, and the rates of ATP hydrolysis 0.45 nmol/h

and 4.5 nmol/h.

When determining the hydrolytic activity of ATPases, acid ATP

hydrolysis occurs during the time elapsed between addition of the

aliquot to the coloring solution and absorbance measurement

(‘‘elapsed time’’). Obviously, the interference due to nascent Pi can

be minimized using 1 mM ATP, a concentration that is largely

sufficient for the activity measurements (see below). Nevertheless,

the contribution of the acid-released-Pi should be subtracted from

the total Pi using a blank sample (see Materials and Methods). This

correction is acceptable for short elapsed times (Fig. 5). For long

elapsed times, addition of sodium citrate might be helpful. In fact,

sodium citrate [23] or a citrate-arsenite mixture [24] act as

stabilizing agents by chelating molybdenum, thus preventing the

detection of nascent inorganic phosphate. This is also shown in

Fig. 5 where, in the presence of citrate, the absorbance level

remains stable for several hours.

Calibration curve
We then determined the calibration curve at 850 nm and the

linearity range extension for the method. It is evident from Fig. 6

that, using the optimized experimental conditions, this method

allows the determination of sub-nanomoles of Pi.

In the absence of sodium citrate, the calibration curve remained

perfectly linear up to 100 nmol Pi (Fig. 6 and Table 2), and the

estimated molar extinction coefficient was about 2.05?105 M-1cm-1.

However, in the presence of citrate two regions are distinguishable,

below and above 40 nmol Pi. Below 40 nmol Pi linearity was still

excellent (Table 2), with a molar extinction coefficient in agreement

with that determined without citrate (1.90?105 M-1cm-1).

Above 40 nmol a linear trend is still observed, but the slope of the

calibration curve slightly decreases (Table 2), as if a different

chemical species may be present in solution (e = 1.5?105 M-1cm-1).

However, the presence of citrate has no effect below 40 nmol Pi (Fig.

6, inset B). Representative visible spectra were reported in Fig. S6.

Considering that a detectable signal was already present with

0.1 nmol Pi (Fig.6, inset A), with a very good correlation also

below 2 nmol Pi (Table 2), the range of linearity for the present

method is 0.1–40 or 0.1–100 nmol Pi, with or without citrate,

respectively.

ATPase activity determination
To demonstrate the validity of this method, the hydrolytic

activities of different ATPases were determined. Activity measure-

ments were carried out on native (SERCA and Na,K-ATPase) and

recombinant proteins (WT and D351N mutant SERCA) at 37uC.

Control experiments were performed in the presence of specific

Figure 4. Dependence on potassium-antimony (III) oxide
tartrate concentration. (A) Color development curves acquired at
710 nm for different concentrations of tartrate: 0.88 mM (a), 4 mM (b),
10 mM (c), 40 mM (d), 100 mM (e) and 400 mM (f). The reaction was
started by the addition of 15 nmol of Pi (indicated by the arrow). (B)
Dependence of absorbance (N, m, &) or color development rate (#)
on tartrate concentration. Absorbance data were taken from the
development curves at t = 15 min (N) or from the visible spectra (Fig.
S4) at 710 nm (m) and 890 nm (&). The optimal concentration range is
indicated by the dashed lines (see also Table 1).
doi:10.1371/journal.pone.0058615.g004

Figure 5. Color stability. Color development curves monitored for
24 hours under different experimental conditions: 1 mM ATP (a); 1 mM
ATP followed by the addition of 3% citrate (b); 5 mM ATP (c); 5 mM ATP
followed by the addition of 0.2% citrate (d). The curve obtained in the
presence of 15 nmol Pi is also reported for comparison (e). The inset
shows the same curves within a smaller time interval (3 hours). From
the slope of the curves acquired in the presence of 1 and 5 mM ATP (a
and c, respectively), the rate of ATP hydrolysis can be estimated (see
text).
doi:10.1371/journal.pone.0058615.g005

Measurement of ATPase Activity
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inhibitors, i.e. TG for SERCA [25,26] or ouabain for the Na,K-

ATPase [27].

