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Abstract

Recent studies for a wide range of human activities such as email communication, Web browsing, and library visiting, have
revealed the bursty nature of human activities. The distribution of inter-event times (IETs) between two consecutive human
activities exhibits a heavy-tailed decay behavior and the oscillating pattern with a one-day period, reflective of the circadian
pattern of human life. Even though a priority-based queueing model was successful as a basic model for understanding the
heavy-tailed behavior, it ignored important ingredients, such as the diversity of individual activities and the circadian
pattern of human life. Here, we collect a large scale of dataset which contains individuals’ time stamps when articles are
posted on blog posts, and based on which we construct a theoretical model which can take into account of both ignored
ingredients. Once we identify active and inactive time intervals of individuals and remove the inactive time interval, thereby
constructing an ad hoc continuous time domain. Therein, the priority-based queueing model is applied by adjusting the
arrival and the execution rates of tasks by comparing them with the activity data of individuals. Then, the obtained results
are transferred back to the real-time domain, which produces the oscillating and heavy-tailed IET distribution. This
microscopic model enables us to develop theoretical understanding towards more empirical results.
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Introduction

In the information age, a large scale of databases containing

information on human activities on the Web are easily accessible.

Understanding the emerging patterns from those datasets is a new

interdisciplinary research subject [1,2]. Since individuals behave

through complex and sometimes random decision-making pro-

cesses, one may wonder whether it is indeed possible to predict

human behaviors quantitatively. However, it was recently revealed

that digital records left at the media behind one’s activities make it

possible to predict human activities up to 93% [3]. Accordingly, it

has become an attractive subject to investigate emerging patterns

from such large-scale data bases. Power-law or heavy-tailed

behavior in the distribution of inter-event times (IET) between two

consecutive human activities is one example of such emerging

patterns. This example can be seen in various systems such as

email [4–9] or surface mail communications [10], Web browsing

[7,11], library loans [7], financial trades [7,12], on-line movie

watching [13], file downloads [14–16], printing requests [17], and

various actions on the Web [18]. This power-law behavior

indicates that human activities proceed in a bursty manner during

a short time interval, which is separated from other such intervals

by long intermittent periods [19,20].

Several theoretical models have been proposed to explain such

heavy-tailed behaviors in the IET distribution. One interesting

model is the priority-based queueing model [4,7,21,22], in which

the human activity of uploading articles is regarded as task

executions in a queue, where tasks are performed based on the

order of priorities assigned to each task. The use of this priority-

based model leads to a power-law or heavy-tailed behavior in the

waiting time distribution of tasks in the queue [9,13,18,23–25].

The waiting time distribution was interpreted as the IET of human

activities. However, the priority-based queueing model ignores

important ingredients, such as the circadian pattern of human life

[26] and the diversity of individual activities. Indeed, the empirical

data recently collected exhibit an oscillating pattern with a one-

day period in the IET distribution [6,13,18,27], which cannot be

produced in the queueing model. Moreover, the decay behavior of

the IET distribution in the long-time regime depends on the

activities of individuals. Here, the activity of an individual is

defined as the average number of posted articles in unit time. In

this paper, we obtained a large-scale dataset containing high-

resolution data, and found a new pattern in the IET distribution

that exhibits a power-law behavior when the IET is smaller than

one day, where the exponent is insensitive to the activities of

individuals. However, when the IET is longer than one day, the

IET distribution exhibits a heavy-tailed behavior, in which the tail

part depends on the activities of individuals. These empirical

results are reproduced by developing a theoretical model below.

Methods

We analyze a large scale of dataset from the largest portal site in

Korea, NAVER (http://naver.com) during more than five years.

The dataset consists of individuals’ time stamps when articles were

posted on blog posts, which were recorded in the unit of seconds.

