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Abstract

Based on interactions among transcription factors, oncogenes, tumor suppressors and microRNAs, a Boolean model of
cancer network regulated by miR-17-92 cluster is constructed, and the network is associated with the control of G1/S
transition in the mammalian cell cycle. The robustness properties of this regulatory network are investigated by virtue of the
Boolean network theory. It is found that, during G1/S transition in the cell cycle process, the regulatory networks are
robustly constructed, and the robustness property is largely preserved with respect to small perturbations to the network.
By using the unique process-based approach, the structure of this network is analyzed. It is shown that the network can be
decomposed into a backbone motif which provides the main biological functions, and a remaining motif which makes the
regulatory system more stable. The critical role of miR-17-92 in suppressing the G1/S cell cycle checkpoint and increasing
the uncontrolled proliferation of the cancer cells by targeting a genetic network of interacting proteins is displayed with our
model.
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Introduction

Revealing the relationship between structure and function is

a central theme in systems biology. The functions of biological

network can be explored through mathematical modeling and

computational simulation if the biochemical details of the

molecular network are known. It is also important to know how

network structures contribute to the biological functions. Despite

the inevitable existence of external and internal perturbations,

such as gene mutation, transcription/translation noise, interaction

deletion/addition, and external environmental stimuli, the bi-

ological system can usually maintain its functions by changing the

steady state or the expression of related genes. Such robustness has

been widely observed in many biological systems and events, e.g.,

chemotaxis in bacteria, immune system, cancers and cell cycle [1–

4].

It is well known that proliferation of eukaryotic cells is an

ordered, tightly regulated process that consists of four phases: G1,

S, G2, and M (i.e. G1 R S R G2 R M R G1) [5,6]. Although

cell cycle progression normally relies on stimulation by mitogens

and can be blocked by anti-proliferative cytokines, cancer cells

abandon these controls and tend to remain in cell cycle [7]. The

cells that progress through the cell cycle unchecked may eventually

form malignant tumors.

By virtue of Boolean network theory, previous researches

robustly constructed various cell cycle regulatory networks [8–10].

Most of the initial states in state space of these Boolean networks

flow to the biological steady states in cell cycle process of budding

yeast (S. cerevisiae) [8], fission yeast (S. pombe) [9], and

mammalian cells [10]. A more recent study demonstrated that

the cell cycle network structures of both S. cerevisiae and S.

pombe cells can be decomposed into a backbone motif and

a remaining motif by using the unique process-based approach

[11], where the backbone motif carried out the main biological

functionality of cell cycle network.

On the other hand, tremendous growth of our understanding of

microRNAs (miRNAs) suggests that miRNAs are involved in the

regulation of the cell cycle program of normal and cancer cells

[12]. miRNAs are endogenous small non-coding single-stranded

RNA, 19 to 23 nucleotides in length. They can inhibit gene

expression via binding to its partially complementary sequences

within the 3’ untranslated region of its target mRNAs [13].

Profiling of miRNAs in human cancer specimens and cell lines has

revealed a growing number of oncogenic and tumor suppressive

miRNAs, among which one of the best known miRNAs is miR-17-

92 cluster [14]. Over-expression of the miR-17-92 locus has been

identified in a broad range of cancers [15], such as lung cancers,

chronic myeloid leukemias, B-cell and mantle cell lymphomas, and
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hepatocellular tumors. In addition, the miR-17-92 cluster appears

to act as a tumor suppressor in some breast and ovarian cancer cell

lines [16]. The close relationship between miR-17-92 and cancers

indicates that miR-17-92 may regulate fundamental biological

processes.

During the cell cycle process, multiple checkpoints are involved

to assess extracellular growth signals, cell size, and DNA integrity

[17]. Two main checkpoints exist: the G1/S checkpoint and the

G2/M checkpoint. G1/S transition is a rate-limiting step and is

also known as the restriction point in the cell cycle. After achieving

an appropriate cell size, early G1 cells irreversibly cross the

checkpoint into the late G1 phase and are committed to

undergoing DNA replication (S phase) followed by mitosis [18].

Alterations in components regulating checkpoint traversal and S-

phase entry appear to influence the level of tumor cell pro-

liferation. Now the question is whether the robustness properties of

cancer regulatory network structure can be ensured at the

checkpoints of cell cycle process. Does the miR-17-92 cluster play

a crucial role in the cell cycle process? Is there a backbone network

that can carry out the biological process?

