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Abstract

Dynamics of brain signals such as electroencephalogram (EEG) can be characterized as a sequence of quasi-stable patterns.
Such patterns in the brain signals can be associated with coordinated neural oscillations, which can be modeled by non-
linear systems. Further, these patterns can be quantified through dynamical non-stationarity based on detection of
qualitative changes in the state of the systems underlying the observed brain signals. This study explored age-related
changes in dynamical non-stationarity of the brain signals recorded at rest, longitudinally with 128-channel EEG during early
adolescence (10 to 13 years of age, 56 participants). Dynamical non-stationarity was analyzed based on segmentation of the
time series with subsequent grouping of the segments into clusters with similar dynamics. Age-related changes in
dynamical non-stationarity were described in terms of the number of stationary states and the duration of the stationary
segments. We found that the EEG signal became more non-stationary with age. Specifically, the number of states increased
whereas the mean duration of the stationary segment decreased with age. These two effects had global and parieto-
occipital distribution, respectively, with the later effect being most dominant in the alpha (around 10 Hz) frequency band.
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Introduction

Brain signals recorded, for example, with electroencephalogram

(EEG) or magnetoencephalogram (MEG), are naturally variable,

and this variability can be characterized in terms of metastability

[1]. Specifically, metastability refers to the brain’s ability to deviate

from one stable state to another, remaining for an extended period

of time. Patterns of short oscillatory sequences of neuronal

ensembles can be interrupted by periods of stochastic activity

[2,3]. The oscillatory sequences are believed to be a result of the

integration of distributed neuronal ensembles, producing coordi-

nated neural oscillations, under the assumption that intrinsic

differences in the neuronal activity between the functional modules

are sufficiently large to perform their own specific operations [4].

The theory of stochastic processes distinguishes two types of

stationarity: strong and weak. The process is called strictly or

strongly stationary if all its joint distributions do not change when

shifted in time. In signal processing, wherein typical time series are

finite, a weaker form of stationarity is routinely employed. A

weakly stationary random process has constant mean and

variance, and its autocorrelation function depends only on the

time lag. Thus, a power spectrum that is constant over time is a

manifestation of weak-sense stationarity.

Recent advances in surrogate time series and non-linear analysis

showed that neurophysiological signals such as EEG or MEG

cannot be fully described by studying their linear properties only

[5]. A key assumption in non-linear analysis of EEG/MEG is that

there exists a dynamic system underlying the observed time series.

From the theoretical point of view, the neural ensembles can be

represented by single oscillators [6]. Further, different neural

ensembles can be coupled with long-range connections, forming a

large-scale network of coupled oscillators. Encouraging results

were obtained in modeling the resting state network dynamics

wherein the realistic fluctuations in brain signals are considered a

result of coupled non-linear systems, in general, with time delays in

coupling [7,8].

We may refer to the variability of a signal, which arises from its

non-linear nature, as dynamical non-stationarity - the term used

previously in a number of studies on dynamic non-linear

properties of the brain signals [9,10]. Dynamical stationarity

may be considered an extension of weak stationarity, which is

based on the constancy of linear relations between data points. In

contrast to non-stationarity in a stochastic sense, dynamical

nonstationarity implies the existence of a non-linear dynamic

system associated with an observed signal. We can distinguish two

approaches on how to construct a mathematical model of the

multistability of observed brain signals. They can be essentially
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discriminated based on an interplay between the complexity of a

model in use and its parameters.

One approach is based on choosing an a priori non-linear

system. This system should be relatively complex, and able to

express nonstationary chaotic behavior for a given set of the

parameter values. One example of such a framework is a study,

wherein bistability of the alpha brain rhythms, manifested as

switching between high- and low-amplitude oscillations, was

modeled as arising from a Hopf bifurcation - a local bifurcation

in which a fixed point of a dynamical system loses stability [11].

The bursts of two types of neural activity thus corresponded to two

noise-induced attractors that exist in a specific region of the

parameter space.