There are 520,771,167 postings contributed by 9,878,904 distinct

bloggers. Among them, we only select the data that were written
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by bloggers that had authored more than 100 articles and worked

for more than one month. This selection aims to exclude those

bloggers who had posted suspicious spam content. After this data

filtering, the number of remaining articles is 379,627,193,

contributed by 908,409 users.

From this dataset, we obtained the following empirical results: (i)

The IET distribution decays following a power law with the

exponent a^1:5 in a time regime shorter than one day. (ii) The

IET distribution exhibits a heavy-tailed decay behavior in the

long-time regime, which is nonuniversal depending on individual

activities. (iii) An oscillating pattern appears with a period of one

day; this pattern persists over the entire long-time regime.

However, the amplitude of the oscillation pattern decreases with

time. Details regarding these results are presented below.

We measured the IETs defined as the interval between two

consecutive time stamps for each user. Then the distribution Pi(t)
of the IETs of user i is obtained as Pi(t):Ni(t)=

P
t Ni(t), where

Ni(t) is the number of events having an IET of t. The total

number of articles, Ni, written by user i is given as

Ni~
P

t Ni(t)z1. To determine the collective behavior of all

the users, we calculate

P(t)~

P
i Ni(t)P

i,t Ni(t)
: ð1Þ

P(t) is shown in Fig. 1(a). When tv1 day, P(t) behaves as

*t{1:5. When tw1 day, P(t) follows a skew distribution.

Interestingly, there exists an oscillating pattern in P(t), which

can be seen more clearly in the finer scale shown in Fig. 1(b).

Moreover, peak heights periodically change with a period of one

week [6,13,18,27]. To check the periodicity of the oscillating

pattern, we perform a Fourier transformation,

F (v)~
P

t P(t)eivt. Figure 1(c) shows that there indeed exist

Figure 1. Empirical IET distribution. (a) Plot of the IET distribution

P(t) based on the empirical data (0). The IET distribution Pad(t
0
) after

the removal of the inactive time interval is also shown (solid curve).
Inset: Comparison of the IET distribution obtained from the empirical
data (0) with that from the theory Ptheroy(t) (solid curve). (b) Enlarged
representation of the IET distribution P(t), in which clear periodic peaks
are observed. (c) The Fourier transform of the IET distribution. Peaks are

located at frequencies v~(one week ){1 and (one day){1 . Other peaks

at multiples of (one day){1 are redundant.
doi:10.1371/journal.pone.0058292.g001

Figure 2. Dependence of the IET distributions of individual
users on their activities. Inset: Population as a function of activity,
showing decay as a power law with exponent a^2:55.
doi:10.1371/journal.pone.0058292.g002

Figure 3. Distribution of active time intervals. (a) Distribution of
the starting time of the active time interval. A peak is located between 9
and 10 am. (b) Distribution of active time intervals. The model is located
at 16 h.
doi:10.1371/journal.pone.0058292.g003
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two distinct meaningful peaks in P(t) at the frequencies

corresponding to one day and one week, respectively. Other

peaks correspond to multiples of one day. We study how such an

oscillating pattern can be reproduced within the framework of the

priority-based model later.

Next, we examine the dependence of the IET distribution on

the activity of individuals. The activity Ai of user i is the number of

articles written per unit time interval. Thus, when user i writes Ni

articles during the time interval T
(i)
tot [13,18], where T

(i)
tot is the time

interval between the first and the last time stamp of user i, the

activity of user i is given as Ai~Ni=T
(i)
tot. To determine the

heterogeneity of individual activities, we measured the distribution

of individual activities as shown in the inset of Fig. 2. Indeed, the

distribution decays, following a power law with the exponent

&2:6, indicating that individual activities are considerably

heterogeneous. Thus, it is worth investigating how the heteroge-

neity of activities affects the IET distribution [28,29]. In Fig. 2, we

can see that as one’s activity level becomes higher, the IET

distribution decays faster in the long time regime. This behavior is

rather natural in the sense that a user with higher activity has a

shorter mean IET. Accordingly, it would be interesting to

introduce a new model to illustrate this activity-dependent

behavior, and such a model is presented later.

