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Abstract

Traveler’s dilemma (TD) is one of social dilemmas which has been well studied in the economics community, but it is
attracted little attention in the physics community. The TD game is a two-person game. Each player can select an integer
value between R and M (RvM) as a pure strategy. If both of them select the same value, the payoff to them will be that
value. If the players select different values, say i and j (RƒivjƒM), then the payoff to the player who chooses the small
value will be izR and the payoff to the other player will be i{R. We term the player who selects a large value as the
cooperator, and the one who chooses a small value as the defector. The reason is that if both of them select large values, it
will result in a large total payoff. The Nash equilibrium of the TD game is to choose the smallest value R. However, in
previous behavioral studies, players in TD game typically select values that are much larger than R, and the average selected
value exhibits an inverse relationship with R. To explain such anomalous behavior, in this paper, we study the evolution of
cooperation in spatial traveler’s dilemma game where the players are located on a square lattice and each player plays TD
games with his neighbors. Players in our model can adopt their neighbors’ strategies following two standard models of
spatial game dynamics. Monte-Carlo simulation is applied to our model, and the results show that the cooperation level of
the system, which is proportional to the average value of the strategies, decreases with increasing R until R is greater than
the critical value where cooperation vanishes. Our findings indicate that spatial reciprocity promotes the evolution of
cooperation in TD game and the spatial TD game model can interpret the anomalous behavior observed in previous
behavioral experiments.
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Introduction

Cooperation is ubiquitous in biological and social systems [1–3].

In general, cooperation is expensive, which leads to the so-called

social dilemma. For a social dilemma, a group of individuals can

achieve the maximal payoff by cooperation, but individuals

perform best by acting in their own interests. Understanding the

origins of cooperation in a group of unrelated and self-interested

individuals is a central problem in biological, social, and physical

science [3]. The evolutionary game theory is an elegant framework

to study such problem [4–7]. Based on this framework, several

mechanisms are proposed to explain the cooperation behaviors in

the societies [3]. Among them, we focus on the spatial reciprocity

which has been recognized as one of the five primary mechanisms

to promote the appearance of cooperation [3]. Below, we briefly

review some well-studied spatial evolutionary game models

including the spatial prisoner’s dilemma (PD) game [8–10], the

spatial snowdrift (SD) game [11,12], and the spatial public goods

game [13–15]. For a comprehensive discussion on this topic, we

refer the readers to the surveys [7,16,17] and the references

therein.

The spatial PD game model is perhaps the most popular spatial

game model where each player is located on a node of the network

and the players play PD game with their neighbors [8–10]. Here

the PD game is a two-person game. In the PD game, each player

can choose either cooperation or defection. If both of them select

cooperation, they both gain R. If both of them choose defection,

they both receive P. Instead, if one choose cooperation and the

other select defection, the cooperator obtains S while the defector

receives T . The parameters in the PD game are required to meet

the conditions TwRwPwS and TzSv2R. It has shown that in

well-mixed populations, defection is the only evolutionarily stable

strategy [5]. That is to say, cooperators are doomed to extinction.

However, as observed in the seminal work of Nowak and May [8],

when the players of the PD game are located on the square lattice

and each of them plays PD game with its neighbors, then the

cooperators can survive by forming clusters. This work has

inspired a large number of studies on spatial game models [7,17–

29]. Besides the spatial PD game, another notable spatial game

called spatial snowdrift (SD) game are also investigated by the

researchers [11,12]. In which the SD game (also called hawk-dove

or chicken game) is also a two-person game and the players can

only choose either cooperation or defection [6]. Unlike the PD

game, the parameters (R, S, P, and T ) in the SD game are

restricted to TwRwSwP. In the SD game, however, the spatial

structure is shown to inhibit the evolution of cooperation [11].

Both of the PD and SD games are the two-person game. The

public goods (PG) game, however, is an N-person game where the

players can choose either to contribute to the common pool

(cooperation) or to contribute nothing (defection). The total
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investment is multiplied by a so-called multiplication factor

because of the synergy effects of cooperation. Then, the multiplied

investment is equally distributed to all the individuals irrespective

of their initial strategies. The rational player will select defection if

its payoff is smaller than the investment cost [30]. As a

consequence, the society evolves to the ‘‘tragedy of the commons’’

[30], i.e., all the individuals become the free riders. However,

similar to the spatial PD game, when the players in the PG game

have spatial neighborhood interactions, the number of free riders

in the system can be significantly reduced [13,14,25,31,32].

