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Abstract

Small heat shock protein 17.8 (HSP17.8) is produced abundantly in plant cells under heat and other stress conditions and
may play an important role in plant tolerance to stress environments. However, HSP17.8 may be differentially expressed in
different accessions of a crop species exposed to identical stress conditions. The ability of different genotypes to adapt to
various stress conditions resides in their genetic diversity. Allelic variations are the most common forms of genetic variation
in natural populations. In this study, single nucleotide polymorphisms (SNPs) of the HSP17.8 gene were investigated across
210 barley accessions collected from 30 countries using EcoTILLING technology. Eleven SNPs including 10 from the coding
region of HSP17.8 were detected, which form nine distinguishable haplotypes in the barley collection. Among the 10 SNPs
in the coding region, six are missense mutations and four are synonymous nucleotide changes. Five of the six missense
changes are predicted to be deleterious to HSP17.8 function. The accessions from Middle East Asia showed the higher
nucleotide diversity of HSP17.8 than those from other regions and wild barley (H. spontaneum) accessions exhibited greater
diversity than the cultivated barley (H. vulgare) accessions. Four SNPs in HSP17.8 were found associated with at least one of
the agronomic traits evaluated except for spike length, namely number of grains per spike, thousand kernel weight, plant
height, flag leaf area and leaf color. The association between SNP and these agronomic traits may provide new insight for
study of the gene’s potential contribution to drought tolerance of barley.
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Introduction

Small heat shock proteins (sHSPs) with a molecular weight of 15

to 42 kDa are produced ubiquitously in prokaryotic and eukary-

otic cells under heat and other stress conditions at various growth

stages [1–5]. Most sHSPs have strong cytoprotective effects by

keeping functional conformations of proteins or refolding dena-

tured proteins, relieving protein from aggregation and removing

harmful polypeptides under stress conditions [6]. These sHSPs are

classified into several subgroups based on DNA sequence

similarity, immunological cross-reactivity and intracellular locali-

zation [7].

Heat shock protein 17.8 (HSP17.8), a member of class I

cytosolic sHSPs, presents as a dimer under normal physiological

conditions and is converted to high oligomeric complexes, ranging

from 240 kDa to .480 kDa, after heat shock [3]. Several studies

have postulated that HSP17.8 plays a role in tolerance to heat [8],

freezing [9,10] and drought [11,12]. HSP17.8 showed chaperone-

like activity to protect citrate synthase from thermal aggregation at

43uC in the cyanobacterium Anabaena sp. PCC 7120 [8], and

played a role in membrane protein targeting to the chloroplast

outer membrane in Arabidopsis [3]. At the freezing temperature,

HSP17.8 showed at least 1.5 times more expression in freezing-

tolerant transgenic maize than in non-transgenic maize [10].

Similarly, HSP17.8 transcripts were present at a higher level in

drought-tolerant control plants of Katya cultivar than in non-

tolerant Sadovo cultivar of wheat [11]. In the case of barley,

HSP17.8 showed expression exclusively in drought-tolerant barley

genotypes e.g. Martin and Hordeum spontaneum 41-1, and not in

drought-sensitive genotype e.g. Moroc9-75, under drought stress

[12].

The ability of different accessions of a crop species to adapt to

stress is a result of sequence variation in genes in the accessions of

the given crop species. Single nucleotide polymorphisms (SNPs)

and small insertions and deletions (indels) are the most common

forms of genetic variation in natural populations, and is a

reflection of evolution and adaptation that play a prominent role

in the heritability of phenotypes [13]. EcoTILLING is the

application of TILLING (Targeting Induced Local Lesions IN

Genome) for discovery of SNPs and small indels in natural

populations. Initially EcoTILLING was used to detect nucleotide
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variation in five genes in a natural population of Arabidopsis [14]. In

the case of poplar (Populus trichocarpa), EcoTILLING identified 63

SNPs in nine different genes in 41 different populations [15]. In

brief, several reports have indicated that EcoTILLING is an

accurate, high-throughput and low-cost technique for the discov-

ery and evaluation of nucleotide variations in candidate genes

associated with target traits [16–18]. Recently, association analysis

emerged as a powerful approach to identify the role of genetic

polymorphism in phenotypic variations in response to environ-

mental stresses [19,20]. For instance, by using association analysis,

one SNP of the HvCBF4 gene was significantly (P,0.001)

associated with salt tolerance in 188 Tibetan barley accessions

[21], and five SNPs in Lhcb1 gene were significantly (P,0.01)

associated with several agronomic traits in 292 barley accessions

[22]. However, no effort has been made so far to assay allelic

variation in HSP17.8 and its association with agronomic traits in

barley.