The other approach is driven by an idea that in general, a

dynamical system underlying the observed time series remains

unknown. The goal would be to reasonably approximate the

unknown system, often with a set of basis functions. Specifically,

the parameters of a model are estimated by fitting a combination

of relatively simple functions to different segments of given signals.

In this case, dynamical non-stationarity can be understood as

external or internal events causing abrupt changes or drifts in

system parameters. In the current study, we follow such an

approach.

Under this framework, a method based on segmentation of time

series and subsequent classification of stationary segments has been

proposed to address the issue of non-stationarity of time series

[12,13]. This type of analysis has been applied in several studies of

EEG signals. For instance, quantitative characteristics of segmen-

tal organization of the brain signals were explored in resting state

EEG [14,15]. Another study reported differences in the duration

of stationary EEG segments between patients with mild Alzhei-

mer’s disease and healthy subjects [16]. Transitions between

dynamical modes have been explored using EEG collected during

different sleep stages [17]. Two studies applied an analysis of

dynamical non-stationarity to explore temporal structure of

epileptogenic EEG [9,10].

Not much work has been done on exploring age-related changes

in non-stationarity either in the context of brain development or

aging. A number of studies have characterized, however, age-

related changes in variability of brain signals, quantified as sample

entropy [18,19]. For example, the relations between age and

variability of EEG signals were analyzed in children (8–15 years)

and young adults (20–33 years) performing a face memory task

[18]. It was found that the variability of the brain signals increased

with age. Similar results were found in other age groups, from one

month to five years of age, using EEG collected in response to

auditory and visual stimuli [19].

It should be emphasized that sample entropy is a statistic that is

closely related to the mean rate of information generated by a non-

linear system [20,21]. In contrast to the presence of linear

stochastic effects, it can be used to detect the existence of non-

linear deterministic systems underlying the observed signal [22]. In

turn, dynamical non-stationarity can reveal the temporal structure

of brain signals, identifying the segments characterized by similar

dynamics. It would be natural to assume that age-related changes

in the variability of brain signals can be characterized by the

corresponding changes in dynamical non-stationarity. This

hypothesis is tested in this study, which is aimed at exploring the

age-related changes in dynamical non-stationarity in terms of the

number of stationary states and the duration of stationary

segments.

Materials and Methods

Data
A total of 65 typically developing adolescents participated in the

study at three time points about 18 months apart. Participants who

did not have the complete data set collected during all the three

visits were excluded from this analysis, leaving a group of 56

adolescents (29 males). The mean and standard deviation of age in

each group were as follows: 10+0.4, 11.5+0.4, 13+0.4 years old.

All participants reported no history of neurological, psychiatric, or

developmental disorders. Written informed consent was obtained

from the parents, together with assent from the adolescents. The

study was conformed to the Helsinki declaration, and approved by

the Research Ethics Board of the Montreal Neurological Institute

(MNI).

Resting EEG data were acquired using a 128-channel Geodesic

Sensor Net and Net Station software, version 3.0.2 (Electrical

Geodesics, Inc., Eugene, Oregon, USA). Scalp-electrode imped-

ances were kept between 20 and 60 kOhms. All channels were

referenced to Cz during acquisition. EEG recordings were band-

pass filtered between 0:1 and 200 Hz with 3 dB attenuation,

amplified at a gain of 1000, and digitized with a 16-bit A/D

converter with a sampling frequency of 500 Hz.

The participants were asked to keep their eyes open or closed in

7 alternating 30 s epochs, with a 60 s eyes-closed epoch collected

at the beginning and at the end. The data were re-referenced to an

average reference and band-pass filtered between 0:5 and 55 Hz.

Eight 20 s epochs were extracted from the centre of each segment

(5–25 s) to avoid the artifacts associated with opening or closing of

the eyes. The mean activity was subtracted from each epoch.