Another spatial game called spatial ultimatum game [33] also

deserves to mention. Such a spatial game is recently used to study

the evolution of fairness [33]. It has turned out that the spatial

structure promotes the dominance of the fair players [33]. More

recently, Szolnoki et al. in [34] show that the spatial structure

promotes the evolution of fairness only if the players have a

multitude of choices to pose their ultimatums.

In this paper, we consider the traveler’s dilemma (TD) game

which has received extensive attention in the economic society but

has attracted little attention in the physics community so far.

Similar to the PD game, the TD game is also a two-person game

which is proposed by Basu [35]. We give a brief description of the

TD game as follows: assume that two travelers have identical

souvenirs and both of which have been lost by the airline. The two

travelers come back to their airline to ask for compensation. The

airline representative does not know the accurate price of the

souvenirs, but he knows that the price falls within an interval

½R,M�. Therefore, the airline representative asks the two travelers

to write down the value from R to M separately. If both travelers

claim the same value, then the airline will compensate both with

that amount. However, if they declare different values, the airline

representative will assume that the lower value is more accurate.

Therefore, the representative pays the traveler who claims the

lower value that amount plus a bonus of R for his honesty, and

gives the other traveler the lower value minus R for penalty. For

example, if one traveler declares that the price of the souvenir is 20

while the other traveler declares that its price is 30. Suppose R~2,

then the first traveler will receive 22 while the other will get 18.

Following [36], we assume that both travelers declare an integer

number, and both R and M are integer number. To create a

social dilemma, we restrict Rw1, similar restriction has been done

in [36].

By the classical game theory, the Nash equilibrium of the TD

game is that both travelers claim the minimal number R [35].

Clearly, the maximal total payoff of the travelers is 2M by both

declaring the maximal value M. As a result, the TD game yields a

social dilemma. Many previous experimental studies found that

the players’ behavior significantly deviated from the prediction of

the classical game theory. Capra et al. [37] found that there exists

an inverse relationship between R and the average claim. That is

to say, for a small R, the average claim could be a large value.

Subsequently, Goeree and Holt [38] presented a learning

framework to interpret such anomalous behavior. More recently,

Manapat et al. [36] proposed a stochastic evolutionary framework

to explain the cooperation behavior observed in TD game.

Specifically, they studied stochastic evolutionary dynamics in finite

populations with varying selection and mutation rate parameters,

and their theoretical results confirmed the observed cooperation

behavior. In this paper, we study TD game on a square lattice by

adopting the standard spatial game model. Using Monte-Carlo

simulation, we find that the observed cooperation behavior in our

system is consistent with the previous experimental observations.

Furthermore, we also present an analysis on an ideal model where

the players can only select two pure strategies (R and M ) to

explain the observed phenomenon which further confirms our

results. Our findings indicate that the spatial reciprocity can

facilitate the evolution of cooperation in TD game, and thereby

the spatial TD game model can be used to interpret the observed

cooperation behavior in TD game.

Model
The TD game is a two-person game with multiple strategies. In

the TD game, each player selects an integer value from the range

½R,M� as a pure strategy. Clearly, there are M{Rz1 strategies.

For convenience, we label these strategies as R, � � � ,M, where

1vRvM. Without loss of generality, we set M~100, and similar

setting has been considered in [36]. The payoff, denoted by Aij , for

a traveler claiming an integer value i[½R,M� (strategy i) when the

other declaring an integer value j[½R,M� (strategy j), is given by

Aij~

i, if i~j,

izR, if ivj,

j{R, if iwj:

8><
>:

ð1Þ

In the above TD game, the Nash equilibrium is to choose the

minimal value R [35]. Similar to the prisoner’s dilemma game, in

TD game, defection (claiming a low value) will dominate

cooperation (claiming a high value). In many previous behavioral

studies [37,38], however, the researchers found that the players in

TD game tended to select a much higher value than the minimal

value. In this paper, we examine the impact of spatial structure in

TD game. More specifically, we study evolutionary TD game in

finite structured population where each player is located in a site of

a square lattice with periodic boundary conditions. In our model,

each player plays TD game with their nearest neighbors, and the

total payoff of a certain player is the sum over all the payoffs

gained by playing TD game with his neighbors. Following the

standard spatial game model [8,39], a randomly chosen player u
can revise his strategy by adopting a strategy from his neighbors’