Native SERCA
We first examined SERCA contained in native vesicles

(microsomes) and isolated from rabbit skeletal muscle [19]. The

measured activity was 4.3 6 0.1 mmol Pi / (min?mg) (Fig. 7 and

Table 3) expressed as average of three independent measurements

6SEM. SERCA content corresponds approximately to 50% of

the total protein [1], therefore SERCA hydrolytic activity is about

8–9 mmol Pi / (min?mg). Considering a molecular mass of 110

kDa for the protein [28], this value corresponds to a turnover rate

of about 15–17 s-1 (Table 3).

Enzyme activity was fully blocked by 1 mM TG and by

removing calcium ions from the solution following addition of

2 mM EGTA (Fig. 7). This confirms the absence of other Ca-

dependent phosphatases in the preparation. Moreover, in the

absence of the calcium ionophore A23187 the measured

hydrolytic activity was significantly lower (0.68 6 0.08 mmol Pi

/ (min?mg); Fig. 7 and Table 3). Hence, the absence of ionophore

causes a rise of lumenal Ca2+ concentration to mM values with

rapid saturation of the vesicles by Ca2+ and consequent ‘‘back-

inhibition’’ of the pump [29]. This result is also an indirect

confirmation that microsomes are not leaky to Ca2+ ions.

Native Na,K-ATPase
Similar measurements were performed on purified (open)

membrane fragments containing the Na,K-ATPase (,99%

Na,K-ATPase). An activity value of 11.8 6 0.7 mmol Pi /

(min?mg) (average of three independent measurements 6SEM)

was determined (Fig. 8 and Table 3). Here again, Pi production by

the enzyme was fully blocked by 50 mM ouabain and by

eliminating sodium ions from the buffer solution (Fig. 8). This

indicates that the measured activity is entirely ascribable to the

Na,K-ATPase. With a molecular mass of 155 kDa [3], the related

turnover rate is about 30 s-1 (Table 3).

Recombinant SERCA (WT and D351N)
We then extended this method to recombinant ATPases, that

are notoriously produced at significantly lower concentration with

respect to native enzymes (see Materials and Methods).

Recombinant (WT) SERCA exhibited a hydrolytic activity of

0.2860.04 mmol Pi / (min?mg), considering the total protein (Fig.

9 and Table 3). This value increases to 9.361.3 mmol Pi /

(min?mg) if we consider the effective SERCA content (3% for this

preparation), which is in good agreement with the value

determined for the native protein (Table 3). It is worth noting

that, due to the low protein concentration, a longer enzymatic

reaction time is necessary to detect a Pi concentration with a good

signal-to-noise ratio. Therefore, measurements on recombinant

Figure 6. Calibration curves. Calibration curves determined in the
absence (#) or in the presence (N) of 0.2 % citrate. The parameters
obtained from the linear fitting of the experimental data (plain or
dashed lines) are summarized in Table 2. The two insets show the same
curves for different concentration ranges. A significant absorbance can
be measured even in the presence of 0.1 nmol Pi (inset A), whereas the
presence of citrate has no effect below 40 nmol Pi (inset B). Error bars
represent the SEM of at least three independent measurements and,
where not visible, are masked by symbols. Elapsed time: 30 minutes.
doi:10.1371/journal.pone.0058615.g006

Table 2. Calibration curves.

Sodium citrate Pi concentration range Intercept Slope R Estimated e

(nmol) (nmol -1) (M-1cm-1)

– 0–100 –0.008(1) 0.02048(5) 0,99953 2.05?105

+ 0–2 0.001(1) 0.0202(9) 0.99947 2.0?105

+ 0–40 0.0020(5) 0.01905(6) 0.99983 1.90?105

+ 40–100 0.155(8) 0.0153(1) 0.99905 1.5?105

Fitting parameters for experimental data reported in Fig. 6. The uncertainty on the last digit is indicated between parenthesis.
doi:10.1371/journal.pone.0058615.t002

Table 3. Enzyme activity.