Correction for blinks and lateral eye movement was performed

using Independent Component Analysis (ICA) with the EEGLAB

software [23]. Epochs with remaining artifacts were identified and

removed from further analysis, thus leaving, on average, 5 epochs

for each visit for the eyes-closed condition, and 4 epochs for the

eyes-open condition. For more details on data collection and pre-

processing see [24].

Non-stationarity
Many studies have emphasized the non-stationarity nature of

electrical/magnetic brain signals [4,15,25]. Typically, it is assumed

that the observed EEG or MEG signals are piecewise processes

composed of several quasi-stationary components, which in turn

reflect the dynamic repertoire of coupled neural ensembles. Our

aim is to determine the periods of quasi-stationary dynamics and

quantify both their duration and frequency. One way to address

this question is through segmentation of nonstationary time series

and subsequent classification of quasistationary segments [12,13].

For segmentation, a given time series fxtg, is first divided into n
relatively short segments xi, i~1,:::,n, possibly overlapping in

time. Then, the difference between the segments in the properties

of their dynamics are pairwise computed, producing a matrix

D~fdijgi,j~n
i,j~1 of distances dij~d(xi,xj), wherein dij was defined as

the Euclidean distance between the vectors of coefficients of a

model fitted to each segment of the given time series [14].

According to the Weierstrass approximation theorem, any

continuous function on a bounded interval can be approximated

by polynomial functions [26]. We define our model in the form of

maps [9]:

xtz1~f (xt), ð1Þ

where the function f (xt) itself is defined in the form of polynomials
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of some order p with the coefficients bk, k~0,:::,p:

f (xt)~
Xp

k~0

bkxk
t : ð2Þ

The distance between two segments i and j is then defined as

dij~
Xp

k~0

b
(i)
k {b

(j)
k

� �2

, ð3Þ

where b
(i)
k and b

(j)
k are the corresponding estimated coefficients of

the model (2) applied to the segments xi and xj , respectively.

After the matrix of distances for a given time series is calculated,

the next step (classification) is to unify segments into groups or

clusters composed of the segments with similar quasistationary

dynamics. In this study, clustering was performed using the affinity

propagation algorithm [27]. This is a fast and efficient iterative

method that searches for clusters so as to maximize an objective

function, called net similarity. The input for the clustering

algorithm are the matrix of distances between data points and a

parameter that modulates the preferences with which separate

data points tend to be unified as one cluster. As a result of

clustering, individual segments (or data points in the space of

model parameters) are assigned to the identified clusters. It should

be noted that, in general, we search for clustering with an

unknown number of clusters, which can vary across the

participants or channels.

Finally, the adjacent small segments that belong to the same

cluster are glued together to produce a larger segment of quasi-

stationary behavior. As a result, a signal can be viewed as a

sequence of interlaced segments, each associated with a quasi-

stationary state. This signal can be characterized in terms of the

number of states (clusters) and the mean segment length. Note

that, in general, these two measures are complementary. For

example, provided that the number of quasi-stationary states is

fixed, higher segment alternation will lead to a smaller mean

segment length, as schematically illustrated in Fig. 1b. At the same

time, the number of states can be increased without modifying

their duration, similar to what is shown in Fig. 1a in a schematic

manner.

Partial least squares
Partial Least Squares (PLS) analysis was used in this study to

explore how the two computed measures of non-stationarity (as

described above in the previous section) correlate with the age of

the participants. PLS is a multivariate technique based on the idea

of extracting latent factors that account for most of the variance in

the data under investigation. In PLS, the data matrix is

decomposed to produce a set of mutually orthogonal factors.

Here we give a brief description of the technique, and refer the

reader to the original studies for more details [28–31].

PLS operates on the entire data structure at once with the data

organized in a matrix form. The rows of the data correspond to

participants within conditions within groups, whereas the columns

correspond to the elements such as voxels in functional magnetic

resonance imaging (fMRI), electrodes in EEG, or sensors in MEG.

In our case, the elements are represented by EEG electodes. Two

forms of PLS analysis can be used: mean-centered and contrast

PLS. In the mean-centered PLS, two steps are performed. First,

columnwise statistic averages are computed within each condition.