strategies. We consider two strategy adaption rules. The first one is

the best-take-over rule where the player always updates his

strategy based on his payoff and his neighbors’ payoffs. Specifi-

cally, under this rule, if the payoff of the player is smaller than the

maximal payoff of his neighbors, the player adopts the strategy of

his neighbor who has the maximal payoff, otherwise his strategy is

unchanged. Similar strategy-adoption rule has been used for

studying spatial prisoner’s dilemma game [8,30]. The second one

is the Fermi rule [16]. In this rule, a player u randomly selects one

of his neighbor v and adopts the strategy of player v with the

probability

W (su?sv)~
1

1z exp½(Pu{Pv)=t� , ð2Þ

where su denotes the strategy of player u, and t denotes the noise

parameter modeling the uncertainty caused by strategy adoption.

As explained in many previous studies [15,26,39], for any finite

positive t, better performing strategies are easier adopted and poor

performing strategies are selected with a very small probability. At

t?0 limit, the strategy adoption is nearly deterministic where the

players will always select the better strategies, while at t?? limit,

the strategy adoption is random.

We apply Monte-Carlo simulation to above spatial TD game.

The size of the square lattice in our simulation is 500|500.

Initially, unless specified otherwise, each player on site u is

randomly designated a strategy from R to M with equal

probability, i.e., 1=(M{Rz1). In each Monte-Carlo step, for
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the best-take-over rule, each player revises his strategy based on his

payoff and his neighbor’s payoff as described above. For the Fermi

rule, each player randomly selects one of his neighbors j and

adopts the strategy of player j according to the probability

described in eq. (2). In all the simulations, we consider both

synchronous updating and asynchronous updating for the players’

strategies. To measure the cooperation level of a system, we define

a quantity denoted by rc as the normalized difference between the

average value of all the players’ strategies and the minimal value of

strategy (R). More formally, rc is given by

rc~

P
u su=n{R

M{R
: ð3Þ

Clearly, rc is proportional to the average claim over all the

players, and the value of rc falls within a range of [0, 1]. rc~0
denotes that all the players declare the minimal value R in which

Figure 1. (Color online) Cooperation level as a function of the parameter rcR on different square lattices under the best-take-over
rule with uniform initial strategies distribution. (a) Results on the square lattice with 4-player neighborhood and synchronous updating; (b)
Results on the square lattice with 8-player neighborhood and synchronous updating; (c) Results on the square lattice with 4-player neighborhood
and asynchronous updating; (d) Results on the square lattice with 8-player neighborhood and asynchronous updating.
doi:10.1371/journal.pone.0058597.g001

Figure 2. (Color online) Cooperation level rc as a function of the evolution time on different square lattices under the best-take-
over rule given that R~10. (a) Results on the square lattice with 4-player neighborhood and synchronous updating; (b) Results on the square
lattice with 8-player neighborhood and synchronous updating; (c) Results on the square lattice with 4-player neighborhood and asynchronous
updating; (d) Results on the square lattice with 8-player neighborhood and asynchronous updating.
doi:10.1371/journal.pone.0058597.g002
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the system has the lowest cooperation level, and rc~1 denotes

that all the players declare the maximal value M where the system

has the highest cooperation level. For the best-take-over rule, we

run 11,000 Monte-Carlo simulation steps. rc is obtained by

averaging over the last 1,000 Monte-Carlo steps. However, for the

Fermi rule, we perform 25,000 Monte-Carlo simulation steps and

rc is calculated through averaging over the last 5,000 Monte-Carlo

steps. All the results presented below are the average results over

30 realizations of initial strategies.

Results

We start by reporting the results of the spatial TD game under

best-take-over rule. Fig. 1 depicts the simulation results for rc as a

function of the parameter R on two different square lattice models

with synchronous and asynchronous strategy updating. From Fig.

