
Pitfalls in Experimental Designs for Characterizing the
Transcriptional, Methylational and Copy Number
Changes of Oncogenes and Tumor Suppressor Genes
Yuannv Zhang1, Jiguang Xia1, Yujing Zhang1, Yao Qin1, Da Yang2, Lishuang Qi1, Wenyuan Zhao1,

Chenguang Wang1, Zheng Guo1,3*

1College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China, 2Department of Pathology, University of Texas MD, Anderson Cancer

Center, Houston, Texas, United States of America, 3 School of Life Science and Bioinformatics Centre, University of Electronic Science and Technology of China, Chengdu,

China

Abstract

Background: It is a common practice that researchers collect a set of samples without discriminating the mutants and their
wild-type counterparts to characterize the transcriptional, methylational and/or copy number changes of pre-defined
candidate oncogenes or tumor suppressor genes (TSGs), although some examples are known that carcinogenic mutants
may express and function completely differently from their wild-type counterparts.

Principal Findings: Based on various high-throughput data without mutation information for typical cancer types, we
surprisingly found that about half of known oncogenes (or TSGs) pre-defined by mutations were down-regulated (or up-
regulated) and hypermethylated (or hypomethylated) in their corresponding cancer types. Therefore, the overall expression
and/or methylation changes of genes detected in a set of samples without discriminating the mutants and their wild-type
counterparts cannot indicate the carcinogenic roles of the mutants. We also found that about half of known oncogenes
were located in deletion regions, whereas all known TSGs were located in deletion regions. Thus, both oncogenes and TSGs
may be located in deletion regions and thus deletions can indicate TSGs only if the gene is found to be deleted as a whole.
In contrast, amplifications are restricted to oncogenes and thus can be used to support either the dysregulated wild-type
gene or its mutant as an oncogene.

Conclusions: We demonstrated that using the transcriptional, methylational and/or copy number changes without
mutation information to characterize oncogenes and TSGs, which is a currently still widely adopted strategy, will most often
produce misleading results. Our analysis highlights the importance of evaluating expression, methylation and copy number
changes together with gene mutation data in the same set of samples in order to determine the distinct roles of the
mutants and their wild-type counterparts.
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Introduction

It is well recognized that ‘‘activation’’ of oncogenes and

‘‘inactivation’’ of tumor suppressor genes (TSGs) combine to

confer selective advantages on cancer cells [1,2]. As originally

defined, oncogenes and TSGs arise as results of genetic lesions that

increase the activity of a proto-oncogene or decrease the activity of

a TSG [1,3]. The genetic lesions contain mutations (including

point mutations, intragenic deletions and insertions, chromosomal

translocations) and copy number alterations (CNAs). In general,

the genetic lesions inducing ‘‘activation’’ of oncogenes or ‘‘in-

activation’’ of TSGs can be classified into two types: i) genetic

lesions in the coding regions of the genes that can result in

hyperactive proteins (for oncogenes) or non-functional proteins (for

TSGs) that differ from the normal proteins encoded by the

corresponding wild-type genes; ii) genetic lesions in the promoter

regions or CNAs of the genes that can enhance or repress the

expression of the normal gene products [1,3].

After identifying genetic lesions in cancer genomes, wet lab

experiments and bioinformatics strategies are often used to

determine whether the genetic lesions induce the ‘‘activation’’ of

oncogenes or the ‘‘inactivation’’ of TSGs. However, almost all

researches for characterizing oncogenes and TSGs do not

discriminate patients with mutants from patients with their wild-

type genes [4–15], whereas carcinogenic mutants may express and

function completely differently from their wild-type counterparts

[16,17]. For CNAs, the amplification or deletion of the gene is

often used to support the gene as a proto-oncogene or a TSG [4–

7]. Notably, as CNAs can also alter DNA sequences to create
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mutants [18], this strategy potentially confounds the changes of the

mutants and their wild-type counterparts. For the other genetic

lesions, researchers usually collect an independent set of samples

without gene mutation data to find evidence of transcriptional or

methylational changes of this gene in cancer. This widely applied

strategy also potentially confounds the changes of the mutants and

their wild-type counterparts because the overall change in

expression or methylation detected in a cancer versus normal

dataset for a gene primarily reflects the change of the wild-type

gene in a majority of cancer patients given the low mutation rates

for most genes [19]. In addition, current databases of oncogenes

and TSGs, such as the Cancer Gene Census database [20] and the

tumor suppressor gene database [21], provide no information

about the particular mutants that contribute to cancer. Based on

such databases, many studies [22,23] including bioinformatics

analyses for training classifiers to predict cancer genes, do not

discriminate between wild-type genes and their mutants. This

problem may introduce great confusion into our attempts to

understand oncogenesis and cancer progression. Importantly,

correctly evaluating the possible different carcinogenic roles of

a wild-type gene and its mutant is critical for developing

personalized treatments as cancer therapies targeting oncogenes

and TSG are totally different –– inhibiting oncogene function but

restoring TSG function [24,25].