Second, the original data matrix is mean-centered with respect to

the condition-specific statistic average of the entire column. Mean-

centred PLS is a data-driven approach. In the contrast PLS, a

design matrix is constructed with a priori specified orthogonal

contrasts that code for the differences between experimental

conditions and groups. At the next step, the brain data are

projected into the directions defined by the given contrasts, which

yields the data matrix containing the covariance between the

design and brain data.

Next, singular value decomposition (SVD) is used to project the

mean-centered data matrix or the covariance matrix to a set of

orthogonal latent variables (LVs), with decreasing order of

magnitude (analogous to principal component analysis). A latent

variable consists of three components: (a) a singular value; (b) a

vector of the condition loadings (weights within the left singular

vector) that represent an underlying contrast; (c) a vector of the

electorode loadings (weights within the right singular vector) that

represent the optimal relation of the elements to the identified

contrast.

Statistical assessment regarding the number of LVs to retain and

the importance of individual element weights within a specific LV

is based on resampling procedures. The first step is performed

using permutation tests, which randomly reassign conditions

within subjects. The permutation test assesses the significance of

the effect represented in a given LV, by measuring how it is

different from random noise. A measure of significance is

calculated as the number of times the permuted singular value is

higher than the observed singular value. In the second step, the

electrode loadings are further tested for stability across participants

through bootstrap resampling of participants within conditions.

Stability is calculated as the ratio of the loading to the standard

error of the generated bootstrap distribution, and is approximately

equivalent to a z-score. For example, the absolute bootstrap ratios

higher than 3:5 correspond roughly to a 99% confidence interval.

Electrodes with positive bootstrap ratio values directly support the

contrast associated with a given LV. Electrodes with negative

bootstrap ratio values also support the underlying contrast, only in

a reverse direction.

Overview of the analysis
The input for an analysis of non-stationarity were the 20 s

epochs of resting EEG collected during three visits in the eyes-

open and eyes-closed conditions. The analysis was performed,

estimating the number of quasi-stationary states and mean

segment length for each electrode separately, with subsequent

averaging across epochs. Specifically, each of the time series were

divided into half-overlapping segments, each containing 100 data

points. The order of the polynomial model was p~5. The affinity

propagation algorithm was performed in two steps for a given

EEG epoch. First, for all the data points to cluster, the input

preference parameter was set to the median of all the distances

associated with a given matrix of distances between the segments.

Then, based on the data points identified as exemplars (centers of

the clusters), a second clusterization analysis was performed using

the affinity propagation algorithm. At this step, more preferences

were given to the exemplars that tended to unify more segments of

the initial segmentation. The rationale for this is to avoid the

presence of small clusters that unify a few segments, which could

result from noisy fluctuations in the model parameters.

Two mean-centered PLS analyses were performed to explore

the differences in the number of states and mean segment length

across age groups and conditions under the data-driven frame-

work. In addition, four contrast PLS analyses were carried out to

explicitly test the significance of the age-related changes and

differences in the non-stationarity measures between the two

Dynamical Non-Stationarity in Development
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conditions. The significant LVs were determined with 95%

confidence. They were visualized in terms of the contrasts they

represent between the age groups and/or conditions, and the

robustness with which the individual electrodes support the

contrasts, data-driven (mean-centered PLS) or given a priori

(contrast PLS).

Results

Mean-centred PLS analyses revealed one significant LV for the

mean quasi-stationary segment length and also one significant LV

for the number of quasi-stationary states. The upper panels in

Fig. 2 illustrate the data-driven contrasts (p-value v0:001 in both

cases) underlying the group and condition differences in terms of

the mean segment length (Fig. 2a) and the number of states

(Fig. 2b). The corresponding overall distributions of the bootstrap

ratio values across the electrodes are given in the lower panels of

Fig. 2 as the topographic plots. The electrode loadings are mostly

positive, indicating that those electrodes directly express the

identified statistical trends, as it is shown (without inversion).