1, we can find that the results obtained by the asynchronous

strategy updating (Fig. 1(c), (d)) are very similar to the results got by

the synchronous strategy updating (Fig. 1(a), (b)). Therefore, we

focus on describing the results obtained by the synchronous

Figure 3. (Color online) Standard deviation of the strategies (denoted by d) as a function of the evolution time on different square
lattices under the best-take-over rule given that R~10. (a) Results on the square lattice with 4-player neighborhood and synchronous
updating; (b) Results on the square lattice with 8-player neighborhood and synchronous updating; (c) Results on the square lattice with 4-player
neighborhood and asynchronous updating; (d) Results on the square lattice with 8-player neighborhood and asynchronous updating.
doi:10.1371/journal.pone.0058597.g003

Figure 4. (Color online) Cooperation level rc as a function of the parameter R on different square lattices under the best-take-over
rule with power-law initial strategy distribution. (a) Results on the square lattice with 4-player neighborhood and synchronous updating; (b)
Results on the square lattice with 8-player neighborhood and synchronous updating; (c) Results on the square lattice with 4-player neighborhood
and asynchronous updating; (d) Results on the square lattice with 8-player neighborhood and asynchronous updating.
doi:10.1371/journal.pone.0058597.g004
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strategy updating. For the square lattice with 4-player neighbor-

hood (von Neumann neighborhood, Fig. 1(a)), we can observe that

(1) cooperation emerges given R is smaller than the critical value

Rt (Rt&40), and (2) cooperation level rc decreases monotonically

with increasing R until R reaches Rt, where the cooperation level

becomes 0. These results are consistent with the previous

experimental observations in traditional TD game [36,37], which

show that there exists an inverse relationship between R and the

mean value claimed by the players in TD game. Further, the

results suggest that the spatial TD game model can be used to

interpret the anomalous behavior observed in traditional TD

game. Similar results (Fig. 1(b)) can be observed on the square

lattice with 8-player neighborhood (Moore neighborhood). There

is a minor difference in this model. In particular, there are certain

points in Fig. 1(b) showing that rc does not decrease monotonically

with increasing R, although the general results conform with those

Figure 5. (Color online) Characteristic snapshots describing the cooperation level of different R and different square lattice models
with size 100|100 under the best-take-over rule. (a) Snapshots of system’s state on a square lattices with 4-player neighborhood given R~2,
(b) Snapshots of system’s state on a square lattices with 8-player neighborhood given R~2, (c) Snapshots of system’s state on a square lattices with
4-player neighborhood given R~10, and (d) Snapshots of system’s state on a square lattices with 8-player neighborhood given R~10. For R~2
(R~10), the initial state of both square lattices with 4-player neighborhood and 8-player neighborhood are identical random initial state. The middle
and right snapshots of (a), (b), (c), and (d) are generated at 5th and 5000th Monte-Carlo iterations respectively.
doi:10.1371/journal.pone.0058597.g005

Evolution of Cooperation in Spatial TD Game

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e58597



of the previous model. Similar to the results observed in traditional

spatial game models (e.g., spatial prisoner’s dilemma game and

spatial public goods game), our findings indicate that spatial

reciprocity also promotes cooperation in TD game. Fig. 2 and Fig.

3 show the cooperation level rc and the standard deviation of the

strategies d as a function of the evolution time on different square

lattices given that R~10. We have also confirmed that the results

are very similar for other R values (e.g., R~20). From Fig. 2 and

Fig. 3, we can see that the cooperation level and the standard

deviation are unchanged after 10,000 Monte-Carlo steps. That is

to say, the system converges into a stable state within 10,000

Monte-Carlo steps for different square lattices, although early

convergence can be observed. Moreover, it can be observed that

the convergence time of the system with asynchronous updating is

slightly longer than that of the system with synchronous strategy

updating. In addition, we also study the effect of the initial strategy

distribution on the evaluation of cooperation in the spatial TD

game. Fig. 4 depicts the results for the cooperation level rc as a

function of R given that the initial strategy distribution is a power-

law distribution (with a power factor 3) from the strategy space

(We have also checked other power factors. The results are very

similar.). As can be seen, the results are similar to the results

observed in Fig. 1. These results indicate that the spatial TD game

seems to be robust to the initial strategy distribution. In the

following, we will interpret the emergence of cooperation in spatial

TD game and the observed phenomenon of the inverse

relationship between rc and R respectively.

To further reveal the potential mechanism behind the

emergence of cooperation in spatial TD game, we can see the

spatial patterns of the spatial TD game generated in our

simulation. Figs. 5(a–d) show a series of three characteristic

snapshots taken at different times which describe the cooperation

level of R~2 and R~10 on two different square lattice models

with size 100|100 respectively. Time evolution starts with a

random initial state and ends in a stationary state (from the left

snapshot to the right snapshot of Figs. 5(a–d)). From the left

snapshot to the right snapshot of Fig. 5(a), we can observe that the

cooperation level of the system increases with increasing iterations

until the system goes to the stationary state. In addition, it can be

seen that cooperators who declare the same large value will form

scattered clusters (middle snapshot of Fig. 5(a)), and such clusters

spread out over the territory of defectors who declare small values.

