
Temporal Decoding of MAP Kinase and CREB
Phosphorylation by Selective Immediate Early Gene
Expression
Takeshi H. Saito1, Shinsuke Uda1, Takaho Tsuchiya1, Yu-ichi Ozaki1¤, Shinya Kuroda1,2*

1 Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan, 2 CREST, Japan Science and Technology

Corporation, Bunkyo-ku, Tokyo, Japan

Abstract

A wide range of growth factors encode information into specific temporal patterns of MAP kinase (MAPK) and CREB
phosphorylation, which are further decoded by expression of immediate early gene products (IEGs) to exert biological
functions. However, the IEG decoding system remain unknown. We built a data-driven based on time courses of MAPK and
CREB phosphorylation and IEG expression in response to various growth factors to identify how signal is processed. We
found that IEG expression uses common decoding systems regardless of growth factors and expression of each IEG differs in
upstream dependency, switch-like response, and linear temporal filters. Pulsatile ERK phosphorylation was selectively
decoded by expression of EGR1 rather than c-FOS. Conjunctive NGF and PACAP stimulation was selectively decoded by
synergistic JUNB expression through switch-like response to c-FOS. Thus, specific temporal patterns and combinations of
MAPKs and CREB phosphorylation can be decoded by selective IEG expression via distinct temporal filters and switch-like
responses. The data-driven modeling is versatile for analysis of signal processing and does not require detailed prior
knowledge of pathways.
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Introduction

MAP kinases (MAPKs) and CREB and the immediate early

gene products (IEGs) have been shown to comprise a core

processor of cellular information with limited numbers of

molecular species [1–3]. Many studies have been attempted to

examine signaling specificity [4–6]. However, how a wide range of

growth factors encode information into specific temporal patterns

and combinations of signaling molecules such as MAPKs,

including ERK, JNK, p38, and CREB, that are further decoded

by expression of IEGs including c-FOS, EGR1, c-JUN, FOSB,

and JUNB to exert biological functions, remains to be elucidated

(Figure 1A) [7–9]. For example, nerve growth factor (NGF) has

been shown to encode information for cell differentiation by

sustained ERK phosphorylation, whereas epidermal growth factor

(EGF) has been shown to encode information for cell proliferation

into transient ERK phosphorylation in PC12 cells [9–12]. In

contrast, pituitary adenylate cyclase – activating peptide (PACAP)

has been shown to encode information for cell differentiation by

ERK and CREB phosphorylation, the latter of which is mainly

regulated by a cAMP-dependent pathway [13]. Anisomysin, a

translation inhibitor, has been shown to encode information for

cell death by JNK and p38 phosphorylation [14,15]. Such specific

temporal patterns and combinations of MAPK and CREB

phosphorylation are further decoded by a limited numbers of

IEGs to exert biological functions (Figure 1A). However, how such

limited numbers of IEGs can selectively decode upstream signals

remains unknown. Because the detailed biochemical network from

MAPKs and CREB to the IEGs remains unknown, it is difficult to

develop a computational model of biochemical networks based on

the literature. Therefore, we employed a system identification

method [16] that enabled us to build a data-driven model of the

decoding system of MAPKs and CREB by IEG expression. The

aim of system identification in this study is a quantitative,

computational description of the input – output relationship from

time courses of phosphorylated MAPKs (pMAPKs), phosphory-

lated CREB (pCREB), and IEG expression in response to various

doses of different growth factors in order to determine how

upstream signals are selectively decoded by downstream IEG

expression.

Kinetic modeling based on biochemical reactions from the

literature is often used for systems biological analysis of signaling

pathway [17–19]. However, kinetic modeling explicitly uses

biochemical reactions of known signaling pathways and requires

the detailed knowledge of signaling pathway, which means that it

is applicable only to the field with sufficient knowledge of signaling
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pathway. At the same time, this means that unknown pathway(s) is

not modeled, and therefore, the model can not be able to capture

the IO relationship for which the unknown pathway(s) is

responsible. In contrast, data-driven modeling can identify system

directly from experimental data without detailed knowledge of

signaling pathway [17–19]. Therefore, the data-driven modeling

can represent the IO relationship involving the unknown

pathway(s). In particular, given that amplitude and temporal

patterns of signaling activities are essential properties of cellular

signaling, the dose response and time course of signaling activities

characterize a cellular system. Therefore, we divided the

characteristics of a cellular system into dose response and time

course, and used data-driven model based on the time course data

with doses of growth factors, and selected the nonlinear ARX

model, which consist of amplitude conversion by Hill function and

a linear temporal filter, as the data-driven modeling approach in

this study. Regarding signaling pathways as transmission channel,

the nonlinear ARX model directly gives an essential and inherent

property of signal processing of the system without detailed

knowledge of signaling pathways.