These patterns of differences indicate the presence of two

effects. First, for both eyes-open and eyes-closed conditions, non-

stationarity increases with age. Specifically, as can be seen from

Fig. 2, the number of states increases with age, whereas the

duration of quasi-stationary segments decreases with age, which

implies a more frequent alternation of the states. At the same time,

the LV illustrated in Fig. 2b, in contrast to that in Fig. 2a,

represents not only the age-related changes in the number of

states, but also the contrast between the eyes-open and eyes-closed

conditions. Another key difference in the non-stationarity patterns

between Fig. 2a and Fig. 2b is how the identified contrasts are

expressed by individual electrodes. With regards to the duration of

quasi-stationary segments, these effects are distributed across

almost all the electrodes, whereas the effects associated with the

number of states are robustly expressed only in the parieto-

occipital area.

To further illustrate the changes in non-stationarity as a

function of age, when no categorization was applied in three age

groups, we did the following. First, we selected two electrodes: E48
and E72 for the mean duration of the quasi-stationary segments

and the number of states, respectively. In Fig. 3, four scatter

diagrams show the relationships between the two measures of non-

stationarity and age, each point representing an adolescent

participating during one of the three visits. Each scatter plot was

superimposed by a regression line, in all cases with the slope

coefficient being statistically different from zero on a 95%

confidence interval.

Figure 1. Two mechanisms of non-stationarity. A schematic illustration of two scenarios: (a) n, the number of states, increases, whereas L, their
duration, remains the same, and (b) the states get shorter, although the number of states is kept constant.
doi:10.1371/journal.pone.0057217.g001
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It should be noted that the contrasts shown in Fig. 2 seem to

combine both the age-related and condition effects. Note that they

were obtained under the data-driven framework (mean-centered

PLS). To better clarify these effects, we tested them with two

separate contrast PLS analyses, which is a modeling approach.

Fig. 4 illustrates the LVs associated with the eyes-open versus eyes-

closed contrast, whereas the age-related changes in non-stationar-

ity are illustrated in Fig. 5. Except for the eyes-closed versus eyes-

open contrast for the PLS analysis of changes in the duration of

quasi-stationary segments (Fig. 4a), which was only approaching

significance, the LVs are found to be significant with p-values close

to zero. The corresponding p-values are specified at the top of

each upper panel in Fig. 4 and 5.

The brain signals collected in the eyes-closed condition contain

more quasi-stationary states than those acquired in the eyes-open

condition. These effects are captured mostly by the electrodes in

the parieto-occipital area (Fig. 4b). Essentially the same electrodes

express the effects attributed to an increase in the number of states

as a function of age (Fig. 5b). Similar to Fig. 2a, the effects

associated with a decrease in the duration of quasi-stationary

segments are observed across almost all the electrodes, as shown in

Fig. 5a.

Finally, we calculated the partial correlations between the two

measures of non-stationarity and relative spectral power, estimated

as described in a previous study that used the same data [24]. Each

measure of non-stationarity (the number of states and their

duration) was correlated with the relative spectral power, while

controlling the other measure (mean duration of states and the

number of states, respectively). It was performed on an electrode-

by-electrode basis, across subjects, merging groups and conditions.

The topographic maps representing the distributions of these

correlations across the electrodes are given in Fig. 6. The mean

segment length was negatively correlated with the spectral power

most strongly at lower frequencies, which was expressed across all

the electrodes (Fig. 6a). At the same time, the number of quasi-

stationary states was positively correlated with alpha activity

(10 Hz). These effects were localized and centered around the

parieto-occipital electrodes, as shown in Fig. 6b. It would be worth

mentioning that the results in Fig. 6 remained essentially the same

when we separated the eyes open and eyes closed conditions (not

shown).