In the stationary state (right snapshot of Fig. 5(a)), we can see that

the strategy value becomes very large (close to M) and the number

of different strategies becomes very small comparing with those in

the initial state. Moreover, the players who declare the same large

Figure 6. (Color online) Time evolution of cooperator-invasion on a 10|10 square lattice with 4-player neighborhood. Initially, there
are four cooperators who select strategy M (the four red squares in figure (a)) and ninety-six defectors who choose strategy R (the ninety-six blank
squares in figure (a)). If Rv2M=5, then the cooperators occupy all the squares in the stationary state (t~10, figure(h)).
doi:10.1371/journal.pone.0058597.g006

Figure 7. (Color online) Time evolution of cooperator-invasion on a 10|10 square lattice with 8-player neighborhood. Initially, there
are four cooperators (the four red squares in figure(a)) and ninety-six defectors (the ninety-six blank square in figure (a)). If Rv3M=10, then the
cooperators take over the entire population in the stationary state (t~5, figure (d)).
doi:10.1371/journal.pone.0058597.g007
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value will form a stationary cluster, and such stationary clusters

can resist the invasion of the defectors. Similar results can be

observed in Figs. 5(b–d). These results indicate that the square

lattice structure promotes the formation of clusters of cooperators,

and thereby enhances the cooperation level of the system which

further confirms that spatial reciprocity works well in TD game. In

addition, by comparing the right snapshot of Fig. 5(a) with the

right snapshot of Fig. 5(c), we can observe that the cooperation

level of R~2 is clearly larger than the cooperation level of R~10.

The reason is that, for R~2, the players with the same large

strategy (nearly M ) form a large cluster (see the right snapshot of

Fig. 5(a)), while for R~10, the size of such cluster is small.

Furthermore, for R~10, there is a large territory occupied by the

players who declare the same medium value (around 75). As a

consequence, the cooperation level of R~10 is smaller than the

cooperation level of R~2.

As observed in Fig. 1, the cooperation level decreases

monotonically as R increases until R is greater than the critical

value Rt (Rt&40). To interpret this observation, here we study the

relationship between the cooperation level of the system (rc) and

the parameter R in an ideal model where the players on the square

lattice can only select two pure strategies: R or M. First, we

consider the case of the cooperator invasion. For simplicity, we

assume that the system initially has four cooperators (players

selecting strategy M ) forming a square cluster, and all the other

players are defectors (players selecting strategy R). Under such

initial state, for the square lattice with 4-player neighborhood, we

have the following results: (1) if Rv2M=5, the cooperators

conquer the whole population, (2) if Rw2M=5, the cooperators

are extinct, and (3) if R~2M=5, cooperators and defectors are

coexistent (the initial state is unchanged). Similarly, for the square

lattice with 8-player neighborhood, we have the following results:

(1) if Rv3M=10, the cooperators invade the whole population, (2)

if Rw3M=10, the cooperators are extinct, and (3) if R~3M=10,

then cooperators and defectors are coexistent (the initial state is

unchanged). Fig. 6 and Fig. 7 illustrate the time evolution of

cooperator-invasion on a 10|10 square lattice with 4-player

neighborhood and 8-player neighborhood respectively. As desired,

if the conditions of the cooperator-invasion are satisfied, the

cooperators take over the whole population in the stationary state

as illustrated in Fig. 6 and Fig. 7.

Second, we consider the case of defector invasion. Suppose that

the system initially has only one defector who selects strategy R,

and the rest of the players are cooperators who select strategy M.

Under such initial configuration, for the square lattice with 4-

player neighborhood, we have the following results: (1) if

Rv3M=8, the defectors vanish in the stationary state, (2) if

3M=8ƒRƒ2M=3, the defectors and cooperators will be coex-

istent in the stationary state, and (3) if Rw2M=3, the defectors

conquer the whole population in the stationary state. Likewise, for

the square lattice with 8-player neighborhood, we can derive that

(1) if Rv7M=16, defectors will disappear in the stationary state,

(2) if 7M=16ƒRƒ8M=11, the defectors and cooperators will

coexist, and (3) if Rw8M=11, the defectors will take over the

entire population. Fig. 8 and Fig. 9 depict the time evolution of

defector-invasion on a 7|7 square lattice with 4-player neigh-

borhood and 8-player neighborhood respectively. From Fig. 8 and

Fig. 9, we can clearly see that if the conditions of defector-invasion

are met, then the defectors will occupy the whole lattice.