To build the data-driven model, a quantitative high-throughput

measurement system for protein phosphorylation and protein

expression are required. We have recently developed a fully

automated assay technique, termed quantitative image cytometry

(QIC) [20], which integrates a quantitative immunostaining

technique and a high-precision image-processing algorithm for

cell identification. QIC allows gathering huge amounts of

quantitative data on protein phosphorylation and expression

without personal skill variation. In this study, we used QIC to

measure the time course of MAP kinases and CREB phosphor-

Figure 1. Decoding of MAPK and CREB phosphorylation by IEG expression. (A) A variety of growth factors such as EGF, NGF, PACAP, and
anisomycin encode their information by specific temporal patterns of MAPK (ERK, p38, and JNK) and CREB phosphorylation, which are selectively
decoded by expression of IEGs such as c-FOS, EGR1, c-JUN, JUNB, and FOSB to exert biological functions. (B) The temporal patterns of
phosphorylation of MAPKs and CREB, and the expression of IEGs in response to NGF (5 ng/ml, red), PACAP (100 nM, blue), EGF (5 ng/ml, green), and
anisomycin (50 ng/ml, black) were measured by QIC at 3-min intervals for 180 min. These data, together with responses to other doses of the growth
factors (Figure S3), were used for parameter estimation of the nonlinear ARX model in Figure 2. Intensities of the signaling activity and the IEGs
between experiments were normalized by internal control of each 96 well plate.
doi:10.1371/journal.pone.0057037.g001
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ylation and expression the IEGs, and built the data-driven model

to identify signal processing of the system. We found that specific

temporal patterns and combinations of MAPKs and CREB

phosphorylation can be decoded by selective IEG expression via

distinct temporal filters and switch-like responses.

Materials and Methods

Antibodies
Mouse anti-phospho-ERK1/2 (Thr 202/Tyr 204) monoclonal

antibody (mAb) (#9106), rabbit anti-phospho-CREB (Ser 133)

mAb (#9198), rabbit anti-phopho-JNK (Thr183/Tyr185) mAb

(#4668), rabbit anti-EGR1 mAb (#4154), rabbit anti-c-JUN mAb

Figure 2. System identification by the nonlinear ARX model. (A) The modeling scheme of the nonlinear ARX model. Upstream dependency
was determined by lag order number, m. For example, if m = 0, upstream signal is not transmitted downstream, otherwise signal is transmitted
downstream. The signals of the selected upstream molecules were transformed successively by Hill function and linear ARX model, that characterise a
system with switch-like (solid line) or graded (dotted line) dose response, and with temporal filters such as a low-pass filter (dotted line) and that with
an inverse notch (solid line), respectively (see Materials and methods). (B) Temporal signal transformation in the nonlinear ARX model. For example,
signal transformation in the nonlinear ARX model of c-FOS was shown. pERK and pCREB were selected upstream molecules, but pp38 and pJNK were
not (m = 0). The signals of pERK and pCREB were transformed by the Hill equations. Then, the transformed signals by the Hill equations were
temporally transformed by the linear ARX model. The sum of the transformed signals by the linear ARX model was c-FOS, the final output of the
nonlinear ARX model of c-FOS.
doi:10.1371/journal.pone.0057037.g002
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(#9165), rabbit anti-c-FOS mAb (#2250), rabbit anti-JUNB mAb

(#3753) and rabbit anti-FOSB mAb (#2251) were purchased

from Cell Signaling Technology (Beverly, MA). Rabbit anti-

phospho p38 mAb (v1211) was purchased from Promega

(Madison, WI).

Cell culture and treatments
PC12 cells (kindly provided by Masato Nakafuku, Cincinnati

Children’s Hospital Medical Center, Ohio) [21] were cultured at

37uC under 5% CO2 in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum and 5%