Therefore, in this study,wesystemicallyevaluated theeffectiveness

of using the overall expression, methylation and/or copy number

changes of genes in cancer tissues without discriminating gene

mutation states (including mutants and their wild-type genes) to

determine the ‘‘activation’’ of oncogenes or ‘‘inactivation’’ of TSGs.

Here,we specifiedgenes previously labeledas oncogenes orTSGs for

a particular cancer type without discriminating their mutation states

ascandidate-oncogenes (C-oncogenes)orcandidate-TSGs(C-TSGs)

for this cancer type. Based on multiple expression, methylation and

copynumberprofiles fora total ofninecancer types,we firstly showed

that, for each cancer type, the directions of overall expression,

methylation and copy number changes of a gene without discrim-

inating mutants and their wild-type genes were fixed in properly

designed case–control studies. Then, we showed that the overall

expression and methylation changes of a gene in cancer provide no

evidence for its mutant as an activated oncogene or an inactivated

TSG. We also showed that DNA amplification is unique to C-

oncogenes and thus amplification of a gene can support either the

dysregulatedwild-type geneor itsmutant as anoncogene, depending

on whether the wild-type gene or its mutant is amplified. However,

the current practice of using deletion to support a wild-type gene as

a TSG [4–7] could be valid only if this gene is found to be deleted as

a whole because deletions may frequently alter DNA sequences to

create mutant oncogenes; otherwise, more evidences are needed to

determine whether the partial deletion result in a non-functioning

geneproduct or a functional oncogenic chimera. Finally, a case study

of TP53 shows that TP53 in different mutation states can be

deregulated indifferentdirections inaparticularcancer.Ourfindings

highlight thebasic importanceof evaluatingexpression,methylation,

copy number changes together with gene mutation data in the same

set of samples in order to determine the distinct roles of the mutants

and their wild-type counterparts.

Results

Directions of DE, DM and CNA Genes in Population-level
Case–control Studies
Firstly, we evaluated whether the overall change directions of

the expression, methylation and copy number of a gene for

a particular cancer are fixed in population-level case–control

studies using randomly sampled cancer tissues and normal controls

without discriminating gene mutation states. Using the significance

analysis of microarrays (SAM) method [26], with 5% false

discovery rate (FDR) control, we selected two lists of differentially

expressed genes (DE genes) from the two datasets for each of the

eight cancer types that had two expression profiles available (see

Materials and methods). Only 67% of the DE genes shared by the

two lists for prostate cancer had consistent up- or down-regulation

status (Table 1), indicating that the reliability of these DE genes

was relatively low. For each of the other seven cancer types, above

90% of the DE genes shared by the two lists of DE genes had

consistent up- or down-regulation status (Table 1), which was

unlikely to occur by chance (Bernoulli p,2.20610216). Addition-

ally, we calculated the directional consistency of the union of DE

genes identified in the two datasets for each cancer type. The

results showed that averagely 87% of the DE genes identified in at

least one dataset had consistent up- or down-regulation status

across the two datasets for each of the seven cancer types analyzed

in this study (Table S1), which was unlikely to occur by chance

(Bernoulli p,2.20610216). Notably, as demonstrated in our

previous work [27], many gene truly differentially expressed in

a disease may not always show differential expression signals in

a particular dataset for this disease especially when the sample size

is small and/or the measurement noise is high. If a ‘‘true’’ DE

gene is not identified as significantly changed in a dataset, it is

likely that its change direction in this dataset may fluctuate

randomly. Thus, it would be more reasonable to evaluate the

reliability of DE genes identified in only one dataset for a cancer

type using the change directions of those genes showing at least

marginally significant changes (e.g., p,0.1) in another dataset.