Discussion

This study explored dynamical non-stationarity of resting EEG

data collected in the eyes-open and eyes-closed conditions, using

age as a perturbation factor. It should be emphasized that we did

not study the variability of statistical properties associated with

Figure 2. Data-driven contrast between groups and conditions. Age-dependent and condition-specific changes in non-stationarity in terms
of: (a) the duration of quasi-stationary states, and (b) the number of states. The patterns of changes represented by the data-driven contrasts from the
corresponding mean-centered PLS analyses are shown in the upper parts. The topographic maps (PLS bootstrap ratio values) reflect the spatial
distribution of electrode loadings, showing the electrodes’ contribution to the identified contrast.
doi:10.1371/journal.pone.0057217.g002
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stochastic variables, such as the mean or variance (i.e. statistical

non-stationarity as defined in the theory of stochastic processes),

but rather focused on changes in the parameters of a model, in

general non-linear, underlying the observed brain signals (i.e.

dynamical non-stationarity).

There is a long tradition of defining EEG brain states, which is

based on the analysis of the spatial configuration of scalp electric

fields [32]. A typical analysis is based on the topography maps

defined as a distribution of signal amplitudes at a given moment of

time. It can be viewed under the framework of statistical non-

stationarity. For example, a non-stationarity analysis was per-

formed to explore continuous sequences of brain electric field

maps of resting EEG obtained from a database of participants

between the ages of 6 and 80 years [33]. A clustering algorithm

was designed to identify four classes of microstate topography and

assign each topography map to one of these classes. It was found

that the mean microstate duration decreased with age.

In contrast to that study, we characterize the variability of EEG

signals under the framework of dynamical non-stationarity

[12,14]. Specifically, dynamical non-stationarity was analyzed

through segmentation of individual time series (electrode mea-

surements) with subsequent classification into classes, each

associated with a putative brain state. Specifically, a time series

was divided into relatively small segments. Then, each segment

Figure 3. Correlation between age and non-stationarity for one electrode. Relationships between the measures of non-stationarity and age,
when no categorization in age groups was done: (a,b) for the number of quasi-stationary states, and (c,d) their mean durations. Each point represents
a participant considered at one of three visits. The relationships between non-stationarity and age are illustrated for a specific electrode. Non-
stationarity is defined in arbitrary units (a.u.).
doi:10.1371/journal.pone.0057217.g003
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was fitted to a non-linear model, approximated by polynomial

functions, and the parameters describing the dynamics of brain

activity on this segment were estimated. The segments were

unified into classes characterized by distinctive brain dynamics,

through the clustering of the segments in the space of model

parameters. Each segment was assigned to a specific cluster (class

or state), and adjacent segments belonging to the same cluster were

connected to produce larger segments of quasi-stationary behav-

ior. The number of states was not specified a priori, but was

determined in a data-driven way, in constrast to that study,

wherein the number of map classes was not allowed to vary across

age groups [33]. In summary, dynamical non-stationarity was

characterized not only by the mean duration of quasi-stationary

states, but also by the number of different states. Then, a multi-

variate analysis (PLS), which combined the data from all the

electrodes, age groups and conditions, was applied to detect age-

related and condition-specific changes in the two measures of

dynamical non-stationarity.

We found that the brain signals became more non-stationary

(variable) with the increasing age during early adolescence.

Specifically, the mean quasi-stationary segment length decreased,

whereas the number of different quasi-stationary states increased

with age. In addition, the effects attributed to the age-related

changes in the duration of quasi-stationary dynamics were

expressed across almost all the electrodes, whereas the effects

related to an increase in the number of states were localized to the

parieto-occipital channels. The latter was the case for both the

eyes-open and eyes-closed conditions.

Similar results were found in a study that introduced a method

to decompose the total variability of the signals into local entropy

attributed to the dynamics of individual brain areas, and

distributed entropy that characterizes the signal variability

attributed to coordinated brain activity [34]. The authors explored

the interplay between two mechanisms that may contribute to

brain variability associated with brain development: larger

repertoire of the individualized physiological states of separate

brain regions, which become more specialized, and increased

integration between distributed neuronal populations. It was

shown that the latter mechanism was the key factor contributing

to the increased variability of brain signals in development.