horse serum (Invitrogen, Carlsbad, CA), and stimulated by

recombinant mouse b-NGF (R&D Systems, Minneapolis, MN),

EGF (Roche, Mannheim, Germany), PACAP (Sigma, Zwijn-

drecht, The Netherlands), or anisomycin (EMD Biosciences, Inc.,

San Diego, CA) as previously described [21]. We used a low dose

of anisomycin (50 nM) to activate p38 and JNK without inhibiting

translation. For inhibitor experiment, we stimulated by NGF in

the presence of 10 nM PD (PD0325901, a MEK inhibitor, Sigma

Zwijndrecht, The Netherlands), 5 mM H89 (PKA inhibitor, Sigma

Zwijndrecht, The Netherlands). The inhibitors were added 30 min

before growth factor stimulation. For the QIC assays, cells were

seeded at a density of 104 cells per well in 96-well poly-L-lysine–

Figure 3. The nonlinear ARX model of the IEGs. (A) The simulation result of the nonlinear ARX model (solid lines) together with the
experimental results in Figure 1B (dots). The colour codes are the same as in Figure 1B. The experimental data in Figure 1B and Figure S2 were used
for parameter estimation of the nonlinear ARX model. (B) The identified systems by the nonlinear ARX model. The upstream dependency (selected
inputs), Hill functions, and frequency response curve of the nonlinear ARX model were shown. The selected inputs, pERK (solid line), pCREB (dotted
line), pJNK (dashed line), and c-FOS (dashed and dotted line) were numbered.
doi:10.1371/journal.pone.0057037.g003
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coated glass-bottomed plates (Thermo Fisher Scientific, Pitts-

burgh, PA), and then starved in DMEM containing 25 mM

HEPES and 0.1% bovine serum albumin for approximately 18 h

before stimulation. Stimulations for cells seeded in 96-well

microplates were performed by replacing the starvation medium

with the medium containing the stimulant, using a liquid handling

system (BiomekH NX Span-8, Beckman Coulter, Fullerton, CA)

with an integrated heater-shaker (VariomagH, Daytona Beach, FL)

and robotic incubator (STX-40, Liconic, Mauren, Liechtenstein).

Note that all the cells within a plate were fixed simultaneously to

prevent the exposure of the cells to formaldehyde vapor during the

treatment.

Quantitative Image Cytometry (QIC)
QIC was performed as previously described [20]. Briefly, after

the stimulation of the growth factors, the cells were fixed, washed

with phosphate-buffered saline (PBS), and permeabilised with

blocking buffer (0.1% Triton X-100, 10% fetal bovine serum in

PBS). The cells were washed and then incubated for 2 h with

primary antibodies diluted in Can Get Signal immunostain

Solution A (Toyobo, Osaka, Japan). The cells were washed three

times and then incubated for 1 h with second antibodies. After

immunostaining, the cells were stained for the nucleus and

cytoplasm by incubating with Hoechst 33342 (Invitrogen) and

CellMask Deep Red stain (Invitrogen), respectively. The images of

the stained cells were acquired using the CellWoRx (Thermo

Fisher Scientific) automated microscope with a 610 objective. For

QIC analyses, we acquired two different fields in each well,

obtaining 12386356 (mean 6 SD) cells for each well. All liquid

handling for the 96-well microplates was performed using a

BiomekH NX Span-8 liquid handling system.

System Identification by Nonlinear ARX model
We employed the nonlinear ARX model, which consisted of the

linear ARX model [22] and variable transformation of inputs by

Hill function [23]. The nonlinear ARX model is given by

yi~
Xl

j~1

Ajyi{jz
Xm

j~0

Bj f ui{j

� �
ð1Þ

where Aj and Bj are coefficient matrices of autoregressive and

exogenous variables, respectively, yi and ui are the output vector

of autoregressive variables and the input vector of exogenous

variables, at discrete time i, respectively. l and m are the lag orders

of autoregressive variables and exogenous variables, respectively. f

is Hill function:

f (x)~
xn

xnzKn

where n is the Hill coefficient and K is the dissociation constant

that corresponds to the EC50, the half-maximal effective concen-

tration of the input. However, the parameters of the Hill function

does not always correspond to the meanings of biochemical

reaction in this study. Note that, if we set f(x) = x, Equation (1)

denotes the ordinary linear ARX model.

Coefficient matrices Aj and Bj, lag orders l and m, and the

parameters of the Hill functions n and K were computationally

determined by experimental data. Furthermore, molecular species;

i.e., input variables were computationally selected. We used

pERK, pJNK, pp38, and pCREB as the inputs for c-FOS, c-JUN,

and EGR1, and pERK, pJNK, pp38, pCREB, c-FOS, c-JUN, and

EGR1 for FOSB and JUNB for selecting the inputs based on

earlier observations [24]. For simplicity, we consider that the lag

orders l and m and the input variables are given. a) Coefficient

matrices Aj and Bj were estimated to minimise sum of square error

of one-step prediction by least square method for the fixed

parameters of Hill functions n and K. b) The parameters of Hill

functions n and K were estimated to minimise sum of square errors

of one-step prediction for fixed coefficient matrices Aj and Bj. Each

optimization step, a and b, was alternately iterated until the

parameters converged (Figure S1). In practice, lag orders l and m

and input variables were varied, and the optimization steps of

parameters Aj, Bj, n, and K were done for each lag order l and m

and input variables. We selected the model which had minimum

of the average of Akaike Information Criteria (AIC) [25] of cross

validation sets in varied lag orders l and m and input variables. In

the optimization problem of estimating n and K, there were local

minima. Therefore, 50 trials were done for the varied initial values

of n and K.