Enzyme A23187

Hydrolytic activity
(mmol Pi / (mg?min))

Turnover
rate(s-1)

Total protein SERCA only

Native SERCA present 4.360.1 ,8.5 15.6

absent 0.6860.08 ,1.4 2.6

Native Na,K-ATPase --- 11.860.7 --- 30

Recombinant SERCA (WT) present 0.2860.04 ,9 16.5

absent 0.1560.02 ,0.5 0.9

Hydrolytic activity values, with the corresponding turnover rates, determined
for native SERCA, native Na,K-ATPase and recombinant SERCA (WT) at 37uC. In
the case of SERCA, the presence or absence of 2 mM calcium ionophore
(A23187) is specified, and the activity values are expressed with respect to the
total protein or to SERCA only (see text).
doi:10.1371/journal.pone.0058615.t003
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SERCA were performed over a time period of 40 minutes (Fig. 9),

whereas few minutes were sufficient for measurements on native

proteins (Figs. 7 and 8). The longer time interval determined a

longer elapsed time, and required the use of citrate.

Hydrolytic activity of recombinant SERCA was fully abolished

by 1 mM TG or by elimination of calcium ions from the buffer

solution (Fig. 9). In the absence of calcium ionophore the activity is

approximately halved (0.1560.02 mmol Pi / (min?mg), Fig. 9 and

Table 3). This demonstrates that ‘‘recombinant’’ microsomes are

not leaky to calcium ions, as observed for ‘‘native’’ microsomes.

A further control was carried out by using the catalytically

inactive D351N mutant. This mutant can bind calcium ions but is

unable to hydrolyze ATP [29], due to mutation of the conserved

Asp residue (D351) with an Asn. Accordingly, we found that no

inorganic phosphate was produced by the D351N mutant (Fig. 9).

Discussion

The detection of small amounts (nanomoles) of inorganic

phosphate has a broad interest that spans from environmental to

biochemical fields [6,7,17,18,23,30–32]. The present method

optimizes an experimental protocol usually employed for envi-

ronmental analysis to allow its use with phosphatase enzymes, such

as ATPases. Our method introduces significant improvements to

well-established experimental assays, which are currently em-

ployed for ATPase activity measurements.

Comparison with other methods
Classical protocols for ATPase activity determination include

both coupled-enzyme-based and molybdenum-based methods. An

example of the former method is that introduced by Schwartz et

al. [33], that makes use of the enzymes pyruvate kinase (PK) and

lactate dehydrogenase (LDH) and the reagents phosphoenolpyr-

uvate and NADH. In this method, the released phosphate enters a

cascade reaction involving firstly PK, that regenerates ATP thanks

to the dephosphorylation of phosphoenolpyruvate. The pyruvate

so produced, is converted to lactate by LDH with the simultaneous

oxidation of NADH. By monitoring the absorbance at 340 nm

with a spectrophotometer, the rate of absorbance decrease

(correlated to NADH oxidation) can be determined. This rate is

proportional to the rate of phosphate release by the ATPase, since

the reaction catalyzed by PK and LDH are much faster.

Figure 8. Hydrolytic activity of native Na,K-ATPase. Enzymatic
activity of native Na,K-ATPase determined in the presence of sodium
ions (N, X). Background activity in the absence of sodium ions (#) or in
the presence of 50 mM ouabain (X) are also shown. The solid line
represent the linear fitting (Y = A+BX) of the experimental data: A = 4 6
1 mmol Pi/mg; B = 10.9 6 0.5 mmol Pi/(mg?min). Error bars represent
the standard deviations of three measurements. Elapsed time:
30 minutes.
doi:10.1371/journal.pone.0058615.g008

Figure 9. Hydrolytic activity for recombinant SERCA. Enzymatic
activity for WT recombinant SERCA (N, m, #, X) and the D351N mutant
(’). Activity was determined in the presence of 10 mM free calcium (N,
m, X, ’) and in the presence (N, X, ’) or in the absence (m) of 2 mM
A23187. Pi release was also quantified in the absence of calcium ions
(#) or in the presence of 1 mM TG (X). Solid lines represent the linear
fitting of the experimental data: A = 0.8 6 0.2 mmol Pi/mg; B = 0.32 6
0.02 mmol Pi/(mg?min) (+A23187); A = 0.7 6 0.3 mmol Pi/mg; B = 0.15
6 0.02 mmol Pi/(mg?min) (-A23187). Error bars represent the standard
deviations of three measurements. Elapsed time: 90 minutes.
doi:10.1371/journal.pone.0058615.g009