Based on our analysis in the ideal models, for the square lattice

with 4-player neighborhood, we can conclude that, if Rv2M=5,

then cooperator invasion will emerge and if Rw2M=3, then there

is no cooperator in the system. For a large square lattice system,

we can approximately analyze a small sub-lattice (eg. 10|10) by

applying our results in the ideal model. In such a small sub-lattice,

assume that four players who form a 2|2 cluster as illustrated in

Figure 8. (Color online) Time evolution of defector-invasion on a 7|7 square lattice with 4-player neighborhood. Initially, there is only
one defector (the green square in figure (a)) and forty-six cooperators (the forty-six blank squares). If Rw2M=3, the defectors invade all the squares in
the stationary state (t~7, figure(d)).
doi:10.1371/journal.pone.0058597.g008

Figure 9. (Color online) Time evolution of defector-invasion on a 7|7 square lattice with 8-player neighborhood. Initially, there is one
defector (the green square in figure(a)) and forty-six cooperators (the forty-six blank squares). If Rw8M=11, the defectors occupy all the squares in
the stationary state (t~4, figure (d)).
doi:10.1371/journal.pone.0058597.g009
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Fig. 6(a) choose the strategy M
0

(RvM
0
ƒM) and all the other

players in the sub-lattice are defectors who choose the strategy R.

If R is large, then the cooperator-invasion condition (i.e.,

Rv2M
0
=5) could not be met. As a result, all the cooperators

would vanish, and thereby the defectors will occupy the small sub-

lattice. Further, the sub-lattice occupied by the defectors would

spread out over the whole lattice given a large R, thus resulting in

a low cooperation level. In contrast, if R is small, then the

cooperator-invasion condition (i.e., Rv2M
0
=5) could be satisfied,

and thereby the cooperators invade the small sub-lattice, and then

form a cooperator-cluster which can defend the invasion of

defectors. If R is small enough, the cooperator-cluster could spread

out over the whole system, leading to a high cooperation level. On

the other hand, suppose only one player selects the smallest

strategy R and all the other players in the sub-lattice select strategy

M
0

(i.e., RvM
0
ƒM). If R is large, the defector-invasion

condition Rw2M
0
=3 could be easily satisfied, thereby the sub-

lattice could be occupied by the defectors. Then, the defectors

form a cluster which could spread out over the whole lattice, thus

resulting in a low rc. On the contrary, if R is small, then the

defector-invasion condition (i.e., Rw2M
0
=3) could not be

satisified. Moreover, if the condition Rv3M
0
=8 is met, then the

cooperators will occupy the small sub-lattice. Consequently, the

cooperators will form a cooperator-cluster, and then they could

spread out over the whole lattice, which leads to a high rc. Put it

all together, we conclude that large R promotes defector invasion,

while small R facilitates cooperator invasion. Therefore, the

cooperation level of the system (rc) exhibits an inverse relationship

with the parameter R. In addition, it is worth noting that if

Rw2M=3 (implying Rw2M
0
=3), then the system will be

dominated by the defectors. Hence, the critical value of the

system must be smaller than 2M=3. Our result in Fig. 1 (left panel)

shows that the critical value is around 40, which is clearly smaller

than 2M=3&67. Similar analysis can be done in the square lattice

with 8-player neighborhood.

Now we turn to report the result of the spatial TD game with

Fermi rule. Fig. 10 depicts the results for rc as a function of R on

two lattice models at t~0:1 under both synchronous and

asynchronous strategy updating. Like the best-take-over case, we

are able to observe that the cooperation emerges given R is smaller

than the critical value Rt. In general, rc decreases monotonically

with increasing R until the critical value Rt, where rc~0. Fig. 11

shows the critical value Rt as a function of the noise parameter t
under different lattice models. In Fig. 11, the region below the