Results

Systems identification of IEGs expression by MAP kinases
and CREB

QIC enables us to measure phosphorylated ERK (pERK),

phosphorylated JNK (pJNK), phosphorylated p38 (pp38), pCREB,

and protein expression of the IEGs, including c-FOS, c-JUN,

Table 1. The selected inputs and parameters of the Hill function and frequency response curves of the nonlinear ARX model.

Output Pathway Input Hill function Frequency response curve

K(EC50) n gain
filter
characteristics.

cut off frequency
(rad/min)

notch frequency
(rad/min)

c-FOS p pERK 0.192 2.07 0.64 LPF 0.042 -

q pCREB 0.776 7.683 0.81 LPF 0.044 -

EGR1 r pERK 0.287 1.158 1.14 LPF + inotch 0.038 0.023

c-JUN s pERK 0.256 1.379 1.01 LPF 0.036 -

t pJNK 0.400 100 0.38 LPF 0.036 -

JUNB u pCREB 0.732 2.24 0.52 LPF + inotch 0.021 0.013

v c-FOS 0.621 100 0.012 LPF + inotch 0.453 0.013

FOSB w c-FOS 0.495 0.993 1.78 LPF 0.007 -

doi:10.1371/journal.pone.0057037.t001
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Figure 4. The selective expression of EGR1 in response to pulsatile ERK phosphorylation. (A) The step (5 ng/ml, red), pulse (5 ng/ml,
6 min, blue), and pulsatile NGF stimulation (0.5 ng/ml, 6 min with 12-min intervals for four times, green) were given as indicated by bars (top), and
pERK, pCREB, EGR1, and c-FOS were measured in experiments (dots). Using the experimental data of pERK and pCREB as the selected inputs, the
outputs (c-FOS and EGR1) were simulated by the nonlinear ARX model (solid lines). (B) Interval dependency of EGR1 and c-FOS expression. The
pulsatile NGF stimulation (0.5 ng/ml, 15-min duration for each pulse) with the indicated intervals were given, and pERK, EGR1, and c-FOS expression
were measured in experiments. The area under the curve (AUC) (0–480 min) of EGR1 and c-FOS are shown in bars. The intervals are indicated by the
colour codes. Bars represent means 6S.D.(n = 4). Note that 15-min duration of pulses was used in Figure 4B because of the technical limitation of
probe numbers of the automated liquid-handling robots, and pulsatile stimulation with 6-min pulse duration and 12-min intervals were available at
most four times (Figure 4A).
doi:10.1371/journal.pone.0057037.g004

Decoding of MAPKs by Selective Gene Expression

PLOS ONE | www.plosone.org 6 March 2013 | Volume 8 | Issue 3 | e57037



EGR1, JUNB, and FOSB, during 3-min intervals for 180 min in

response to various growth factors such as NGF, PACAP, EGF,

and anisomycin (Figure 1B, Figure S2 and S3). NGF, PACAP,

EGF, and anisomycin induced distinct temporal patterns and

combinations of pERK, pJNK, pp38, and pCREB and the IEGs

(Figure 1B). This result suggests that the decoding system of the

phosphorylation signals by the IEG expression is a multiple-input

and multiple-output system, rather than a one-to-one correspon-

dence system.

From the measurement data (Figure 1B, Figure S3), we could

build the data-driven model using a nonlinear autoregressive

exogenous (ARX) model, in which the input signals are

transformed successively by the Hill function and a linear temporal

filter implemented by linear ARX model, a Hammerstein model

[26] that works as a nonlinear temporal filter (Figure 2, see

Materials and methods). The nonlinear ARX model characterises

a system with upstream dependency, Hill functions, and linear

ARX model. The upstream dependency was determined by lag

order numbers, m, to the system according to a statistical criterion,

Akaike Infomration Criterion (AIC) [25] (Table S1, see Materials

and methods). For example, the signal of the molecule with m.0 is

transmitted downstream, and that with m = 0 is not (Figure 2B).

The Hill function transforms the amplitude of signals of the

selected upstream molecules in a graded or switch-like manner,

and the parameters of each Hill function were computationally

tuned. Then, the transformed signals by the Hill function are

temporally transformed by the linear ARX model. The sum of the

transformed signals is the output of the nonlinear ARX model.

The linear ARX model can represent linear temporal filter

characteristics with a gain, a signal transfer efficiency in amplitude,

and with a cutoff frequency, an inverse of time constant, and a

phase shift. Note that the nonlinear ARX model is trivially equal

to linear ARX model if Hill function is linear.