Figure 7. Hydrolytic activity of native SERCA. Enzymatic activity
of native SERCA determined in the presence of 10 mM free calcium (N,
m, X) and in the presence (N, X) or in the absence (m) of 2 mM A23187.
As control experiments, Pi release was also quantified in the absence of
calcium ions (#) or in the presence of 1 mM TG (X). Solid lines represent
the linear fitting (Y = A+BX) of the experimental data: A = 3 6 1 mmol
Pi/mg; B = 4.4 6 0.3 mmol Pi/(mg?min) (+A23187); A = 0.6 6 0.3 mmol
Pi/mg; B = 0.68 6 0.08 mmol Pi/(mg?min) (-A23187). Error bars
represent the standard deviations of three measurements. Elapsed
time: 30 minutes.
doi:10.1371/journal.pone.0058615.g007
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The enzymatic method of Schwartz et al. [33] is a rapid and

easy test that can be performed on ATPases, as reported in the

literature [34,35]. On the other hand, PK and LDH enzymes

usually need a careful storage (e.g. at -20uC) and their complete

functionality has to be checked periodically. Moreover, in case of

inhibition studies of ATPases, appropriate control experiments

must be carried out to exclude any interference of the inhibitor

with the reactions catalyzed by PK and LDH. Obviously, a non-

enzymatic method does not require such controls. Incidentally,

this also makes a non-enzymatic test more suitable for a possible

employment in a high throughput device for automatic drug

screening.

On the other hand, a classical experimental molybdenum-based

protocol used with ATPases is the Lanzetta method [23]. This

method allows the determination of nanomoles of Pi using

malachite green as a peculiar agent, that produces a complex

with the phospho-molybdate compound [36]. A detergent is also

necessary to stabilize the final complex, originally sterox [23] but

also tween20 [32,36,37] or TritonX [31] have been used as valid

alternatives. In the Lanzetta method the coloring solution needs to

be mixed for at least 20 minutes and filtrated before use. The

authors also suggested the use of citrate (final concentration ,3%)

to block development of nascent Pi due to the acid environment

and to the catalytic effect of molybdenum [23]. Under the typical

experimental conditions of the Lanzetta method, the ATP acid

hydrolysis rate is estimated to be 2.70 nmol Pi/h in the presence of

26 mM ATP [23]. Color fully develops in 30 minutes and solutions

have a stability of about 4 hours [23]. We used the Lanzetta

method in our previous studies, confirming all these experimental

findings [30,38,39].

The method based on potassium-antimony (III) oxide tartrate,

described in the present article, has never been applied to ATPase

enzymes, to our knowledge. This method appears to be as sensitive

as the Lanzetta test (Fig. 6), but introduces some significant

experimental advantages:

1.The method has a wide linearity range, from 0.1 nmol to 100

nmol of Pi, if citrate is not employed. The linearity range

reduces to 0.1-40 nmol in the presence of citrate (Fig. 6 and

Table 2);

2.There is no need to use a detergent nor to perform extensive

mixing and filtrate the coloring solution before use. The

preparation of the coloring solution is therefore easy and fast;

3.Color develops very rapidly (about 2-3 min, e.g. Fig. 1A) and is

stable for several hours (Fig. 5);

4.Using our method, the ATP acid hydrolysis rate is significantly

lower (0.45 nmol/h in the presence 1 mM ATP, Fig. 5) with

respect to the Lanzetta method (2.70 nmol/h in the presence of

26 mM ATP [23]). Hence, addition of citrate is not necessary for

short elapsed times (as in the case of native proteins);

5.When citrate becomes necessary, a final concentration of 0.2% is

sufficient to stabilize color (Fig. 5), with respect to ,3% as

reported by [23]. This significantly reduces the consumption of

this reagent.

