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Abstract

Several statistical methods have been developed for adjusting the Odds Ratio of the relation between two dichotomous
variables X and Y for some confounders Z. With the exception of the Mantel-Haenszel method, commonly used methods,
notably binary logistic regression, are not symmetrical in X and Y. The classical Mantel-Haenszel method however only
works for confounders with a limited number of discrete strata, which limits its utility, and appears to have no basis in
statistical models. Here we revisit the Mantel-Haenszel method and propose an extension to continuous and vector valued
Z.The idea is to replace the observed cell entries in strata of the Mantel-Haenszel procedure by subject specific classification
probabilities for the four possible values of (X,Y) predicted by a suitable statistical model. For situations where X and Y can
be treated symmetrically we propose and explore the multinomial logistic model. Under the homogeneity hypothesis,
which states that the odds ratio does not depend on Z, the logarithm of the odds ratio estimator can be expressed as a
simple linear combination of three parameters of this model. Methods for testing the homogeneity hypothesis are
proposed. The relationship between this method and binary logistic regression is explored. A numerical example using

survey data is presented.
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Introduction

The practice of exploring residual association between two
variables X and Y after adjusting for other, confounding, variables
Z is at the heart of much of statistical and epidemiological analysis.
It underlies the search for potentially causal relationships in
observational research. For continuous X and Y the partial
correlation coefficient is the most widely used measure of adjusted
association and presents the correlation between X and Y if Z
would be kept fixed (constant). The (partial) regression coefficients,
of either the regression of Y on X and Z or the regression of X on
Y and Z are also measures of association between X and Y that are
adjusted for Z, but these measures are not symmetrical in X and
Y. Such asymmetrical measures are sometimes adequate, espe-
cially when one of the two variables X and Y is obviously the
dependent and the other the independent variable, e.g. when a
causal relationship between X and Y exists or is assumed, as is
often the case in randomized clinical trials and in observational
cohort or case-control studies. In contrast, the partial correlation
coefficient is symmetrical in X and Y and is therefore a more
logical choice when there is no a-priori plausible unidirectional
causal link between X and Y, for example when X and Y are the
diastolic and systolic blood pressure respectively and Z is age (say),
measured in a cross-sectional random population sample.

For dichotomous X and Y that assume only the values 0 and 1
(e.g. alive and dead, or smoker and non-smoker), a commonly used
measure of association is the odds ratio
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_ P(X=1Y=1)P(X=0,Y=0)

OR= P(X=1,Y=0)P(X=0,Y=1)

The population OR can not only be estimated from a random
population sample, such as a cross-sectional survey, but also from
samples stratified with respect to either X or Y, such as a cohort or
case-control study. Several methods have been developed for
adjusting the association between X and Y for a third variable Z.
The best known are the Mantel-Haenszel (MH) method [1], which
1s symmetrical in X and Y, and logistic regression, which is not [2].
Even in the absence of a direct causal link between X and Y,
regressing Y on X and Z generally yields a different estimate (and
standard error) of OR(X,Y|Z) than regressing X on Y and Z
although the difference is often modest. Differences may arise, for
example, when either Z explains more (or less) variation in Y than
in X or when there are specification errors in the regression of Y
on X and Z or X on Y and Z. Such misspecification can occur, for
example, when the true relationship between Y and X and Z is not
the logistic model, but (say) a probit model. This lack of symmetry
can make logistic regression in this context undesirable. If we want
to present, for example, the residual relationship between two
cardiovascular risk factors or disorders, with no direct causal link
between the two but both potentially influenced by common
factors such as gender, then the MH-method would seem a more
attractive choice than logistic regression. Its symmetry, as well as
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its intuitive appeal, i.e. the fact that the procedure can easily be
understood without advanced mathematical training, probably
explains the enormous popularity of the procedure among
epidemiologists and other empirical researchers.