We applied the nonlinear ARX model to our experimental data

(Figure 3A–B solid lines, Table 1, Figure S4 and S5, Table S1).

The residual distribution of IEGs appeared similar to each other,

and the mean and variation of each model were also similar

(Figure S6), indicating that the nonlinear ARX model of each IEG

could reasonably reproduce the experimental data. The time

courses of the IEGs in the nonlinear ARX model equaled a linear

sum of the time course of the previous input and output signals

(Figure S5). In the nonlinear ARX model of c-FOS, pERK and

pCREB were selected as the inputs for c-FOS expression

(Figure 3B), which is consistent with previous observation [27].

To confirm the input dependency, we verified the model by using

the inhibitors of signaling molecules, MEK inhibitor, PD0325901

and PKA inhibitor, H89 (Figure S7). The model reproduced

experimental time course data, which means the input dependen-

cy derived from the model is reliable.

The Hill coefficients for pERK and pCREB were 2.070 and

7.683, respectively (Table 1). This indicates that signals of pCREB

were transformed in switch-like manners (Figure 3B). The EC50s

for pERK and pCREB were 0.192 and 0.776 (Table 1),

respectively, indicating that pERK was more sensitive than

pCREB at lower doses. The transformed input signals were then

passed through the linear temporal filters (Figure 3B) and

processed to the time series of the output, c-FOS (Figure 3A,

Figure S5). The temporal filters resemble a low-pass filter for

which the signal transfer efficiency at a lower frequency is better

than that at a higher frequency. The cut-off frequencies of the

filters for pERK and pCREB were 0.042 and 0.044 (radian/min),

respectively, and the gains for pERK and pCREB were 0.64 and

0.81, respectively (Table 1). In the nonlinear ARX model of

EGR1, EGR1 showed dependency only on pERK in a switch-like

manner, and subsequent transformation by a low-pass – like

temporal filter with an inverse notch (Figure 3B). In the nonlinear

ARX models of c-JUN, FOSB and JUNB showed distinct

upstream dependency, Hill functions, and linear temporal filter

characteristics (Figure 3B, Table 1). Thus, expression of each IEG

in response to a wide range of the inputs appeared as one or two

inputs system rather than multiple-inputs system. The different

characteristics between expression of each IEG highlights an

ability for decoding the temporal patterns and combinations of the

inputs, which suggests that expression of each IEG is regulated by

distinct network structures. In addition, given that the single model

for each IEG can reproduce the responses to all of the growth

factors, this result suggests that the decoding of the pMAPKs and

pCREB for expression of each IEG is the same regardless of

growth factors, and that specificity for growth factors is generated

at the level of the encoding step in temporal patterns and the

combination of pMAPKs and pCREB. In the scheme of NARX

model, the input-output relationship may include multi-step

biochemical reactions. Therefore, the Hill coefficient of this model

became higher than that of a single biochemical reaction.

Figure 5. Conjunctive stimulation of NGF and PACAP induced synergistic JUNB expression through switch-like response to c-FOS.
The step stimulation of NGF alone (5 ng/ml, red), PACAP alone (100 nM, blue), and both NGF and PACAP (violet) were given, and pERK, pCREB, c-FOS,
JUNB, and FOSB were measured in experiments (dots). The simulation results of the nonlinear ARX model are shown (solid lines). Black dots indicate
the sum of the IEG in response to NGF alone and to PACAP alone, and arrows indicate the difference from the sum.
doi:10.1371/journal.pone.0057037.g005
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Furthermore, high Hill coefficient suggests a possible involvement

of switch-like response, positive feedback loops or cooperativity

[28].

Temporal decoding of pulsatile ERK phosphorylation by
the IEGs expression

To examine the validity of the model, we made an extrapolation

(Figure 4). NGF has been shown to be secreted in a sustained [29]

Figure 6. System identification reveals temporal decoding systems of MAP kinase and CREB phosphorylation by selective IEG
expression. We made a system identification of temporal decoding of MAP kinase and CREB phosphorylation by selective immediate early genes
expression such as c-FOS, EGR1, c-JUN and JUNB using time series data and the nonlinear ARX model. We found that the expression of IEGs has a
distinct upstream dependency, and there are distinct switch-like responses and temporal filters for decoding upstream signals. For example, pulsatile
ERK phosphorylation was decoded by selective expression of EGR1 rather than c-FOS, and conjunctive NGF and PACAP stimulation was decoded by
synergistic JUNB expression through a switch-like response to c-FOS.
doi:10.1371/journal.pone.0057037.g006
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or pulse-like [30,31] manner in vivo. This suggests that NGF