The comparison showed that averagely 96% of such DE genes had

consistent up- or down-regulation status across the two datasets for

each of the seven cancer types (Table S2, Bernoulli

p,2.20610216). Furthermore, we proved the reliability of the

non-overlapping DE genes identified from the two datasets for

each of the seven cancer types using the DE genes in another

independent dataset for this cancer (Table S3). The results

indicated that the DE genes identified in each dataset for each of

the seven cancer types can reliably capture a portion of the total

deregulated genes for that cancer. Thus, in the following analyses,

we focused on analyzing DE genes of these seven cancer types and

used DE genes identified in at least one dataset for each cancer

type but ignored those with opposite changes in regulation.

Using the Student’s t test, with 5% FDR control, we selected

two lists of differentially methylated genes (DM genes) from the

two datasets for each of the four cancer types that had two

methylation profiles available (see Materials and methods). We

observed very consistent directionality in methylation changes

across datasets for each of the four cancer types (Table 1).

Additionally, we found that averagely 98% of the DM genes

identified in at least one dataset had consistent hypomethylation or

hypermethylation status across the two datasets for each of the

four cancer types analyzed in this study (Table S1, Bernoulli

p,2.20610216). Furthermore, we proved the reliability of the

non-overlapping DM genes identified from the two datasets for

each of the four cancer types using the change directions of those

genes showing marginally significant changes (p,0.1) in these two

datasets or DM genes in another independent dataset for this

cancer (Table S2, Table S3). The results indicated that the DM

genes identified in each dataset for the four cancer types can

reliably capture a portion of the total genes with methylation

changes for that cancer. Thus, in the following analyses, we

focused on analyzing DM genes of these four cancer types and
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used DM genes identified in at least one dataset for each cancer

type but ignored those with opposite methylation changes.

Using the GISTIC (Genomic Identification of Significant

Targets in Cancer) algorithm, with 5% FDR control, we selected

CNAs for each of the five cancer types that had two copy number

profiles available (see Materials and methods). For each of the

colorectal, prostate and brain cancer types, more than 99% of the

CNA genes detected in both datasets were consistent in the

amplification or deletion status, which was unlikely to occur by

chance (Bernoulli p,2.20610216). Additionally, for each of the

three cancer types, if the non-overlapping CNA genes were also

found to be located in CNA regions in the third dataset, then

averagely 93% of them were consistent in the amplification or

deletion status in the third dataset (Table S3). The concordance

rates were only 73% for lung and 68% for breast cancers but

increased to 100% and 91%, respectively, when a stricter FDR

control of 1% was used (Bernoulli p,2.20610216; Table 1). Thus,

the CNAs selected with 1% FDR were used for these two cancer

types in the following analyses. With 1% FDR, for the non-

overlapping CNA genes for each of the two cancer types that were

also found to be located in CNA regions in the third dataset for

that cancer type, then averagely 93% of them were consistent in

the amplification or deletion status in the third dataset (Table S3).

Also, for each of the five cancer types, we used CNA genes

identified in at least one dataset but ignored those with inconsistent

changes in the two datasets.

The strong concordance in the directionality of a particular type

of molecular changes (expression, methylation or copy number

changes) across different datasets for a cancer type indicates that

the directions of the changes are fixed in properly designed

population-level cancer versus normal studies. Therefore, in the

following text, we focused on C-oncogenes and C-TSGs with

changes in expression, methylation and copy number in the above-

mentioned seven, four and five cancer types, respectively.

Candidate-oncogenes
Then, we evaluated whether C-oncogenes tend to be up-

regulated, hypomethylated or amplified in population-level cancer

versus normal studies for their corresponding cancer types. In only

one of the seven cancer types for analyzing expression changes of

C-oncogenes, more than 50% of the corresponding DE C-

oncogenes were up-regulated (Figure 1A; Table S4). The average

frequency of down-regulation events of C-oncogenes in their

corresponding cancer types was 53% (Figure 1A; Table S4). Also,

more than 50% of the DM C-oncogenes were hypermethylated in

three of the four cancer types for analyzing methylation changes of

C-oncogenes. The average frequency of hypermethylation events

of C-oncogenes in their corresponding cancer types was 60%

(Figure 1A; Table S4). Thus, C-oncogenes do not tend to be up-

regulated or hypomethylated in their corresponding cancer types.