In this paper we have constructed a cell cycle network to

investigate the robustness of this network and the importance of

miR-17-92 cluster in the cell cycle process. The network is

associated with the control of G1/S transition in the mammalian

cell cycle [17–19]. Boolean network theory is applied to investigate

the robustness properties of this regulatory network. It is shown

that, even during the G1/S transition in the cell cycle process, the

regulatory network is still robustly constructed. Finally, by using

the unique process-based approach [11], we found that the

network structure can be decomposed into a backbone motif

which provides the main biological functions and a remaining

motif which makes the regulatory system more stable.

Model and Results

1. Model of the Cancer Regulatory Network
Some key regulators are involved into the G1/S transition, for

examples, the transcription factors E2F and Myc, the oncogenes

Cdk2/Cyclin E, Cdc25A and Cdk4/cyclin D, and the tumor

suppressors pRb and p27. These regulators constitute a so called

cancer network [19–21]. Tumor suppressors act to maintain

checkpoints, whereas oncogenes allow for checkpoints to be

overcome. The transcription factors E2F and Myc, as oncogenes

or tumor suppressors (depending on their expression levels), are

inhibited by miR-17-92 cluster (which give rises to seven mature

microRNAs, including miR-17-5p, miR-17-3p, miR-18a, miR-

19a, miR-19b, miR-20, and miR-92-1) [19,22]. In return, E2F

and Myc induce the transcription of miR-17-92, thus forming

a negative feedback loop in the interaction network. As one of the

first reported and well studied oncomiRs, human miR-17-92 is

able to act as both an oncogene and a tumor suppressor in

different cellular context. However, the underlying mechanism of

either being tumor suppressive or oncogenic for miR-17-92

miRNAs remains unknown.

Basing on the interactions between the regulatory factors and

the miRNAs [19], we have constructed a Boolean model of the

mammalian G1/S transition regulatory network (MGSTR

network) involving oncogenes, tumor suppressor genes, and

miR-17-92, as shown in Fig. 1. This structure contains eight

nodes (each node represents a regulatory element) and seventeen

lines (each line represents an interaction between nodes). There is

often a threshold for the functional copy number of individual

molecule in biochemical reactions. Copy number of the gene

products higher or lower than the threshold can be represented by

two different states: on or off. Therefore, the expression of genes

can be considered as a total-or-nothing process, that is, a binary

switch which has only two states 1 and 0.

Applying the Boolean theory to our MGSTR network, node i in

the network has two states: si~1 if expressing and si~0 otherwise.
Nodes interact and update their states according to the following

Boolean functions:

si(tz1)~

1,
P
j

ajisj(t)w0,

0,
P
j

ajisj(t)v0,

si(t),
P
j

ajisj(t)~0,

8>>>>><
>>>>>:

ð1Þ

where si(t) denotes the state of node i (i~1,2, � � � ,8) at time t. The

network structure parameter aji is a N|N matrix; aji~1,0, or{r

represents respectively the activation, no interaction or inhibition

between biological molecules. The self-inhibition (or degradation)

effects of these nodes are indicated by black hammerheads in

Fig. 1, and we use aii~{1 for this kind of self-inhibition. All

structure parameters of MGSTR network aji are given in Table 1.

This model is an idealization of real gene regulatory networks.

Simple though it is, it captures how the topology constrains the

dynamics of the gene expression levels and the propagation of

information between genes.

2. Simulation of the Cancer Regulatory Network
By iteratively applying the update rule of Eq. (1), the Boolean

network traces a trajectory through the state space. The

degradation of biomolecule generally has a time delay, thus

si(tztd )~0 if si(t)~1 at t. In our simulation, we set the delay

time td~1 and the time step Dt~1. Since the inhibition is often

far stronger than activation in the natural biological system, we

take rww1 as in references [11] and [23].

Figure 1. Mammalian cancer cell network during G1/s transi-
tion (MGSTR network). The 8-node network is constructed on the
basis of previous experimental results [17–22]. The circular nodes
represent oncogene, the octagon nodes represent tumor suppressors,
and the quadrilateral nodes represent oncogenes or tumor suppressors.
Green arrow represents active interactions, and the blue (or black)
hammerheads represent inhibitory interactions.
doi:10.1371/journal.pone.0057009.g001

Robustness and Backbone Motif of a Cancer Network
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It is known that the cellular biochemical reactions occur far

from thermodynamic equilibrium, and the copy number of each

molecule may be higher or lower than its threshold. Therefore,

each node in the network may randomly stay in one of its two

states, 1 or 0. The network’s state is the vector of nodes’ values.