The usual form of writing the MH odds ratio estimate is

N

‘*I]MH

>_ Mooin1i /0
1

> moingui/n;
1

n;= Z Nyyi (1)

x,y=0,1

where n,y; denotes the number of observations in a (x,y)-cell of the
2-by-2 table for the i-th stratum and where the summation is over
all strata of Z. The method has only been developed for Z with a
limited number of levels of exact matches (the ‘strata’), which is the
case when Z is a single categorical variable, such as sex, or when
strata were created by design, e.g. by matching. This is because in
calculating the MH odds ratio all observations at stratum Z for
which any of the marginal totals of the X;-by-Y, table are zero
are ignored. Thus if combinations of Z are unique for each subject
then all observations are ignored!

Attempts to fix this shortcoming, such as Miettinen’s multivar-
iate confounder (discriminant) score method, which has poor
statistical properties [3,4] and seems to be forgotten, were not
successful. Yet another approach is that of using binary logistic
models for marginal probabilities P(Y =1|Z) and P(X =1]|Z), and
then expressing P(X=1,Y=1|Z) as a function of these marginal
probabilities and of the odds ratio, and maximizing the likelihood
function with respect to the odds ratio and the parameters of
marginal distributions. This approach has been explored by Carey
et al [5] and le Cessie and van Houwelingen [6]. It requires special
software to fit the models and is not equivalent to the Mantel-
Haenszel method when Z is a one-dimensional categorical
variable.

We here propose a very simple method to extend the MH odds
ratio to a general case of Z being an m-dimensional vector of
covariates, some of which may be continuous. Its basic idea is to
replace Mantel-Haenszel cell entries with subject-specific classifi-
cation probabilities generated by a suitable multinomial model. As
presenting an adjusted OR as a summary measure of association
makes primarily sense if subject-specific odds ratios can be
assumed not to depend on Z, ie. under the hypothesis of
homogeneity of the OR across subjects (strata, levels of Z), we also
address estimation of the OR under the assumption of homoge-
neity and discuss how to test this homogeneity.

Methods and Results

Extended Mantel-Haenszel odds ratio estimate

If the subjects form strata S; of size n; and if pxyi’s denote the
observed fractions (probabilities) in each stratum, pyy; = Nyyi/n,
then

Xyl

_ Ny1i Nooi _ Nq1iNooi d
anjpooj'— E —_=—_—_an

JjeS; JjesS; 0 0 n

Zp Dopi = Njoi No1i _ NyoiNoli
10201 — Z A S

JeS; JeS; 0 0 1

The expression (1) can then be written in terms of observed
probabilities as

PLOS ONE | www.plosone.org

The Mantel-Haenszel Procedure Revisited

A > PuiiPooi

Wprob = 2
prob > PioiPoii @

where the sum is over all subjects. This probabilistic formulation
suggests a generalization of (2) in which p,y; denotes an estimated
probability PX =x,Y =y|Z = z) for the i-th subject with (possibly
vector-) covariate z; (and where the sum is over all subjects).

The estimates py,; can be obtained from any suitable regression
model. A convenient and widely used model is the multinomial
logistic regression model

exp (oxy + ﬁ;ryz)

PX=xY=y|Z)= — > "W
> exp (ttny + By Z)
X,y

5%,y =0,1,0000 = Boo =0(3)

with 3 intercept parameters o and 3em parameters By, = (Bxy1,-- -,
Bxym)T, where m is the dimension of the covariate vector
Z=(Z\,....Z»)". This model has strong connections to other
important statistical models, specifically the log-linear model [7].
Classification probabilities pyy; can be obtained from (3) using
maximum likelihood (ML) estimates of d.., and By, obtained with
standard software, such as SPSS (nomreg), STATA (mlogit), R
(library nnet) and SAS (proc logistic), and the OR estimate
\/tlpmbcan be readily computed using (2). Note that (l\lprob can be
also interpreted as a weighted mean of subject specific OR
estimates (Pr1; Pooi)/(P1oi Pois)- The standard error (SE) of
log(\Tlprob) is derived in Appendix S1 and can be used to calculate
95% confidence intervals for the OR by exponentiating the two
confidence limits 1og({,,o) + 1.96SEfor the log({,,p).