It is worth noting that the molybdenum blue produced in this

manner has a maximum of absorption at 850 nm (Fig. S6),

indicating that a different reduced species is formed with respect to

the Lanzetta method (maximum wavelength 660 nm).

For all these reasons, this method turns out to be a new, fast,

stable, reliable and sensitive system to detect nanomoles of Pi

released by ATPases.

Application to ATPase enzymes
Our method was successfully applied to both native and

recombinant ATPases. Whereas native ATPases can be isolated in

high concentration, at present recombinant proteins can only be

produced at low yield. To limit the use of recombinant protein, we

need a sensitive experimental method, which is able to detect low

amounts of analyte with a good signal-to-noise ratio.

Using the present method we determined the hydrolytic activity

of both native and recombinant ATPases, and we obtained

experimental results (i.e. activities and turnover rates) in agree-

ment with those reported in the literature. In particular, knowing

the molecular mass of the enzyme we calculated turnover rates

from the measured hydrolytic activities (Table 3). We found that

SERCA (both native and recombinant) has a turnover rate of 15–

17 s-1, whereas a rate of 30 s-1 was obtained in the case of native

Na,K-ATPase. The SERCA turnover rate agrees with that

reported in the literature at the same temperature (37uC) [40].

The turnover rate calculated for Na,K-ATPase is lower with

respect to the values reported by Clarke and colleagues [41,42],

probably because some of the Na,K-ATPase molecules are

denaturated or for some reason inactive in our preparation.

However, lower values for the Na,K-ATPase activity (and hence

the turnover rate) at 37uC, similar to that obtained in our

measurements, were also reported [43,44].

In the case of SERCA, the turnover is slower in the absence of

the calcium ionophore A23187, due to excessive Ca2+ accumu-

lation into the microsomes. By comparing the turnover rates in the

absence of A23187 for native and recombinant SERCA (2.6 s-1 vs

0.9 s-1; Table 3), it appears that ATP-dependent Ca2+ accumu-

lation into ‘‘native’’ microsomes is about 3 times faster with respect

to ‘‘recombinant’’ microsomes.

Conclusions
A sensitive, fast, sound, reliable and experimentally simple

method was developed to determine hydrolytic activity of

phosphatases. The method can be easily applied to ATPase

enzymes, membrane proteins with many important physiological

roles that are emerging as potential drug targets [45,46]. The

measurement of ATPase hydrolytic activity is necessary to test

enzyme functionality, but it is also useful to reveal possible inhibitory

effects of molecules that interfere with the hydrolytic process.

Therefore, this method may be valuable in biochemical and

biomedical investigations of ATPase enzymes, in combination with

more specific tests, as well as in high throughput drug screening.

Supporting Information

Figure S1 Dependence on H2SO4 concentration. Visible

spectra acquired for different H2SO4 concentrations as indicated

in the legend.

(TIF)

Figure S2 Dependence on ammonium heptamolybdate
concentration. Visible spectra acquired for different ammonium

heptamolybdate concentrations (see legend).

(TIF)

Figure S3 Dependence on ascorbic acid concentration.
Visible spectra corresponding to different ascorbic acid concen-

trations according to the legend.

(TIF)

Figure S4 Dependence on potassium-antimony (III)
oxide tartrate concentration. Visible spectra acquired for

different tartrate concentrations (see legend).

(TIF)
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Figure S5 Signal-to-noise ratio. (A) Representative station-

ary absorbance levels determined in the presence of 20 nmol Pi at

different wavelengths (see legends). (B) Dependence of the

absorbance (N) and of the signal-to-noise ratio (#) on the working

wavelength. Absorbance was normalized with respect to the value

attained at 700 nm. The signal-to-noise ratio at each wavelength is

given by the ratio of the average absorbance to the corresponding

standard deviation. Averages were calculated over a time period of

4 minutes for each trace in panel A. The normalized absorbance

and signal-to-noise ratio at the selected wavelength of 850 nm are

indicated by the dashed lines.

(TIF)

Figure S6 Dependence on phosphate concentration.
Visible spectra acquired for different phosphate concentrations

(see legend). The coloring solution had the composition deter-

mined after the optimization procedure (see text).

(TIF)
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