Totally, the 8-node MGSTR network will have a state space of

28~256 states.

The information processing capacity of a complex dynamic

system is reflected in the partitioning of its state space into disjoint

basins of attraction. We run the model from each one of the 256

possible states and all nodes are updated simultaneously. It is

found that the system dynamic results in five different attractors.

The state of attractors and the basin size (B) of each attractor are

given in Table 2. It can be seen that most of the states flow into the

biggest stationary state attractor or super stable attractor which

attracts 184 or 71:9% states. It means that, although intrinsic and

extrinsic random fluctuations are inevitable, the mammalian G1/S

regulatory dynamic pathway is relatively stable, and the MGSTR

network is robustly designed.

The state-space graph Fig. 2 provides a visual representation of

the system dynamics captured by the state-space analysis. Each

green node in this graph represents a Boolean state of the system,

and each orange arrow stands for a transition from one state to its

temporally subsequent state. The dynamic trajectories of the

network and how it converges towards the biggest attractor are

shown in Fig. 2. The blue arrows indicate the most possible

transition pathway that leads to the biggest attractor.

There are two different interpretations for the function of

attractors. One follows Kauffman’s describing that one attractor

should correspond to a cell type [24], another interpretation is that

they correspond to the cell states of growth, differentiation, and

apoptosis [25]. As for our MGSTR network model, the biggest

attractor in state space should correspond to the state in which

cells overcome the G1/S checkpoint and stay at S phase. In that

case, the stability of the cell state is guaranteed.

Previous experimental data demonstrated that the expression or

the activation of the key regulators is reflected in the switch

characteristics during the G1/S transition. E2F and Myc induce

the transcription of miR-17-92 [19], and this miRNA has been

shown to suppress the G1/S cell cycle checkpoint by regulating the

expression of core genes in cell cycle network [15]. The E2F has

high expression levels during G2/M and G0/G1 transition and

low expression levels in S phase [26]. The expression of Myc

increases in the early G1 restriction point and then returns to

a lower level [27]. The expression of Cdc25A phosphatase and the

Cdk2/cyclinE kinase are activated by Myc [28–30]. The E2F/

cyclinE complex appears primarily in the G1 phase, and then its

amount decreases as cells enter S phase [26,30–35]. The maximal

levels of the p27 protein are found in the G1 phase and quiescence

(G0) [7,28], [30],[36–37]. The pRb is phosphorylated in the mid

and late G phase, and then the pRb/E2F complex triggers the

activation of Cdc25A [7,27,32,35,38]. The Cdk4/CyclinD or the

Cdk6/CyclinD kinase is activated during G1 phase before Cdk2/

CyclinE is increased [7],[39–40]. G1/S phase transition is

regulated by Cdk2/CyclinE [31,39–40]. Activation of Cdc25A

occurs during late G1 phase and increases in S and G2 phases

[39]. The transitions of above regulators between ON and OFF

are summarized in Table 3. A comparison between Table 2 and

Table 3 reveals that the biggest attractor is S phase.

On the other hand, the evolution pathway to the biggest

attractor in state space should be convergent onto the potential

biological pathway. Is the real or the potential biological pathway

in the dynamic trajectories, in other words, how to find out the

probable biological pathway in the dynamic trajectories? There is

a potential biological pathway to the biggest stationary state

attractor (see the thick blue arrow in Fig. 2), and the time sequence

Table 1. Structure parameter aji of the MGSTR network.

miR-17-92 Myc E2F p27 pRb Cdk4/CyclinD Cdk2/CyclinE Cdc25A

miR-17-92 –1 1 1 0 0 0 0 0

Myc 0 –1 1 0 0 0 0 0

E2F –r 1 1 0 –r 0 0 0

p27 0 0 0 0 0 0 –r 0

pRb 0 0 0 0 0 –r –r 0

Cdk4/CyclinD 0 0 0 0 0 –1 0 0

Cdk2/CyclinE 0 1 1 –r 0 0 0 1

Cdc25A 0 1 1 0 0 0 1 –1

aji~1,0,{r, or {1 represents respectively the activation, no interaction, inhibition, or self-inhibition between biological molecules.

doi:10.1371/journal.pone.0057009.t001

Table 2. Basin size of attraction for the fixed point and network state of each attractor of the MGSTR network.