Results and Discussion

Modelling Oscillating Pattern
In previous studies, the heavy-tailed behavior of the IET

distribution was investigated by using the priority-based queueing

model. In this approach, time was considered as continuous

without any intermission. However, humans do not work

continuously, and hence, intermission, for example, those that

account for sleeping, must be considered. Moreover, the pattern of

daily life during weekdays is almost regular, but it differs from that

during weekends. Thus, it is natural to assume that each person

can have a regular time interval during which the person is away

from on-line world. This time interval is called the inactive time

interval, and the remaining time of a day is called the active time

interval. Moreover, the duration and starting time of the active

time interval depend on the individual (see Fig. 3).

We suppose the situation that two events occur in the active

period of one day (see Fig. 4a) at times h1 and h2, where h1vh2

and h1 and h2 belong to the same active time interval. Then, the

inter-event time is defined as t~h2{h1. More generally, when

two events are executed in different active intervals separated by

nTzTI , where n is an integer n§0 (see Fig. 4b), we can obtain

the following relation,

t{(nz1)TI~nTAz(TA{h1zh2), ð2Þ

where t{(nz1)TI is the IET after removing the inactive time

intervals. This quantity is defined as the IET in the ad hoc time

Figure 4. Schematic illustration of the model with circadian
periodicity. It is assumed that an individual essentially lives a well-
regulated daily life consisting of active and inactive time intervals. To
reproduce the oscillating behavior of IET distribution within the
framework of the queueing model, we construct an ad hoc time
domain in which separated active time intervals are connected by
removing inactive time intervals between them. See text for details.
doi:10.1371/journal.pone.0058292.g004

Figure 5. Comparison of empirical (open circles) and theoretical (solid lines) inter-event time distributions with the circadian
active-inactive pattern for different TA. Empirical distributions Pi(t; TA) are obtained by aggregating the top 100 users who have a clear
periodicity with an active time interval TA, and the distributions suitably show the change in the peak height and width. The weighted average of
Pi(t; TA) is also displayed in (f), and we can observe the characteristic peaks.
doi:10.1371/journal.pone.0058292.g005
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domain, and is denoted as t
0
. Then the ad hoc time domain is

continuous. We find that any inter-event time t belongs to one of

the two sets of intervals T 1 and T 2, defined as

T 1~ftD0vt{(nz1)TvTAg for h1vh2, ð3Þ

and

T 2~ftDTIvt{nTvTg for h1wh2: ð4Þ

The fraction of each category is given as

q1(t; TA,n)~
(nz1)TzTA{t

TA

~
h2{h1

TA

, ð5Þ

and

q2(t; TA,n)~
t{nT{TI

TA

~
TA{h1zh2

TA

, ð6Þ

respectively.

Let P
(i)
ad(t

0
) be the IET distribution of user i in the ad hoc time

domain, and let Pad(t
0
) be the collective one from individuals,

defined as

Pad(t
0
):

1

N

XN

i

P
(i)
ad(t

0
): ð7Þ

Here, t
0

is the IET defined in the ad hoc time domain, which is

related to t in the original time domain as t
0
~t{mT

(i)
I , where m is

the largest non-negative integer satisfying t
0
w0, which implies that

there exist m inactive time intervals during t. P
(i)
ad(t

0
) is obtained

from the queueing model [30], which is discussed later. Collecting

all individuals’ P
(i)
ad(t

0
), i.e., using the formula (7), we obtain Pad(t

0
),

which exhibits a heavy-tailed distribution shown in Fig. 1.