The odds ratio as a model parameter in the multinomial
logistic model

The subject-specific log odds ratio {,under the multinomial
logistic model (3) is

log (W) = at11 — o0 — 001 + (B _ﬁlo—ﬁm)TZ (4a)

This suggests an alternative estimator log(\ll\l.dh) of the log(OR) as
the average of subject-specific quantities log (\le)compuled directly
from the ML-parameter estimates using (4a). The subject-specific
odds ratio \, generally depends on Z unless 6 = B1;-Bo1-B1o equals
zero, which presumably defines the situation where a ‘summary’
OR is most meaningful. Testing of the hypothesis Hyp: & =0of
homogeneity of odds ratios can be carried out by the Wald test or
by the likelihood ratio (LR) test. To carry out the LR-test and to
obtain ML-estimates under the constrained model, i.e. under Hy:
8 =0, we do need to fit this model. This produces the ML-
estimate of log(\),

10g (Prom) =811 —810 — 801 (4b)
and of its standard error. This ML-estimate is identical to the

Mantel-Haenszel type estimate (2) computed from classifications
probabilities derived from the homogeneity model:
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This demonstrates the close link between the classical MH-
approach and our model based OR estimate. Computations can
be carried out in R [8] using the package partialOR [9]; Appendix
S2 gives an example.

The odds ratio in binary logistic regression and its
relationship to the multinomial logistic model

To explore the relationship between the multinomial logistic
model and the two binary logistic regression models (Y on X, Z
and X on Y, Z) commonly used to adjust the OR between X and
Y we note that from the multinomial logistic model (3) we can
derive these two versions of binary logistic regression models, as
follows:

logit(P(Y =1|X.Z)) =01 —oo+ (B —Bo) Z  (5a)

logit(PX=1]Y.,Z)) =01y —o0y + (Biy—Boy)'Z  (5b)

The model (5a) can rewritten as

logit(P(Y =11X.2)) =y, + 7 X +7,Z+7; XZ

where = 0lg1 —0loo = 01, Y1 = 0117+0lgp 010~ Ao1 = Ol1 Ao~ Ao,
Y2=Bor=PBoo= Bor, V3= PBr1+Poo—Bro=PBor = P11—Pro—Po1. For
model (5b) we obtain a similar expression. To fit model (5a) to data
we enter X, Z and the interaction term XeZ in the model, and
similarly for (5b). Homogeneity of OR’s under the multinomial
logistic model with §=0 is equivalent to absence of interaction
(Y3=0) under the logistic model (5a), i.e. with Z being only a
confounder and not also an effect-modifier. Under this model
log(y)=7v; is the same parameter as that estimated under the
multinomial logistic model (3) with § =0. The ML-estimates of s
may however differ (albeit not much) as the likelihood functions
differ. Note that model (3) can be either factorized as
P(Y|X,Z)P(X|Z) or as PX|Y,Z)P(Y|Z). When fitting models
(5a) or (5b) we ignore the marginal distributions of X given Z or of Y
given Z, respectively, which are implicitly modeled in (3). Also if 6 #
0 and — as is usually done — the interaction is ignored in the logistic
regressions then the two logistic regression models are misspecified
and the adjusted OR estimates are likely to differ as well. Assuming
absence of interactions and model misspecifications models (5a) and
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(5b) simplify to oo HogW)X+ Po1 Z and ayHogY+ Bio'Z,
respectively, demonstrating that, under these conditions, these two
logistic regressions estimate essentially the same parameter log(\).