secretion patterns induce different temporal patters of the MAPKs

and the IEGs. Indeed, it has been reported that nuclear –

cytoplasmic oscillation of ERK with a periodicity of 15 min was

induced by EGF [32], and that oscillation of ERK activation is

also induced by FGF [33,34]. These findings led us to examine the

possibility of selective decoding of temporal patterns of ERK

phosphorylation by the IEG expression. Experimentally, we used

the pulse and pulsatile stimulation of NGF and measured the

molecules (Figure 4A, Figure S8) that were induced by NGF such

as pERK, pCREB, EGR1, c-FOS, and c-JUN (Figure 1B). In

experiments, the pulse and pulsatile stimulation of NGF induced

transient and pulsatile pERK and pCREB (Figure 4A dots). The

pulse and pulsatile stimulation of NGF induced expression of

EGR1 more efficiently than c-FOS (Figure 4A dots, Figure S10),

and the response of c-JUN was similar to that of c-FOS

(Figure S8). Using the experimental data as input for the nonlinear

ARX model, the model revealed that the pulse and pulsatile

stimulation of NGF induced EGR1 expression more efficiently

than c-FOS expression (Figure S5A, solid lines). There seem to be

some differences between the simulation and experimental data for

c-FOS. However, the experimental conditions such as tempera-

ture control and CO2 concentration was different from that of

Fig. 1B. That may be one of the reasons why the simulated curves

look different from those of experiments. Note that to control the

stimulus environment is difficult even in the pulsatile stimulation.

In the model, pERK was responsible for EGR1 (Figure 3), and

pERK, but not pCREB, was also responsible for c-FOS expression

(Figure S9). This indicates that the model can be valid for

decoding the pulse and pulsatile patterns of pERK by the selective

EGR1 expression. To examine whether the selective induction of

EGR1 is because of the Hill function or the linear ARX model, we

swapped the Hill function of pERK and the linear ARX models

between EGR1 and c-FOS, and examined the response to a single

pulse or pulsatile NGF stimulation (Figure S10). Swapping of

either the Hill function or the linear ARX model resulted in

similar response between the c-FOS and EGR1 models (Fig-

ure S10). This indicates that selective EGR1 expression depends

on both the Hill function and the linear ARX model. We

experimentally examined the effect of the interval of pulsatile NGF

stimulation on EGR1 and c-FOS expression (Figure 4B), and on

pERK and pCREB (Figure S11). EGR1 showed a maximal

response to the pulsatile stimulation with a 15-min interval, and

the response became smaller compared with those with longer

intervals. On the other hand, c-FOS response was almost

monotonically decreased as the interval of pulsatile stimulation

became longer. Because the time points for measurements in

Figure 3 and Figure 4B were different, the nonlinear ARX model

in Figure 3 could not be directly applied to the data in Figure 4B.

These results demonstrate that pulsatile ERK phosphorylation was

selectively decoded by EGR1 expression.

Decoding of conjunctive stimulation of NGF and PACAP
by synergistic JUNB expression

We made another extrapolation of the model by using

conjunctive stimulation of NGF and PACAP (Figure 5). NGF

and PACAP have been reported to synergistically induce neurite

extension [35,36] and gene expression [37] in PC12 cells, and to

simultaneously involve neural cell differentiation in vivo [38,39].

Therefore, we examined whether the IEG expression could

decode the conjunctive stimulation of NGF and PACAP. The

conjunctive stimulation of NGF and PACAP induced higher

intensity of pERK than NGF alone, while inducing pCREB to the

same extent with PACAP alone (Figure 5 dots, Figure S12).

Additive c-FOS and FOSB expression and synergistic JUNB

expression were observed in both the experiment (Figure 5, dots)

and the models (Figure 5 lines). The model revealed that

synergistic JUNB expression is due to a switch-like response to

c-FOS (Figure 3B, Table 1). Only c-FOS expression induced by

NGF and PACAP – but not that induced by NGF or PACAP

alone – exceeded the threshold of the switch-like responses. These

results demonstrate that JUNB can serve as a selective detector of

conjunctive stimulation of NGF and PACAP. As for the biological

significance of selective detector of conjunctive stimulation,

conjunctive stimulation of NGF and PACAP has been reported

to induce different phenotypes like synergistic increase of ChAT

mRNA [39] and neurite outgrowth [36].