In this study, EcoTILLING approach was used to detect genetic

variations of HSP17.8 in a natural barley population comprising of

210 accessions collected from diverse geographical origins.

Distribution of SNPs across different geographic origins (Africa,

Middle East Asia, North East Asia, Arabian Peninsula and

Europe), row types (two-row or six-row) and other possible

categories (such as wild versus landrace) were investigated.

Population parameters were estimated using SNPs found in

different barley populations. An attempt was also made to assess

potential effect of SNPs on protein function and their association

with six agronomic traits in barley.

Materials and Methods

Plant Material
Seeds of 210 barley (Hordeum vulgare L.) accessions containing

171 H. vulgare landraces and 39 wild relatives of Hordeum vulgare ssp.

spontaneum (hereafter named H. spontaneum) were obtained from the

International Centre for Agricultural Research in the Dry Areas

(Table S1). Of the 210 accessions, 164 originated from 19

countries in Asia, 40 accessions from six African countries, and 6

accessions from five European countries. For the purpose of

comparison, accessions were divided into five adjacent geographic

regions as described in Varshney et al. [23]. The geographical

distribution of investigated accessions is given in Table 1.

Phenotypic data
The germplasm collection (210 accessions) was sown with three

replications during two growing seasons (2009/2010 and 2010/

2011) at the Experimental Station of Guangzhou University,

Guangzhou, Guangdong Province, China (23u 16’ N; 113u23’E,

elevation 16 m asl). Eleven seeds of each accession were planted

30 cm apart in 1.5 m long, single-row plots. All accessions were

evaluated for six agronomic traits—flag leaf area (FLA in cm2),

spike length (SL in cm), number of grains per spike (NGS), leaf

color (LC in SPAD), plant height (PH in cm) and thousand kernel

weight (TKW in g)—in replicated field experiments. Three

randomly selected plants of each accession from each plot were

characterized for the six traits using the following methods:

1. Flag leaf area (FLA; cm2) of the uppermost, fully expanded

leaf of the main tiller at flowering. FLA = leaf length6leaf

width60.75 [24].

2. Spike length (SL; cm) was measured from the base of each

main spike to the top of the spike, excluding awns, at maturity.

3. Number of grains per spike (NGS) was counted at maturity

and the average number of seeds from three spikes used for

analysis.

4. Leaf color (LC; SPAD) was determined at heading, before

any symptoms of senescence were visible. The middle section of a

randomly-selected flag leaf was evaluated between 09:00 and

12:00 h using a chlorophyll meter (SPAD-502, Minolta, Japan)

and averaged over two measurements for analysis.

5. Plant height (PH; cm) was measured from ground level to the

base of spike at maturity.

6. Thousand kernel weight (TKW; g) was calculated based on a

sample of 250 seeds per plot.

Designing of primers
For amplification of a target fragment of HSP17.8 as described

in Wienholds et al. [25], gene-specific primers were designed

according to the published mRNA sequence of HSP17.8 from

GeneBank (accession no. AK368988.1) with melting temperatures

around 60uC by using Primer 5.0 software (Premier Biosoft

International, Palo Alto, CA, USA) (Table S2). The region

covered by the primer pair is 600 base pairs, which includes the

whole open reading frame (483 bp) of HSP17.8. Sequence of

universal primers M13 was added to 5’ ends of HSPforward and

HSPreverse as adaptors (Table S2). M13 forward primers labeled

with IRDye800 at 59-end and M13 reverse primers labeled with

IRDye700 at 59-end were synthesized by LI-COR Inc.

DNA extraction and PCR
Genomic DNA of barley accessions was extracted from 200 mg

young leaf tissue following Guo et al. [26]. DNA from all samples

was quantified using a spectrophotometer and normalized to a

concentration of 20 ng/ ml. DNA from each accession was mixed

in a 1:1 ratio with reference DNA (ICARDA IG: 26727) to

generate heteroduplexes for point mutation detection.

Table 1. Summary of the geographic origins of barley accessions used for allele mining of HSP17.8.