Basin size miR-17-92 Myc E2F p27 pRb Cdk4/CyclinD Cdk2/CyclinE Cdc25A

184 0 0 0 0 0 0 1 1

48 0 0 0 1 0 0 0 0

16 0 0 0 1 1 0 0 0

6 0 0 0 0 0 0 0 0

2 0 0 0 0 1 0 0 0

doi:10.1371/journal.pone.0057009.t002

Robustness and Backbone Motif of a Cancer Network
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of this pathway is listed in Table 4. According to the time sequence

in Table 4, there exists four steps for the expression or activation of

regulators. Firstly, the expression of E2F, pRb, and CyclinD/Cdk4

is triggered, and the expression of E2F can be activated by itself.

The activation of E2F is inhibited by pRb, meanwhile the

expression of pRb is inhibited by Cdk4/CyclinD which has a self-

degradation effect. Secondly, the expression of miR-17-92, Myc,

Cdc25A, and Cdk2/CyclinE is activated by E2F. At the same

time, the activation of pRb is inhibited by Cdk2/CylinE. Thirdly,

the expression of miR-17-92 is activated by Myc; the expression of

Cdc25A is activated by both Myc and Cdk2/CyclinE, and the

expression of Cdk2/CylinE is activated by both Myc and Cdc25A.

The Myc has a self-inhibition effect. Finally, the expression of

Cdc25A and Cdk2/CyclinE can be activated by each other, and

the miR-17-92 has a degradation effect. Above results obtained

from the mathematical model (Table 4) are consistent with

previous experimental results (Table 3).

Figure 2. Dynamic trajectories. Dynamic trajectories of the regulatory network with 256 initial states in state space. All states converge towards
fixed point attractors. Each green circle corresponds to one specific network state, and the largest circle corresponds to the S phase. Arrows between
the network states indicate the dynamic flow from one state to its subsequent state, and the size of flow is indicated by the thickness of arrows.
doi:10.1371/journal.pone.0057009.g002

Table 3. Switch characteristics of key regulators during G1/S transition and the references of corresponding experiments.

miR-17-92 Myc E2F p27 pRb Cdk4/CyclinD Cdk2/CyclinE Cdc25A

G1 OFF/ON OFF/ON ON OFF ON ON OFF/ON OFF/ON

S OFF OFF OFF OFF OFF OFF ON ON

Ref. [15,26] [27–30] [26,31–35] [7,28,30,36,37] [7,27,32,35,38] [7,39,40] [31,39] [34,39]

doi:10.1371/journal.pone.0057009.t003

Robustness and Backbone Motif of a Cancer Network
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3. Comparison with Random Network: Robustness Test
To further investigate whether the architecture of this MGSTR

network has other special properties, we analyze our network and

1000 random networks with the same number of nodes and the

same number of lines as the MGSTR network. It is found that (i)

the corresponding random networks typically have more attractors

with an average attractor number of 7:26. The basin size of the

biggest attractor of most random networks is smaller than that of

the MGSTR network. This result indicates that attractor basin size

of the cancer cell regulatory network is optimized to provide

biological function. (ii)The distribution of attractor basin size of

these random networks follows a power law (Fig. 3). Only 2:89%
attractors are equal to or larger than the biggest attractor (B= 184)

of the MGSTR network.

The size of basin of attractors (B) in a system is a vital quantity

in terms of understanding network behavior and may relate to

other network properties such as stability. Therefore, the relative

change in B for the biggest attractor DB=B can be served as

a measurement in our robustness test. The MGSTR network and

the random networks are perturbed by deleting an interaction

arrow (Fig. 4), adding a green or blue arrow between nodes that

are null-linked (Fig. 5), or switching the interaction of a single

arrow from inhibition to activation and vice versa (Fig. 6) [8]. It is

shown that most perturbations will not alter the size of the biggest

attractor significantly (DB=B is small)in MGSTR network, which

suggests our MGSTR network has high homeostatic stability [8].

Such high homeostatic stability is not well maintained in the ensemble

of random networks with the same size (Fig. 4–6). High robustness

of the MGSTR network may be attributed to the structure and

interactions within the regulatory system.