The reason for the above results could be that the overall down-

regulation or hypermethylation of a C-oncogene in a cancer versus

normal study for a particular cancer type tends to be determined

from a majority of cancer samples that contain the wild-type gene

rather than its mutant based on which the gene is labeled as

‘‘oncogene’’, whereas a wild type gene may play a different

carcinogenic role from its mutant. For example, FGFR2 was

identified as an oncogene for the lung cancer based on the

observation that the W290G mutant can promote lung cancer by

stimulating growth factor signaling [24]. However, we found that

FGFR2, which participates in cell differentiation [28], was down-

regulated and hypermethylated in lung cancer. Given the low

mutation rate of FGFR2 in the lung cancer [19], down-regulation

of the wild-type FGFR2 may compromise cell differentiation and

promote cancer in most patients of the lung cancer. Notably, we

found that many C-oncogenes down-regulated in their corre-

sponding cancer types were involved in cell differentiation whose

arrest contributes to carcinogenesis [29] (Table S5). Similarly,

many hypermethylated C-oncogenes were also involved in cell

differentiation [30] (Table S5). Thus, down-regulation or hyper-

methylation of many wild-type C-oncogenes normally involved in

cell differentiation may be predominant contributors to cancer

(Figure 1B).

In the five cancer types for analyzing copy number changes of

C-oncogenes, we found 14 amplification events involving 12 C-

oncogenes and 13 deletion events involving 11 C-oncogenes in

their corresponding cancer types (Table S4). Thus, C-oncogenes

do not tend to be amplified in their corresponding cancers

(Bernoulli p = 0.5; Figure 1A). The result showed that about half of

the C-oncogenes were located in deletion regions, indicating that

deleted regions might be associated with DNA sequence altera-

tions such like gene fusion (Figure 1B) that create oncogenic

mutants. For the 11 C-oncogenes with deletions in their

corresponding cancer types, four genes (ERG, TMPRSS2, ROS1

and GOPC) can create oncogenic fusion genes (ERG-TMPRSS2

and ROS1-GOPC), and deletions in another four (CD74, BCL2,

Table 1. Directional agreement of DE, DM and CNA genes.

Cancer types
DE genes
with 5% FDR DM genes with 5% FDR CNA genes with 5% FDR CNA genes with 1% FDR

Lung 99.86% (4253) 99.64% (2771) 73.31% (1881) 90.78% (781)

Gastric 99.88% (1675) 99.46% (2573) NA NA

Renal 98.11% (4549) 99.76% (4505) NA NA

Prostate 66.59% (458) NA 100% (100) 100% (7)

Breast 95.93% (6947) NA 68.02% (544) 100% (365)

Pancreatic 98.41% (9096) NA NA NA

Ovarian 98.95% (5427) NA NA NA

Colorectal 92.52% (7802) 99.68% (2832) 99.76% (413) 100% (410)

Brain NA NA 100% (188) 100% (113)

Note: For the two lists of DE, DM or CNA genes detected from two datasets for each cancer, the directional agreement rates were calculated as the number of DE, DM or
CNA genes with consistent directions across the two datasets divided by the number of all DE, DM or CNA genes commonly detected in both datasets (in parenthesis);
NA, not available.
doi:10.1371/journal.pone.0058163.t001
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TRIM33 and ETV6) can lead to fusion oncogenes by translocation,

as shown in the Mitelman Database of Chromosome Aberrations

in Cancer (http://cgap.nci.nih.gov/Chromosomes/Mitelman)

and previous studies [20,31]. Notably, four C-oncogenes (NOTH1,

FGFR2 and MYC for the breast cancer and FGFR3 for the

colorectal cancer) were found to be amplified but down-regulated

in their corresponding cancer types. The amplifications of these

four genes may be associated with DNA sequence alterations to

create oncogenic mutants [20,24], and their overall down-

regulation may be typical of their wild-type counterparts that

normally participate in cell differentiation and the arrest of which

can promote carcinogenesis (Figure 1B) [29].

Candidate-TSGs
Similarly, we tested whether C-TSGs tend to be down-

regulated, hypermethylated or deleted in population-level cancer

versus normal studies for their corresponding cancer types. In six

of the seven cancer types for analyzing expression changes of C-

TSGs, no more than 50% of DE C-TSGs were down-regulated.

The average frequency of down-regulation events of C-TSGs in

their corresponding cancer types was only 40% (Figure 2A; Table

S4). Also, the average frequency of hypermethylation events of C-

TSGs in their corresponding cancer types was only 42%

(Figure 2A; Table S4). These results showed that C-TSGs do

not tend to be down-regulated or hypermethylated in their

corresponding cancers.