We consider how to reproduce the oscillating behavior. For this

purpose, we assume that an IET distribution is given, for example,

the previously obtained Pad(t
0
) from the empirical data, or

Pmodel(t
0
)*t

0{1:5 from the queueing model [30]. Then, we can

obtain the IET distribution of user i with the active time interval

T
(i)
A as follows:

Pi(t; T
(i)
A )~

X?
m~0

q1(t; T
(i)
A ,m)Px(t{mT

(i)
I )II(t; mT ,mTzT

(i)
A )

z
X?
m~1

q2(t; T
(i)
A ,m{1)Px(t{mT

(i)
I )II(t; mT{T

(i)
A ,mT),

ð8Þ

where Px represents either Pad or Pmodel. II is a rectangle function

defined as

Figure 6. Comparison between simulated and theoretical IET
distributions with the circadian pattern. To calculate P(t; TA) in
Eq.(8), we assume that Pad(t)*t{1:5 . We consider the two cases (a)
TA~14 and (b) TA~8, as examples. (c) The distribution in Eq.(10)
collected over the flat distribution of TA. The resulting theoretical IET
distribution is consistent with the one obtained from the simulated
data.
doi:10.1371/journal.pone.0058292.g006

Figure 7. Modelling activity dependence. (a) Distribution of the
best-estimate parameters L̂L and ĉc of individuals. Contour lines are
obtained by interpolation between each nearest point. The most dense

point is described by L̂L~7 and ĉc~0:25, and a large portion of cases
settle around the peak point. (b) A fraction of the p values in the KS test
between synthetic and empirical probability distribution functions.
Over 86% of cases have p values that are larger than 0.1, and hence, the
null hypothesis cannot be rejected for those cases.
doi:10.1371/journal.pone.0058292.g007
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II(x; a,b):
1 for avxvb,

0 otherwise,

�
ð9Þ

which represents the intervals defined in T 1 and T 2. Next, we

obtain the average Pi(t; T
(i)
A ) over all users and obtain

Ptheory(t)~
1

N

X
i

Pi(t; T
(i)
A )

~

ðT

0

r(TA)Pi(t; TA)dTA,

ð10Þ

where r(TA) is the fraction of users whose active time interval is

TA. The distribution of r(TA) exhibits a peak at TA~16 h as

shown in Fig. 3(b). By plugging the empirical distribution Pad into

Px in Eq. (8), we successfully reproduce the oscillating pattern of

the IET distribution Ptheory(t) in the inset of Fig. 1(a) and Fig. 5.

When Px is replaced by the theoretical formula Pmodel(t
0
)*t

0{1:5

[30], the obtained result for Ptheory(t) is consistent with the

simulated one, as shown in Fig. 6. It is noteworthy that the

functional form of r(TA) does not play an important role in

determining the oscillating behavior of the IET distribution. For

example, even for the flat distribution of r(TA), the oscillating

pattern of Ptheory(t) can be obtained.

Modelling Activity Dependence
As discussed in the previous section, we have shown that the

activities of individuals are heterogeneous and that their distribu-

tion follows a power law: Pa(k)*k{k with k&2:6+0:1 as shown

in the inset of Fig. 2. That is, a few people post many articles and

many others post only a few articles in a given interval. Moreover,

individuals have their own active time intervals. Thus, it would be

interesting to study how such heterogeneities affect the IET

distribution. We categorize users into groups according to their

activities, and we measure the IET distributions of each group as

shown in Fig. 2. It is interesting to notice that the IET distribution

appears to be independent of activities in the short-time regime

within one day, but it depends on activities in the long-time

regime.

In the priority-based queueing model introduced in Ref. [30],

packets arrive at a queue with the rate l and are executed with the

rate m, where the rates l and m are regarded as constants,

independent of time and individuals. Here, however, since the

activity and the period of the active time interval are different, we

assign user index i to the rates as li and mi, and those quantities

are assumed to depend on time. We consider mi(t) as proportional

Figure 8. Comparison between empirically observed individual inter-event time probability distributions (open diamonds) and
model predictions that are fit to the data. Model predictions are calculated by two methods by using m(t) and l(t) (red solid lines), and by using
time-averaged rates of SmT and SlT (blue dotted lines). The histograms in the upper panel of each plot represent the relative ratio of blog posts
written during a certain hour of the day. In cases with clear periodicity (a) and (b), red solid and blue dotted lines show apparent differences.
Otherwise (c) and (d), they exhibit very similar patterns, and the periodicity assumption seems to be irrelevant to them. On the other hand, we only
consider data points on scales larger than 30 min, because the resolution of m(t) and l(t) is 1 h.
doi:10.1371/journal.pone.0058292.g008
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to the frequency of blog postings at time t by user i. Next, we use