Specifically, developmental changes were characterized by a

decrease in the amount of information processed locally, with a

peak in the alpha frequency range. This effect was accompanied

by an increase in the variability of brain signals processed as a

distributed network.

One limitation of this study is that brain states are defined, and

their variability characterized, at the level of EEG electrodes. EEG

measurements do not directly represent localized brain regions in

Figure 4. Condition effects (modeled). The ‘‘eyes open’’ versus ‘‘eyes closed’’ hypothesis tested with contrast PLS analyses to track changes in
non-stationarity in terms of: (a) the mean quasi-stationary segment length, and (b) the number of quasi-stationary states. Similar to Fig. 2, the
topographic maps represent the spatial distribution of the electrodes’ contribution to the contrast specified a priori.
doi:10.1371/journal.pone.0057217.g004
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the vicinity of one electrode. Rather, due to volume conduction,

the measured potentials reflect a summed signal from simulta-

neously active, underlying current sources [35]. When the signal

passes the layers of cerebrospinal fluid, dura, scalp, and skull, it

becomes filtered and spread out across electrodes. If there are

several local brain states with different dynamics, each electrode

will potentially pick up the effects from the different local brain

states. On the other hand, a change in an a-priori unknown mixture

of these effects is itself a change in brain state, but now at a higher

level.

It should be noted, however, that the statistics describing non-

stationarity should not be interpreted in an absolute sense. Thus,

our results do not indicate directly that a brain signal recorded

from a participant who belongs to a specific age group (under the

eyes-open or eyes-closed condition) is characterized by a certain

number of states and a specific duration of the quasi-stationary

dynamics. Rather, observed non-stationary effects would strongly

depend on the time scales at which time series are being

considered. They result from the interplay between the charac-

teristic time scales of an underlying process and observation time.

In our case, the estimated statistics characterizing non-stationarity

depend on the parameters of segmentation and clusterization, such

as the initial length of segments, the order of the polynomial

model, and the parameter that controls how big clusters would

become after clustering. Nevertheless, this study focused on the

age-related changes in non-stationarity, rather than the non-

stationary structure of brain signals per se. Under this context, we

report that the results describing the differences in non-stationarity

such as the identified contrast between groups/conditions and

topography maps, were robust with respect to a wide range of the

parameters that specify the segmentation and clusterization

techniques we used.

In addition, correlating the spectral characteristics with the two

measures of non-stationarity across subjects, we found that higher

spectral power can be associated with more variable dynamics.

However, there are potentially two different scenarios describing

the variability of brain rhythms at different frequencies, each

having its own spatial distribution. On the one hand, increased

brain activity at lower frequencies can be modeled as a higher

alternation of the same brain states, which is schematically shown

in Fig. 1b. On the other hand, the neural activity in the alpha

range can be described as a localized generator of brain states.

This scenario is modeled in Fig. 1a. Thus, our study provides a

basis for gaining more insight into the functional reorganization

that takes place in healthy development.

Figure 5. Age effects (modeled). A developmental pattern of changes in non-stationarity, tested with contrast PLS analyses in terms of: (a) the
mean stationary segment length, and (b) the number of states. Similar to Fig. 2, the topographic maps reflect the spatial distribution of the LV
bootstrap ratio values, revealing the electrodes’ contribution to the a priori given contrast.
doi:10.1371/journal.pone.0057217.g005
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34. Vakorin V, Lippé S, McIntosh A (2011) Variability of brain signals processed

locally transforms into higher connectivity with brain development. Journal of

neuroscience 31: 6405–6413.

35. Nunez P, Shrinivasan R (2005) Electric fields in the brain: the neurophysics of

EEG. Oxford University Press.

Dynamical Non-Stationarity in Development

PLOS ONE | www.plosone.org 10 March 2013 | Volume 8 | Issue 3 | e57217