Another type of cancer genes, ‘‘stability TSGs’’, are often

classified as TSGs because their inactivation could produce an

oncogenic effect but their roles in carcinogenesis are completely

different from those of other TSGs [2]: the loss-of-function

mutations or the deletion of a stability TSG promote inactivation

of other tumor-suppressor genes as well as activation of oncogenes.

Therefore, we also analyzed ‘‘stability TSGs’’ and ‘‘non-stability

TSGs’’ separately. The result showed that the average frequency

of down-regulation events of non-stability C-TSGs in their

corresponding cancer types was 61% (Bernoulli p = 0.12;

Figure 2A; Table S4) and the average frequency of hypermethyla-

tion events was 54% (Bernoulli p = 0.5; Figure 2A; Table S4).

These results did not suggest that non-stability C-TSGs tend to be

down-regulated and hypermethylated in their corresponding

cancer types. In contrast, the average frequencies of up-regulation

events and hypomethylation events of stability C-TSGs in their

corresponding cancer types were 82% (Bernoulli p=9.7661025)

and 83% (Bernoulli p = 0.11; Figure 2A; Table S4), respectively.

These results indicated that stability C-TSGs tend to be up-

regulated and hypomethylated in their corresponding cancer

types, possibly in response to genomic instability (Figure 2B). As

for the up-regulated or hypomethylated non-stability C-TSGs,

some of them, such as SMARCA4 in the lung cancer, may be

unknown stability C-TSGs [28]. The up-regulation or hypo-

methylation of a C-TSG could also reflect the fact that the wild-

type C-TSG can assist a mutant oncogene in promoting

Figure 1. The expression, methylation and copy number changes of C-oncogenes and the related mechanisms. A, Numbers of C-
oncogenes with expression, methylation and copy number changes in the corresponding cancer types. A full list of these C-oncogenes is given in
Table S4. B, The mechanisms underlying the overall down-regulation of C-oncogenes in cancer patient population.
doi:10.1371/journal.pone.0058163.g001
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carcinogenesis [32] or that it can be activated by mutations that

make it carcinogenic (Figure 2B) [16,17].

In the five cancer types for analyzing copy number changes of

C-TSGs, we observed no amplification events and 23 deletion

events involving 16 C-TSGs in their corresponding cancer types,

which was unlikely to occur by chance (Bernoulli p=1.1961027;

Figure 2A; Table S4). Notably, four (TP53 for the lung cancer,

ATM for the colorectal cancer, CDKN2A-p16(INK4a) and BRCA1

Figure 2. The expression, methylation and copy number changes of C-TSGs and the related mechanisms. A, Numbers of C-TSGs,
including stability C-TSGs and non-stability C-TSGs, with expression, methylation and copy number changes in the corresponding cancer types. A full
list of these C-TSGs is given in Table S4. B, The mechanisms underlying the overall up-regulation of stability C-TSGs in cancer patient population.
doi:10.1371/journal.pone.0058163.g002
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for the breast cancer) of the 16 deleted C-TSGs were significantly

up-regulated in their corresponding cancer types, and all four play

roles in maintaining genome stability [28]. The up-regulation

trend for these stability C-TSGs mainly reflects changes of their

wild-type genes, rather than of the deleted genes themselves

(Figure 2B). The up-regulation of the wild-type versions of these

four stability C-TSGs indicates that they may respond to genome

instability in most patients.

Distinct Deregulation Pattern of Cancer Genes in
Different Mutation States: a Case Study of TP53
The above results suggest the importance of discriminating

genes in different mutation states for correctly characterizing the

‘‘activation’’ of oncogenes or the ‘‘inactivation’’ of TSGs. To

illustrate this view specifically, we analyzed a typical case, C-TSG

TP53, using a dataset containing both gene sequence and

expression data from 319 samples of ovarian cancer and eight

normal controls. We found 254 mutations but no copy number

alterations in TP53 in ovarian cancer. Mutations in TP53 were

divided into three types according to the International Agency for

Research on Cancer (IARC) TP53 database [33]: activating,

inactivating (nonsense, frame shift) and undetermined mutations.

As shown in Figure 3A, the expression levels of TP53 with

activating mutations in the 98 ovarian cancer samples were

significantly higher than the expression levels of TP53 in the eight

normal controls (p=0.044, two tailed t-test). Yet, the expression

levels of both TP53 with inactivating mutations in the 49 ovarian

cancer samples (p=2.61610211, two tailed t-test) and wild-type

TP53 in the 65 ovarian cancer samples (p=0.001, two tailed t-test)

were significantly lower than the expression levels of TP53 in the

normal controls. For brain cancer, we found 31 mutations but no

copy number alterations. Similar analysis for brain cancer showed

that activated TP53 was up-regulated in the cancer samples versus

the normal controls (p=3.4061029, two tailed t-test), whereas

wild-type TP53 were down-regulated in the cancer samples versus

the normal controls (p=1.49610218, two tailed t-test; Figure 3B).