Discussion

Temporal Coding for Biological Output
How the selective expression of IEGs is further decoded by the

downstream genes to elicit specific biological output is the next

central issue in temporal coding. For example, NGF or PACAP

induced distinct combinations and temporal patterns and a

combination of pMAPKs, pCREB, and IEGs (Figure 3); however,

both growth factors similarly induced differentiation in PC12 cells

[13]. This suggests that there may be common downstream decoders

for cell differentiation. We have already identified Metrnl, Dclk1, and

Serpinb1a, which are downstream genes of ERK [40] and essential for

neurite extension in PC12 cells, as the common decoders of neurite

length [41]. Expression levels of these genes, but not phosphorylation

level of ERK, were always correlated with the neurite lengths in

response to various doses of NGF or PACAP. Despite the distinct

combinations and temporal patterns of the pMAPKs, pCREB, and

the IEGs in response to NGF or PACAP (Figure 1B), the temporal

expression patterns of these decoder genes were similar regardless of

the growth factors. Taken together, these genes can decode

information for neurite length that are encoded by distinct patterns

of the pMAPKs, pCREB, and the IEGs. We will build the nonlinear

ARX model using Metrnl, Dclk1, and Serpinb1a as the output and

pMAPKs, pCREB, and IEGs as the inputs as a future project. This

analysis will tell us how the distinct temporal patterns and

combination of pMAPKs, pCREB, and IEGs in response to NGF

or PACAP are decoded by Metrnl, Dclk1, and Serpinb1a expression for

subsequent neurite extension. Similarly, biological outcomes and

underlying expression of specific downstream genes in response to

pulsatile NGF stimulation and conjunctive NGF and PACAP

stimulation will be explored in the future.

It has been reported that nuclear – cytoplasmic oscillation of

ERK with a periodicity of 15 min was induced by EGF [32]. Our

finding suggests that such oscillation of ERK activation may also

induce selective downstream gene expression under their condi-

tions. The oscillation of ERK was observed at both microscopic

single cell level and macroscopic cell population level [42]. In

contrast, such oscillation of ERK (both phosphorylation and

nuclear-cytoplasmic localization) was not observed at cell popu-

lation level under our conditions (Fig. 1B). The fact that only step

stimulation of NGF, but not the pulsatile NGF stimulation,

induced c-FOS expression suggest that ERK was not oscillated in

response to step stimulation of NGF, otherwise both types of NGF

stimulation should similarly induce c-FOS expression. Therefore,

NGF-induced oscillation of ERK does not likely to happen under

our conditions, although we still can not exclude the possibility

that NGF can induce oscillation of ERK at single cell level.

As for the possible physiological mechanism which enables

EGR1 efficiently responsive to pulse and pulsatile stimulation of

NGF, a negative feedback loop can be considered as a possible

Decoding of MAPKs by Selective Gene Expression
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physiological mechanism responsive to pulse and pulsatile

stimulation. Actually, NGF-dependent feedback loop through

NAB2 has been reported [43]. We will plan to verify this

possibility by experiment as a separate study.

Possible Application Range of the Nonlinear ARX Model
The nonlinear ARX model could be applied in this study;

however, because an ARX model is a linear model, the nonlinear

ARX model may not be applicable to highly nonlinear behaviors

such as bistability with hysteresis, which is mediated by a positive

feedback loop, or relaxation oscillation, which is mediated by

positive and delayed negative feedback loops such as bimodal

distribution of MAP kinase phosphorylation [44,45] or c-FOS

expression [46]. Under our conditions, phosphorylation of

MAPKs and expression of the IEG products always showed

unimodal distributions, and apparent bistability was not observed

[20]. Because of this, the nonlinear ARX model was capable of

reproducing the averaged data in our study. Extension of the

nonlinear ARX model by time-variant system will perform more

appropriate model selection for the bistable systems, widening the

application range of data-driven model for cellular functions.

In conclusion, system identification revealed that temporal patterns

and combinations of MAPK and CREB phosphorylation induced by

a wide range of growth factors are decoded by the expression of

selective IEGs via distinct upstream dependency, switch-like response,

and linear temporal filter characteristics (Figure 6). We propose that

such temporal and switch-like decoding is one of the design principles

of cellular information processing. Furthermore, the system identi-

fication method provides a more quantitative and versatile approach

than a conventional knowledge-based approach and can be used not

only for cellular signaling and gene expression, but also for metabolic

control and protein translation.

Supporting Information

Figure S1 The illustration of parameter estimation procedure is

shown. The model is selected by minimizing AIC with cross

validation. The model structure is determined by the upstream

dependency and the lag order. Note that the upstream

dependency and lag order are discrete, hence we computed the

model candidates and select the model which was the minimum of

AIC with cross validation. The model parameters, which consist of

parameters of Hill function and ARX, were estimated by the least

square method for one-step prediction. The parameters of Hill

function and ARX were alternately updated in the iterative

procedure. If the difference of parameters between before

updating and after updating was converged to approximately 0,

the model parameters was almost at the local minima.

(TIF)

Figure S2 The relationship of the signal intensity of pCREB

(left), FOSB (middle), and JUNB (right) between Western blotting

(x-axis) and QIC (y-axis) are shown. Western blot images are also

indicated below. The QIC for pCREB, FOSB, and JUNB show

better sensitivity at lower intensity than western blotting.