curve denotes the parameter space where the cooperation level of

the system is greater than or equal to 0, i.e., rc§0, while the

region above the curve is the parameter space in which the

cooperation level of the system equals 0, i.e., rc~0. Compared to

the model with best-take-over rule, there are two differences in the

model with Fermi rule. First, we find that the critical value of the

model with Fermi rule is slightly smaller than those of the model

with best-take-over rule. Second, we can see that rc is slightly

fluctuating, although the values are obtained by averaging a large

number of Monte-Carlo steps. Moreover, we have checked that

using a longer transient time (e.g., 50,000) and averaging over a

larger number of Monte-Carlo steps do not significantly affect the

simulation results. Fig. 12 and Fig. 13 illustrate the evolving

behavior of the system. Indeed, from Fig. 12 and Fig. 13, we can

observe that the system converges into a relatively stable state after

20,000 Monte-Carlo steps. These results indicate that the best-

take-over rule could be better than the Fermi rule to promote the

emergence of cooperation in spatial TD game.

Conclusions

To summarize, we have investigated the evolution of cooper-

ation in spatial TD game, where the players are placed on a square

lattice. An individual gains payoff by playing TD game with his

immediate neighbors. Two evolutionary rules, namely best-take-

over rule and Fermi rule are studied in the spatial TD game

model. More specifically, for the best-take-over rule, each player

revises the strategy based on his payoff and his neighbors’ payoffs.

Figure 10. (Color online) Cooperation level rc as a function of the parameter R on different square lattices under the Fermi rule. (a)
Results on the square lattice with 4-player neighborhood and synchronous updating; (b) Results on the square lattice with 8-player neighborhood
and synchronous updating; (c) Results on the square lattice with 4-player neighborhood and asynchronous updating; (d) Results on the square lattice
with 8-player neighborhood and asynchronous updating.
doi:10.1371/journal.pone.0058597.g010
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For the Fermi rule, a randomly-selected player adopts one of his

neighbors’ strategies with a probability depending on the

difference of their payoff. We apply Monte-Carlo simulation to

our models, and the results show that the cooperation level of the

spatial TD game has an inverse relationship with the parameter R.

In particular, the cooperation level decreases monotonically with

increasing R until R reaches the critical value Rt, where the

cooperation level vanishes. By visualizing the spatial patterns of

our models, we find that the cooperators who select the same large

strategy will form clusters in the stationary state, and such clusters

can resist the invasion of defectors. To further explain our findings,

we analyze the conditions of both cooperator-invasion and

defector-invasion in an ideal model, where the players are given

two pure strategies to select: R or M. Our analysis implies that the

large R hampers cooperator invasion and facilitates defector

invasion, while the small R promotes cooperator invasion and

impedes defector invasion. As a result, the cooperation level of the

system exhibits an inverse relationship with the parameter R.

Figure 12. (Color online) Cooperation level rc as a function of the evolution time on different square lattices under the Fermi rule
given that R~10. (a) Results on the square lattice with 4-player neighborhood and synchronous updating; (b) Results on the square lattice with 8-
player neighborhood and synchronous updating; (c) Results on the square lattice with 4-player neighborhood and asynchronous updating; (d)
Results on the square lattice with 8-player neighborhood and asynchronous updating.
doi:10.1371/journal.pone.0058597.g012

Figure 11. (Color online) Critical value of R (Rt as a function of the parameter )t on different square lattices. (a) Results on the square
lattice with 4-player neighborhood and synchronous updating; (b) Results on the square lattice with 8-player neighborhood and synchronous
updating; (c) Results on the square lattice with 4-player neighborhood and asynchronous updating; (d) Results on the square lattice with 8-player
neighborhood and asynchronous updating.
doi:10.1371/journal.pone.0058597.g011
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Our findings suggest that the spatial reciprocity can promote the

evolution of cooperation in TD game. Furthermore, these findings

indicate that the spatial TD game model can be used to interpret

the anomalous behavior in TD game that is observed in many

previous behavioral studies [37,38]. We hope that this work will

inspire future studies on investigating the evolution of cooperation

in spatial TD game, which has attracted little attention in physics

community. For example, one promising direction is to study the

impact of network structure on the evolution of cooperation in

spatial TD game. In addition, evolutionary dynamics are typically

affected by the mutation rate [40]. Another promising direction is

to investigate how mutation influences the evolution of coopera-

tion in spatial TD game.
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32. Helbing D, Szolnoki A, Perc M, Szabó G (2010) Evolutionary establishment of
moral and double moral standards through spatial interactions. PLOS

Computational Biology 6: e1000758.
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