The expression levels of TP53 with inactivating mutations in the

three brain cancer samples were not significantly different from

the expression levels of TP53 in the normal controls (p=0.421, two

tailed t-test) possibly due to the small sample size. The above

results suggest that TP53 in different mutation states can be

deregulated in different directions in a particular cancer type.

Discussion

Based on various high-throughput data without mutation

information for typical cancer types, we found that about half of

known C-oncogenes (or C-TSGs) pre-defined by mutations were

down-regulated (or up-regulated) and hypermethylated (or hypo-

methylated) in their corresponding cancer types. The comparison

with the 50% random chance up-regulation (or down-regulation)

indicated that the C-oncogenes (or C-TSGs) show random up- or

down-regulation in cancer versus normal control. In most cancer

types we analyzed, the up-regulated (or down-regulated) frequen-

cies of C-oncogenes (or C -TSGs) were even lower than the

expected frequencies of up-regulated (or down-regulated) DE

genes. This result suggested that C-oncogenes are not more likely

to be up-regulated (or down-regulated) than the other DE genes.

Similarly, the hypomethylated (or hypermethylated) frequencies of

C-oncogenes (or C-TSGs) were even lower than the expected

frequencies of hypomethylated (or hypermethylated) DM genes

(Table S6). Our results suggest that the population-level expression

and methylation changes of a gene without considering its

mutation states provides no discriminating information about the

activation or inactivation of the carcinogenic mutant in cancer as

they mainly reflect changes that occur in the wild-type counter-

part. As gene activity is regulated at both transcriptional and

translational levels, it is possible that some of the observed

inconsistency may result from translational or post-translational

regulation. On the other hand, even pathways that operate

primarily through translational or posttranslational mechanism

leave recognizable gene expression signatures [34–36], it is largely

reasonable to evaluate the transcriptional changes of oncogenes

and tumor suppressor genes. Also, we found that only half of the

C-oncogenes were located in amplification regions, while the

amplified frequencies of C-oncogenes were still higher than the

expected frequencies of amplified CNA genes in most caner types

we analyzed (Table S6). However, all C-TSGs were located in

deletion regions and the deleted frequencies of C-TSGs were

higher than the expected frequencies of deleted CNA genes in all

caner types we analyzed (Table S6). Our analyses indicate that the

amplification of a gene can support either the dysregulated wild-

type gene or its mutant as an oncogene, depending on whether the

wild-type gene or its mutant is amplified. However, the deletion

could be valid for supporting a wild-type gene as a TSG only if we

could find other evidence that the whole gene is deleted as

deletions may frequently alter the DNA sequences to create

oncogenic mutants; otherwise, more evidences are needed to

determine whether the partial deletion result in a non-functioning

gene product or a functional oncogenic chimera. Taken together,

our results clearly show that the currently widely applied

experimental strategy which uses the overall expression, methyl-

ation and/or copy number changes of genes in cancer tissues

without discriminating gene mutation states to determine the

‘‘activation’’ of oncogenes or ‘‘inactivation’’ of TSGs is likely to

produce misleading results. It is worth noting that many studies are

also hindered by two other problems: a lack of statistical

significance owing to insufficient small sample sizes [11,37], and

bias introduced by considering only samples for which the

expression, methylation and/or copy number changes are

concordant with the supposed roles of the genes as oncogenes or

TSGs [9,11].

In order to distinguish the changes of a carcinogenic mutant

and its wild-type counterpart, the expression, methylation and

copy number changes of a candidate cancer gene in cancer should

be studied in the same set of samples used for mutational analysis.