the following relation between the execution rate mi(t) and the

activity Ai,

ci

T
(i)
tot

ðT
(i)
tot

0

mi(t)dt~Ai, ð11Þ

where ci is a proportionality constant. For the arriving rate li(t),
since we do not have any information of when a new task is

arriving, we assume li(t) to be the same as mi(t).

Based on this idea, for each user i, we perform numerical

simulations as follows:

i) We numerically generate both arrival and execution time

sequences ftkg[(0,T
(i)
tot� through the Poisson process with the

rates mi(t) and li(t) [31].

ii) Subsequent these time sequences, we input a task into the

queue when it is not full of Li tasks, where the queue size Li is

determined at a later stage. Upon arrival, the task is given a

priority x[½0,1�. At the same time, a task with the highest

priority is executed and removed from the queue. The

waiting time of the task is also recorded.

iii) We repeat this procedure until Ni waiting times are obtained.

Ni is regarded as the number of blog posts uploaded by user i.

In this model, the activity is determined to be Ai~Ni=T
(i)
tot,

whereas the queue size Li and the proportionality constant ci

remain to be determined.

To determine Li and ci, i.e., to generate a synthetic probability

distribution function fit to the empirical data, we use the

Kolmogorov-Smirnov (KS) statistical test [32]. We obtain a set

of L̂Lj and ĉcj for each user i by minimizing the KS statistic between

the empirical data and simulated data. They are distributed as

shown in Fig. 7. The closeness between the empirical data and the

simulated data is tested (see Fig. 8): the obtained p value is shown

in the legend. It is known that if the p-value is higher than a

preassigned value (p~0:05), then one can accept the null

hypothesis that the probability distribution functions are identical.

As we can see in the p-value histogram of Fig. 7(b), most cases

show good agreement between synthetic and empirical data with

high p values: The fraction of users is 23.2% for pw0:9, and

86.3% for pw0:1. Thus, it can be said that our theoretical result

reasonably reproduces the empirical pattern.

Moreover, we simulate the queuing process by using the

average rates of SmT and SlT instead of the time-dependent form

of m(t) and l(t) for each user. In most cases, there is only a slight

difference between the two simulated results with different types of

parameters as shown in Fig. 8. However, there are apparent

different cases for the two results; these occur when periodic time

intervals appear in the activity of writing blog posts. In this case,

the time-dependent forms m(t) and l(t) are better for fitting to the

empirical data.

Conclusions
In this work, we have studied the inter-event time statistics of

human dynamics based on a large scale of on-line records of blog

writings at a Korean portal site. We observed that the IET

distributions of each user exhibit a universal pattern in the short-

time regime, but they exhibit different decay patterns in the long-

time regime, which depends on the activities of individual users.

Moreover, we observed a clear periodic pattern with a period of

one day, which reflects the circadian pattern of human behavior.

We explained these patterns within the framework of the queueing

model. First, we identified active and inactive time intervals of

individual behaviors and then removed inactive time interval and

constructed an ad-hoc time domain. Next, we applied the priority-

based queueing model in the ad-hoc time domain by adjusting the

arrival and execution rates of tasks to the empirical data. Following

this, we returned to the real time domain and found our

theoretical results to be in agreement with the empirical results

including the positions of circadian peaks [6,13,18,27]. The

microscopic studies performed in this paper enable us to

understand these empirical results from a theoretical perspective.
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