Model choice

Which of the three models to use: (3), (5a) or (5b)? The assumed
design — a random population sample — suggests the multinomial
logistic model (3). It leads to an intrinsically symmetrical OR

. N . N .
estimate ,op, (or, alternatively, {,). For a more refined analysis
we would fit model (3) and carry out a formal test of homogeneity,
and if justified by apparent homogeneity use the ML-estimate (4b).
In case of heterogeneity we would use either the predicted
probabilities pyyi to calculate OR for each subject, or subject

specific log(OR) values given by \TIZ, and use them to explore their
relation to covariates Z in more detail.

Example

We used the proposed methods to explore the relationship
between (ever) smoking and antibodies (lifelong after infection) to
the sexually transmitted viral infection HSV-2 (persists lifelong).
For this, USA National Health and Nutrition Examination Survey
(NHANES) data were obtained [10]. (NHANES is conducted to
assess the health and nutritional status of adults and children in the
United States.) Both variables are probably associated with
(measured) sexual risk behavior, gender, ethnicity etc. which
may thus act as confounders in their relationship. However, there
may also be other relationships, e.g. both smoking and HSV-2
infection may be influenced by the (unmeasured) type of social/
sexual networks that individuals take part in, giving rise to residual
confounding. After elimination of cases with missing and
improbable values (e.g. reported first sexual contact at age 1),
and subjects reporting never to have had sexual relationships, we
obtained a dataset of 991 women and 765 men with complete
data. NHANES sampling weights were ignored for this example.
The unadjusted OR of the relationship between smoking and
HSV-2 was 1.715 (95% CI 1.372-2.144). We were interested in
the residual OR after adjustment for age, age at first sexual
contact, African American ethnicity, gender, and reported number
of lifetime partners (grouped into 1-4, 5-14, 15-39, 40+). Logistic
regression with HSV-2 as the dependent variable, yielded an
adjusted OR of 1.538 (95% CI 1.176-2.012), and logistic
regression with smoking as the dependent variable an adjusted
OR 0f 1.589 (95% CI 1.217-2.075); the closeness of these two LR
estimates appears to be consistent with (approximate) homogeneity
of the OR. The MH-type OR \Tlpmbcalculated using (2), i.e. the
unconstrained symmetrical OR estimate, was 1.550 (95% CI:
1.183-2.022), see Appendix S2. The likelihood ratio test (df = 7) of
the constancy of OR’s gave a P-value 0.46, thus suggesting that the
odds ratio does not depend on the covariates. Therefore, using the
parametric method (4b) with § =0 was considered appropriate,
which yielded an OR estimate \Tfhomof 1.582 (95% CI: 1.212—
2.065). The estimate proposed by le Cessie and van Houwelingen
was also close, viz. 1.553 (95% CI 1.183-2.032). These adjusted
OR values all suggest that the association between smoking and
HSV-2 infection is only partially accounted for by association with
the above mentioned covariates.

Discussion

We proposed a method to adjust an Odds Ratio between two
dichotomous variables X and Y for other, ‘confounding’, variables
Z, that is symmetrical in X and Y. The basic idea is to replace the
observed cell entries in strata of the Mantel-Haenszel procedure by
estimated classification probabilities estimated from a statistical
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model, for which we specifically propose and explore the
multinomial logistic regression model. In the case of a simple
categorical Z the proposed OR estimator is identical to the
classical Mantel-Haenszel estimator.

One of the strengths of the multinomial logistic model is that the
OR can also be estimated directly from the model parameter
estimates. In the important case of homogeneity, that is when the
subject specific ORs are independent of Z and thus all identical,
the log(OR) estimator simplifies to a simple linear combination of
3 model parameters. We propose the latter estimator as a suitable
symmetrical adjusted OR estimate and recommend its use for all
situations where a symmetrical adjusted OR is called for. We note
that care is needed when applying these methods: an adjustment
for variables that appear to be confounders, but are not, may lead
to misleading conclusions about the true, causal, associations
between variables [11,12]. Future research could address good-
ness-of-fit of the multinomial logistic regression model in this
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context and alternatives, or generalizations, to this model for
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