Currently, The Cancer Genome Atlas (TCGA) project [38] and

the International Cancer Genome Consortium project [39] are

generating data of mutation and other molecular changes from the

same sets of samples, which provide basis for discriminating

molecular changes of a gene in different mutation states. However,

the availability of such multi-dimensional data is still very limited

[38,40–44], and the lack of expression data from healthy controls

is particularly problematic (for example, some studies did not

include any [38,40] or had only two normal samples [41,42]). To

tackle the problem of incomplete data, some researchers have used

gene expression levels from cancer samples without mutations as

the baseline for measuring the deregulation of mutated genes in

cancer [38,40]. This is problematic because wild-type C-

oncogenes and C-TSGs also tend to be differentially expressed

in cancer. Thus, a sufficient number of healthy controls are

required to determine the true baseline expression levels of genes

in healthy tissues. Another problem is that the low mutation rates

of most cancer genes limit the statistical power of determining the

changes of the mutants. It would be a cost-effective approach to

use paired healthy tissue to determine the baseline expression of

genes for each individual, which also allows us to examine whether

a wild-type or its mutant is dysregulated in the same direction in
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carcinogenesis for different patients. This is an interesting question

that merits future study.

Our analysis suggests that many down-regulated or hyper-

methylated wild-type C-oncogenes in cancers are normally

involved in cell differentiation and that their down-regulation

may repress differentiation, resulting in continued proliferation of

cells and a failure to die [45] which may confer self-renewing

properties on cancer stem cells during carcinogenesis [46]. Our

results also show that wild-type stability C-TSGs tend to be

significantly up-regulated and hypomethylated in cancer, unlike

other C-TSGs, supporting the idea that stability C-TSGs should

be regarded as a separate class of cancer genes. In general,

a carcinogenic mutant and its wild-type counterpart may express

and function differently and their respective roles should be

determined separately. The failure to consider this difference may

account for the poor performance of current classifiers to

discriminate C-oncogenes from C-TSGs [22,23].

Finally, we highlight that correctly discriminating the carcino-

genic roles of a mutant and its wild-type counterpart is important

for effective personalized treatments as cancer therapies targeting

oncogenes and TSGs aim at inhibiting oncogene function and

restoring TSG function, respectively [24,25]. The effectiveness of

a therapy is often tested on cells harboring a mutated oncogene,

but in many cases, the drugs do not specifically target the mutated

gene [24]. Our results show that some wild-type C-oncogenes

might play roles in suppressing carcinogenesis. In such cases, drugs

inhibiting the wild-type C-oncogene could cause adverse effects in

a majority of patients who already possess a down-regulated wild-

Figure 3. TP53 in different mutation states can be deregulated in different directions in a cancer type. A, In the ovarian cancer, TP53
with activating mutations was up-regulated, whereas both inactivated TP53 and wild-type TP53 were down-regulated; B, In the brain cancer, TP53
with the activating mutations and the wild-type TP53 were up-regulated, whereas TP53 with inactivating mutations were not found to be significantly
changed possibly due to the small sample size.
doi:10.1371/journal.pone.0058163.g003
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type C-oncogene. Therefore, the functional effects of a drug on

patients with wild-type C-oncogenes should be evaluated before

the drug is used in the clinic. Similarly, we should take care when

considering cancer gene therapies that restore TSG function

because the wild-type C-TSG may assist a mutant oncogene in

promoting carcinogenesis [32] or may be vulnerable to activating

mutations [16,25]. Thus, discriminating the roles of a wild-type

gene and its mutants is important for developing personalized

treatments, which is becoming practical as genome-scale sequenc-

ing and microarray technologies are becoming more efficient and

cost-effective.

Materials and Methods

C-oncogenes, C-TSGs and Stability C-TSGs
C-oncogenes and C-TSGs for lung, gastric, renal, prostate,

breast, pancreatic, ovarian, colorectal and brain cancers were

obtained from F-Census [47], which is a collection of cancer genes

from various data source including the Cancer Gene Census

dataset [20] and the Tumor Suppressor Gene database [21]. In

the Cancer Gene Census database, C-oncogenes and C-TSGs are

labeled according to whether mutations are dominant or recessive

[48]. In the Tumor Suppressor Gene database, C-TSGs were

collected by text mining from the National Center for Bio-

technology Information and other credible data sources [21]. For

all the nine cancer types analyzed in this paper, no gene is labeled

as both C-oncogene and C-TSG. The C-oncogenes and C-TSGs

analyzed in this work are shown in Table S7.

We divided C-TSGs into stability and non-stability C-TSGs by

extracting the stability C-TSGs in Table 1 of [2]. In addition, we

also considered C-TSGs assigned to the Gene Ontology terms

‘‘DNA repair’’, ‘‘cell cycle checkpoint’’ and ‘‘response to DNA

damage stimulus’’ as stability C-TSGs [28]. The Gene Ontology

annotation data were downloaded on April 29, 2011 [28].