4. Backbone motif of Cancer Regulatory Network
Given the MGSTR network structure and the time sequence of

the pathway which is known to be biologically important, is there

a backbone motif that can achieve the major biological

functionality? If there is a backbone motif, what is the dynamic

behavior of the remaining motif? To address these issues, we adopt

the method of process-based network decomposition [11].

For the dynamic function given by Table 4, each node of the

network has three logical equations as shown in Methods, and
solutions of Eqs. (2)–(12) are the minimal lines that should be kept

in the construction of backbone motif (Table 5). Basing on Table 5,

we extract a backbone motif from the full network as shown in

Fig. 7.

To investigate the role of backbone motif in the mammalian

G1/S regulatory network, we compute the dynamic properties of

backbone motif by using the Boolean rule in Eq. (1). The

corresponding state of attractors and the basin size from this

computation are given in Table 6. It is shown that there are 12

attractors, among which the biggest attractor (the first row in

Table 6) corresponds to the super stable attractor of the full

network. Therefore, the main function of the MGSTR network is

still persisted. The backbone motif is the fundamental building

block of the network. However, the basin size of the biggest

attractor of the backbone motif is only 120 or 46:9% of the initial

Table 4. The most probable time sequence of the network state that corresponding to the biological pathway, which is indicated
by blue arrows in Fig. 2.

Time miR-17-92 Myc E2F p27 pRb Cdk4/CyclinD Cdk2/CyclinE Cdc25A Phase

1 0 0 1 0 1 1 0 0 G1

2 1 1 0 0 0 0 1 1 G1/S

3 1 0 0 0 0 0 1 1 G1/S

4 0 0 0 0 0 0 1 1 S

doi:10.1371/journal.pone.0057009.t004

Figure 3. Attractor size distribution of random networks.
Calculated from 1000 random networks with the same number of
nodes and the same number of lines as our MGSTR network.
doi:10.1371/journal.pone.0057009.g003

Figure 4. Perturbation of deleting interaction. The distribution of
relative changes (DB=B) under the perturbation of deleting 21
interaction arrows from the MGSTR network and random networks.
The majority of DB=B values are small, which indicates that most
perturbations will not alter the size of the biggest attractor significantly.
doi:10.1371/journal.pone.0057009.g004

Robustness and Backbone Motif of a Cancer Network
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states, which is much smaller than that of the full network (71:9%).

It implies that the remaining part of the network plays important

role in real biological regulatory processes, and dynamic properties

of backbone motif become unstable without the remaining motif.

All the interactions between miR-17-92 and other regulatory

factors are retained in the backbone motif (Fig. 7). This

observation, together with the experimental results in ref.

[15,16,19], highlights the importance of mir-17-92 in overcoming

the G1/S cell cycle checkpoint and increasing the proliferation

rate of cancer cells by targeting a network of interacting factors.

Conclusion and Discussion

Modeling the molecular regulatory network that controls

mammalian cell cycle is a challenging and long-term effort.

Focusing on the core network that controls the cancer cell cycle,

we have constructed a Boolean network with interactions between

the oncogenes and tumor suppressor genes (Fig. 1). Although the

MGSTR network that we construct is a simplification of

intracellular process, study of the relationships between structure

and dynamic behaviors of this Boolean network has yielded

important insights into the overall behaviors of cancer cell cycle

regulatory network. The dynamic of the network is characterized

by a dominant attractor in the space of all possible initial states

(Fig. 2). It attracts 184 or 71:9% initial states of the Boolean

network (Table 2). In addition, based solely on the connection

among the nodes, and neglecting other biochemical details, this

network reproduces the time sequence of gene activity along the

biological cancer cell cycle (biological pathway). The dynamics of

our cell cycle network is quite stable and robust for its function

with respect to small perturbations (Fig. 4, 5, 6).

There are other cell cycle network models that involve more

gene variables than the one we have here. Since the degrees of

complexity grow exponentially with the size of the system, it is

generally difficult to explore large systems. Recently, various

methods have been developed and introduced to investigate the

property and the information transition in large Boolean networks.

Akutsu et al. presented several algorithms to identify periodic

attractors and singleton attractors in Boolean networks [41,42]. By

using gene ordering and feedback vertex sets in the algorithms,

Zhang and colleagues identified singleton attractors and small

attractors in Boolean networks [43]. Krawitz et al. found that

information capacity of a random Boolean network is maximal in

the critical boundary between the ordered and disordered phases

via introducing a new network parameter, the basin entropy [44].