Geographic region No. accessions Countries No. countries

Africa 40 Algeria, Egypt, Ethiopia, Libya, Morocco, Tunisia 6

North East Asia 106 Afghanistan, Azerbaijan, China, Georgia, India, Iran, Pakistan, Tajikistan,
Turkey, Turkmenistan, Uzbekistan

11

Middle East Asia 44 Iraq, Jordan, Lebanon, Palestine, Syria 5

Arabian Peninsula 14 Oman, Saudi Arabia, Yemen 3

Europe 6 Albania, Bosnia and Herzegovina, Deutschland, Greece, Serbia and
Montenego

5

Total 210 30

doi:10.1371/journal.pone.0056816.t001
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For nucleotide polymorphism screening with EcoTILLING, the

target region of HSP17.8 was amplified by a nested PCR described

by Wang et al. [27]. The first PCR was performed with a gene-

specific primer pair. After the first PCR reaction, samples were

diluted in 90 ml water; 1 ml diluted PCR was used as a template for

the second nested PCR reaction. This reaction contained a

mixture of four primers: 0.08 mM IRD800-labeled M13 forward

primers, 0.02 mM M13HSPforward primers, 0.06 mM IRD700-

labeled M13 reverse primers and 0.04 mM M13HSPreverse

primers. After the nested PCR, heteroduplexes formation was

performed by incubating the reaction mix at 99uC for 10 min, and

slow renaturation with 70 cycles of 20 sec at 70uC with a

decrement of 0.3uC per cycle.

The PCR products were digested by CEL I as described by

Raghavan et al. [28]. Celery juice extract (CEL I) was produced

following Guo and Li [29]. For digestion, 10 ml of solution

containing 10 mM HEPES (pH 7.5), 10 mM MgSO4, 0.002%

(w/v) Triton X-100, 0.2 mg/ml of bovine serum albumin, and

0.4 ml CEL I enzyme solution, was added to 10 ml of heteroduplex

DNAs, and incubated at 45uC for 15 min. Digestion was stopped

by adding 5 ml 0.25 M EDTA (pH 8.0), mixing thoroughly and

then incubating on ice. Digested products were purified using

isopropanol as described by Raghavan et al. [28]. After samples

purification, 5 ml formamide loading dye and 10 ml ddH2O were

added and heated at 85uC for concentrating sample to about 3 ml.

Samples were loaded (0.8 ml/well) on denaturing 6.5% polyacryl-

amide gels on LI-COR 4300 DNA Analyzer. Two electronic

image files were produced per gel run, one in the IRD700 channel

and the other in IRD800 channel. Tiff images were manually

scored using the GelBuddy program [30]. The appearance of

cleavage products in both channels at reciprocal size that add up

to the full length PCR product, were considered a polymorphic

site (Fig. 1). Data summary reports generated by GelBuddy were

imported to Microsoft Excel for further analysis. Samples were

grouped into putative haplotype categories based on the cleaved

banding pattern in evaluated gel-frames.

DNA sequencing and statistical analysis
One representative genotype for each unique haplotype was

reamplified by gene-specific primers using 40 ng of genomic DNA.

The resulted PCR fragment was directly sequenced from both

directions using an ABI 3730xl DNA Analyzer by a commercial

company (Sangon Biotech Co., Ltd., China) to confirm the

polymorphisms. Each polymorphic site was sequenced in more

than one accession to confirm only two alleles segregating at any

specific site. Sequences were analyzed using ClustalW software

(http://www.ebi.ac.uk/tools). The SIFT (Sorting Intolerant from

Tolerant) and PARSESNP (Position-Specific Scoring Matrix)

programs were used to predict the impact of missense mutations

on protein function [31,32]. Population genetics parameters,

including nucleotide diversity (p), haplotype diversity (HD) and

Tajima’s D [33], were analyzed using DnaSP v5.0 [34].

Association analysis between SNPs and agronomic traits
Association between markers and traits was evaluated using a

General Linear Model (GLM_Q) in the TASSEL v3.0 software

(http://www.maizegenetics.net/tassel), where the SNP being

tested was considered as a fixed effect, and the factor and matrix

of subpopulation membership (Q matrix) were used as cofactors to

account for population structure. Possible population structure was

depicted using genotypic data of the 210 barley accessions and 21

genome-wide SSR markers (3 SSRs for each chromosome) (Table

S3) by Structure software version 2 [35]. Three groups were

identified (unpublished). Permutations of 1,000 runs were

performed to calculate the significant p value for F-test. The

association between a marker and a trait is represented by its R2

value, an estimate of the percentage of variance explained by the

marker.