Expression, Methylation and Copy Number Profiles
From the Gene Expression Omnibus [49], TCGA [38] and

Tumorscape [18] databases, we collected three types of molecular

profiles (expression, methylation and copy number changes) for

different cancers according to the following criteria: for each type

of molecular changes of a particular cancer type, there had to be at

least two profiles available for evaluating the concordance of this

type of molecular changes across different studies [50]; and each

profile had to include at least 10 cancer samples and 10 healthy

controls, respectively. When more than two profiles for a particular

type of molecular changes were available for a cancer type, the two

profiles with the largest sample sizes were adopted. According to

the above criteria, we obtained two expression profiles for each of

eight cancer types, two methylation profiles for each of four cancer

types and two copy number profiles for each of five cancer types.

No samples were shared by any two profiles of each cancer type.

As for the third profile used to validate the reliability of non-

overlapping differential genes discovered from the above two

profiles for each type of molecular changes of a particular cancer

type, the profiles with a smaller sample size were also adopted if no

profile was available according to the above criteria. All of the

datasets analyzed in this work are described in Table S8. Notably,

because no copy number data from normal samples were available

for breast cancer and prostate cancer in these databases, we used

the 48 healthy samples from the Affymetrix website (http://www.

affymetrix.com).

For the case study of TP53, we used two datasets containing

both gene sequence and expression profiles for the brain and

ovarian cancers, respectively, downloaded from the TCGA

database [38].

Selection of DE, DM Genes and CNAs
The raw gene expression data were normalized by the robust

multi-array average (RMA) algorithm. We used background-

adjusted PM probe intensities [51] and mapped the probe sets to

Entrez genes based on the SOURCE database (downloaded in

July, 2010) [52]. If multiple probes were mapped to a single gene,

we adopted the average of the probe intensities as the expression

value of this gene. DE genes in cancer samples versus normal

controls were selected by the SAM method (samr_1.25 R package)

[26].

We used the level 2 TCGA data, which provides U (un-

methylated) and M (methylated) values for each probe. The beta-

value of a probe was calculated as M/(U+M+100). The probe IDs

were mapped to gene IDs by the annotation table for each

platform [53]. DM genes in cancer samples versus normal controls

were selected based on the Student’s t test [53]. The P-values were

adjusted by the Benjamini and Hochberg method for multiple-

testing correction [54].

The probe-level signal intensities of the DNA copy number data

were normalized using invariant set normalization [55], and the

SNP-level signal intensities were obtained using a model-based

method [56]. Significant CNAs were determined using the

GISTIC method [57]. SNP, gene and cytogenetic band locations

were based on the hg17 (May 2004) genome build [58].

Statistical Analysis for Consistent Directionality of a Type
of Molecular Change
If there were N DE genes that were commonly detected in two

independent profiles for a cancer, then the significance level (the

random chance) of observing at least m DE genes with consistent

up- or down-regulation directions across the two profiles was

calculated by using the binomial distribution model as follows:

P~
XN

i~m

Ci
N (Pr)

i(1{Pr)
N{i

where Pr ( = 0.5) is the probability of observing by random chance

that a DE gene shared by the two lists is detected to be both up-

regulated or both down-regulated in the corresponding two

profiles.

Similar statistical analysis was done for consistent directionality

of methylation changes (hypermethylation or hypomethylation) of

two lists of DM genes and for consistent directionality of CNAs

(amplification or deletion) of two lists of CNA genes.

Supporting Information

Table S1 Directional agreement of the union of DE and DM

genes across two datasets for each cancer type.

(XLS)

Table S2 Directional agreement of the DE and DM genes,

which were significantly changed in one dataset and at least

marginally significantly changed in another dataset, across two

datasets for each cancer type.

(XLS)

Table S3 Directional agreement of non-overlapping DE, DM

and CNA genes in the third dataset for each cancer type.

(XLS)
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Table S4 All cancer genes with differential expression, methyl-

ation or copy number changes in their corresponding cancer types.

(XLS)

Table S5 Down-regulated or hypermethylated c-oncogenes

involved in cell differentiation.

(XLS)

Table S6 The comparison between the altered frequencies of C-

oncogenes (C-TSGs) and the expected altered frequencies.

(XLS)

Table S7 C-oncogenes, c-TSGs and stability c-TSGs for nine

cancer types.

(XLS)

Table S8 Expression, methylation and copy number datasets

used in this study.

(XLS)
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