There usually exists some critical interactions, nodes,or back-

bone motifs that fulfill the main function in regulatory networks.

According to the potential biological pathway in the state space,

we further decompose our model into a backbone motif which

provides the major biological functions and a remaining motif

which makes the system more stable (Table 6). There are other

publications that apply various methods to identify important

pathways, critical network structures, network motifs, and

feedback loops in regulatory networks. For example, Choi et al.

constructed a Boolean model of the P53 regulatory network [45].

State-space analysis with an attractor landscape was used to

identify specific interactions that were critical for converting cyclic

attractors to point attractors in response to DNA damage. The

work of Schlatter et al. discussed the discovery of relevant hubs in

a network of signaling pathways of apoptosis [25]. Verdicchio

et al. recently revealed key players in the network of yeast cell

cycle and the network of WNT5A for melanoma by analyzing the

logic minimization of the collections of states in Boolean network

basins of attraction [46].

The critical role of mir-17-92 in ensuring the checkpoint

surpassing in cancer cell cycle is shown in the backbone motif of

the MGSTR network (Fig. 7). microRNAs, and more broadly,

noncoding RNAs have been increasingly recognized as key

regulators in crucial biological events [47–51], although roles of

the majority of noncoding RNAs still remain elusive. Our work

indicates that computational simulation of biological processes

may aid future uncovering of regulatory roles of noncoding RNAs.

In our simulation of the MGSTR network, we employ the often

used assumption of synchronous update. However, this assump-

tion may be unrealistic in some molecular systems where a variety

of timescales, from fractions of one second to hours, are needed to

be correctly represented. Some studies modeled and analyzed the

asynchronous update rule in the context of random Boolean

networks [52,53]. For example, with synchronous and different

asynchronous update methods, Assieh et al. systematically com-

Figure 5. Perturbation of adding interactions. The distribution of
relative changes (DB=B) under the perturbation of adding 86
interaction arrows into our MGSTR network. The majority of DB=B
values are small, which indicates that most perturbations will not alter
the size of the biggest attractor significantly.
doi:10.1371/journal.pone.0057009.g005

Figure 6. Perturbation of switching interactions. The distribution
of relative changes (DB=B) under the perturbation of switching 16
interaction arrows in the MGSTR network. Most of DB=B values are
small, whereas about 25% of DB=B values are located at the interval of
0.9~1.0.
doi:10.1371/journal.pone.0057009.g006

Robustness and Backbone Motif of a Cancer Network
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pared the dynamic behaviors displayed by a Boolean network of

signal transduction [53]. Their work pointed out that the

unperturbed system possesses an update-independent fixed point,

while perturbed systems lead to an extended attractor under the

disrupting of a particular node. Processes governing gene

regulatory networks take place on the molecular level, and

fluctuations in the number of molecules of critical factors impact

the final output of regulatory networks. Thus, it is highly necessary

to apply stochastic simulations for more realistic description of the

reaction kinetics. Braunewell et al. investigated the stability of the

cell cycle network upon adding a stochastic delay noise [54]. They

found that the system exhibits robust behavior under the

perturbation of transmission time noise. It would be worth

developing our current model to a more realistic one by adding

asynchronous update rule and stochastic noise.

Since publication of the seminal work by Kauffman, Boolean

network has been one of the most intensively studied models in

systems biology [24]. Compared with ordinary differential

equation (ODE) models, Boolean networks are limited in

approximating experimental results and in making context-specific

quantitative predictions of cellular dynamics. However, applica-

tions of Boolean network in modeling real biological circuits have

shown that they can predict consequences of protein and gene

activities with much fewer parameters than the classical differential

equations. Our results from the analysis of the MGSTR network

demonstrate that Boolean model can be used to simulate cancer

G1/S cell cycle process.

Materials and Methods

Decomposition of Regulatory Network
Let gji and bji represent respectively activated line and

inhibitory line. The values of gji and bji are 1 or 0, which

represents exist or no exist, respectively. Then, one can obtain

a logical equation for each node from Eq. (1):

(2)where the operational symbols are logic symbols: addition

represents operator OR, multiplication represents operator AND,

and bar represents NOT.