(TIF)

Figure S3 The temporal patterns of pMAPKs and pCREB, and the

expression of IEGs in response to NGF (0.5 ng/ml, magenta, 0.15 ng/

ml, orange), PACAP (1 ng/ml, cyan), EGF (0.5 ng/ml, light green) are

shown. Together with those in Figure 1B, these data were used for

parameter estimation of the nonlinear ARX model in Figure 3.

(TIF)

Figure S4 The frequency response curve (Figure 3B) and phase

plot of the linear ARX models for the indicated molecules in

Figure 3 are shown. The selected inputs, pERK (solid line),

pCREB (dotted line), pJNK (dashed line), and c-FOS (dashed and

dotted line) are indicated.

(TIF)

Figure S5 The input signals in Figure 3 that were transformed

successively by the Hill function and the summation of linear ARX

model of c-FOS (A), c-JUN (B), and JUNB (C) in response to NGF

(5 ng/ml, red, 0.5 ng/ml, magenta, 0.15 ng/ml, orange), PACAP

(100 ng/ml, blue, 1 ng/ml, cyan), EGF (5 ng/ml, green, 0.5 ng/

ml, light green) are shown. The output is composed of the linear

sum of the transformed inputs.

(TIF)

Figure S6 The residual distribution of the IEGs expression

(right) between experiment and simulation (left) in response to

NGF (5 ng/ml, red, 0.5 ng/ml, magenta, 0.15 ng/ml, orange),

PACAP (100 ng/ml, blue, 1 ng/ml, cyan), EGF (5 ng/ml, green,

0.5 ng/ml, light green)are shown. The mean (m) and variation (s2)

of the residual distribution are also indicated.

(TIF)

Figure S7 The temporal patterns of pERK and pCREB, and

the expression of IEGs in response to 5 ng/ml NGF in the

presence of 10 nM PD (red dots) and 100 nM PACAP in the

presence of 10 mM H89 (blue dots) were measured by QIC at 3-

min interval. Using the experimental data of pERK, pCREB and

c-FOS as the selected inputs, the outputs (c-FOS, EGR1, c-JUN,

JUNB, FOSB) were simulated by the nonlinear ARX model (solid

lines). Note that the temporal patterns of pERK, pCREB, and the

IEGs in response to NGF (5 ng/ml, light red), PACAP (100 nM,

light blue) are also shown (same experimental results in Figure 1B).

(TIF)

Figure S8 c-JUN expression in response to the step (red), a pulse

(blue), and pulsatile NGF stimulation (green) are shown.

(TIF)

Figure S9 The inputs signals in Figure 4 that were transformed

successively by Hill function and the summation of linear ARX

model of c-FOS are shown. The linear sum of the c-FOS derived

from pERK signals (left, top) and from pCREB signals (left,

bottom) is c-FOS (right). The responses to step, pulse and pulsatile

NGF stimulation are indicted by red, blue, and green, respectively.

(TIF)

Figure S10 Swapping of the Hill function of pERK or the linear

ARX models between c-FOS and EGR1. (A) c-FOS and EGR1

expression in experiments (dots) and in simulation (lines) of the

original nonlinear ARX model. The area under the curve (AUC) (0–

480 min) in response to the step NGF stimulation for each model

was set at 1, and the normalised area under the curves to a pulse and

pulsatile NGF stimulation in experiment (exp.) and simulation (sim.)

were indicated at the top of the bar. (B) The Hill functions of pERK

or the linear ARX models between c-FOS and EGR1 were swapped

as indicated, and the output responses are shown. The AUCs in

response to a pulse and pulsatile NGF stimulation in the indicated

swapped models became smaller than those in the original EGR1

model and larger than those in the original c-FOS model. This

indicates that selective EGR1 expression depends on both the Hill

function and the linear ARX model of EGR1.

(TIF)

Figure S11 Interval dependency of ERK and CREB phosphor-

ylation. pERK and pCREB in response to the step (red) and

pulsatile NGF stimulation with 15-min (blue) and 30-min (green)

intervals are shown (top).

(TIF)
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Figure S12 The selected inputs signals in Figure 5 that were

transformed successively by Hill function and the summation of

linear ARX model of c-FOS (A) and JUNB (B) are shown. The

sum of the IEGs derived from the indicated inputs is the IEG. The

responses to the step stimulation of NGF alone, PACAP alone and

both NGF and PACAP are indicated by red, blue and violet,

respectively.

(TIF)

Table S1 The parameters of the Hill functions and linear ARX

model of each IEG are shown.

(DOC)
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