With the four possible transitions of state si(t)?si(tz1), Eq. (2)
can be replaced by

0?0 :
P
j[Ht

gji P
j[Ht

rji~0,

0?1 :
P
j[Ht

gji P
j[Ht

rji~1,

1?0 : (
P
j[Ht

gjizrii) P
j[Ht

rji~0,

1?1 : (
P
j[Ht

gjizrii) P
j[Ht

rji~1,

ð3Þ

where Ht~fjDsj(t)~1; j ig. The first and third equations in Eq. (3)

can be converted by performing NOT on both sides, thus

Figure 7. Backbone motif. Full MGSTR network is decomposed into a backbone motif (a) which provides the major biological functions and
a remaining motif (b) which makes the system more stable.
doi:10.1371/journal.pone.0057009.g007

Table 5. Minimal lines for every nodes of the MGSTR
network.

Node ID Node Name Minimal Lines

1 miR-17-92 b11, g21, g31

2 Myc g32, b22

3 E2F b13, b53

4 p27 b74

5 pRb b65

6 Cdk4/CyclinD b66

7 Cdk2/CyclinE g37

8 Cdc25A g38

They are obtained by using process-based approach as described in Methods.
doi:10.1371/journal.pone.0057009.t005
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0?0 : P
j[Ht

gjiz
P
j[Ht

rji~1,

0?1 :
P
j[Ht

gji P
j[Ht

rji~1,

1?0 : rii P
j[Ht

gjiz
P
j[Ht

rji~1,

1?1 : (
P
j[Ht

gjizrii) P
j[Ht

rji~1:

ð4Þ

For each node, there are T transitions, and thus there are T
equations since t~0,1, � � � ,T{1. With the time sequence shown

in Table 4, from Eq. (4), we have

(g31zg51zg61):b31:b51:b61~1,

(g21zg71zg81zb11):b21:b71:b81~1,

b11:g71:g81zb71zb81~1,

ð5Þ

for node 1 (node name: miR-17-92);

(g32zg52zg62):b32:b52:b62~1,

b22:g12:g72:g82zb12zb72zb82~1,

g12:g72:g82zb12zb72zb82~1,

ð6Þ

for node 2 (node name: Myc);

b33:g53:g63zb53zb63~1,

g13:g23:g73:g83zb13zb23zb73zb83~1,

g13:g73:g83zb13zb73zb83~1,

ð7Þ

for node 3 (node name: E2F);

g34:g54:g64zb34zb54zb64~1,

g14:g24:g74:g84zb14zb24zb74zb84~1,

g14:g74:g84zb14zb74zb84~1,

ð8Þ

for node 4 (node name: p27);

b55:g35:g65zb35zb65~1,

g15:g25:g75:g85zb15zb25zb75zb85~1,

g15:g75:g85zb15zb75zb85~1,

ð9Þ

for node 5 (node name: pRb);

b66:g36:g56zb36zb56~1,

g16:g26:g76:g86zb16zb26zb76zb86~1,

g16:g76:g86zb16zb76zb86~1,

ð10Þ

for node 6 (node name: Cdk4/CyclinD);

(g37zg57zg67):b37:b57:b67~1,

(g17zg27zg87zb77):b17:b27:b87~1,

(g17zg87zb77):b17:b87~1,

ð11Þ

for node 7 (node name: Cdk2/CyclinE);

(g38zg58zg68):b38:b58:b68~1,

(g18zg28zg78zb88):b18:b28:b78~1,

(g18zg78zb88):b18:b78~1,

ð12Þ

for node 8 (node name: Cdc25A).

The networks in this paper were drawn with Cytoscape [55,56]

and the dynamical state space graph was drawn with Pajek [57].
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Table 6. Basin size of attractors and the corresponding network state that acquired from the backbone motif.

Basin size miR-17-92 Myc E2F p27 pRb Cdk4/CyclinD Cdk2/CyclinE Cdc25A

120 0 0 0 0 0 0 1 1

40 0 0 0 0 1 0 1 1

24 0 0 0 0 0 0 1 0

12 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 1

12 0 0 0 1 0 0 0 0

12 0 0 0 1 0 0 0 1

8 0 0 0 0 1 0 1 0

4 0 0 0 0 1 0 0 0

4 0 0 0 0 1 0 0 1

4 0 0 0 1 1 0 0 0

4 0 0 0 1 1 0 0 1

doi:10.1371/journal.pone.0057009.t006
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