Results

Variability of phenotypic traits
Three developmental traits—flag leaf area (FLA in cm2), leaf

color (LC in SPAD) and plant height (PH in cm) were measured

for all 210 accessions (Table 2). Three yield-related traits—spike

length (SL in cm), number of grains per spike (NGS) and 1000-

kernel weight (TKW in g) were measured for only 192 and 195

barley accessions in the 2009/2010 and 2010/2011 growing

seasons, because 18 and 15 barley accessions did not head,

respectively. Large phenotypic variation was observed for all traits,

and significant correlations between the various phenotypic traits

were found among the barley accessions (Table 2). Two-row and

6-row barley differed significantly in all phenotypic measurements

except for TKW. In addition, H. spontaneum accessions had

significantly lower scores in FLA, NGS, LC and TKW than H.

vulgare landraces.

Nucleotide polymorphisms
By using EcoTILLING, 13 polymorphic sites were detected in

the targeted region of HSP17.8 across the 210 accessions (Table 3,

Fig. 1). The frequency of polymorphic sites in 210 accessions

ranged from 0.005 to 0.143 with an average 0.030. To determine

the precise position and nature of these polymorphic sites, several

samples containing each of these sites were randomly sequenced.

Accessions with the same polymorphic sites in EcoTILLING

exhibited the same nucleotide changes in sequence with only one

exception that one sample showing two polymorphic sites in

EcoTILLING did not show nucleotide variation in sequencing.

Thus, sequencing confirmed 11 SNPs in the targeted region of

HSP17.8 at a frequency of 1 SNP per 54.5 bp. Among the 11

SNPs, 10 were from coding regions and one from non-coding

region, and seven were transitions (C-T and A-G) and four were

transversions (A-C, A-T, C-G and G-T). Among the ten coding

SNPs, six were nonsynonymous mutations s and four were silent

synonymous mutations. Five of the missense mutations were

predicted to have a severe effect on the HSP17.8 protein function.

The nucleotide diversity in the sequenced region of HSP17.8 as

measured by p (pairwise nucleotide diversity) was 0.00188 among

the 210 accessions. Across different geographic regions, the range

of p values spanned from 0.00049 for African accessions (40

accessions) to 0.00212 for Middle East Asian accessions (44

accessions). Similarly, p for H. spontaneum was higher than for H.

vulgare landrace accessions. In addition, 2-row and 6-row barley

had similar nucleotide diversity (Table 4). To test whether the

SNPs in the targeted region of HSP17.8 were neutral mutations,

Tajima’s D statistics (Tajima 1989) were estimated. Tajima’s D

values were negative for all sub-populations except for Africa

population. However none of the values was statistically significant

(P,0.05) (Table 4), thus, nucleotide variations in HSP17.8 gene

could be the results from the standard neutral selection.

Haplotype diversity analysis
For the 11 SNPs confirmed by sequencing, nine distinguishable

haplotypes were detected across 210 accessions (Table 5). The

level of haplotype diversity was 0.526, with the frequency of each

haplotype shown in Table 4. Among all the haplotypes, three

major haplotypes were detected in 210 accessions, with the

cumulative frequency of the first three haplotypes being 0.9.

SNPs of HSP17.8 in Barley
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Haplotype H1 was found in more than two-thirds of the accessions

screened. Haplotype H2 was observed in 30 accessions (14.3%),

and haplotype H3 observed in 21 accessions (10.0%). The

frequency of the other haplotypes (H4 to H9) was low, between

1.0% and 2.4% (Table 4).

The frequencies of HSP17.8 haplotypes differed markedly across

geographical regions (Table 4 and Fig. 2). Haplotype diversity

ranged from 0 in Europe (6 accessions) to 0.722 in the Middle East

Asia (44 accessions). This was particularly evident for the

haplotype H2 which was absent in Africa, Middle East Asia and

Europe, but most frequent in North East Asia (0.264). The less

frequently identified haplotypes were confined to specific geo-

graphic regions. Of the six haplotypes present in ,10% of

accessions sampled, five were unique to one region (Asia); three of

which were exclusive to accessions from Middle East Asia; and two

from North East Asia. In addition, H. spontaneum and H. vulgare

landraces were widely separated into six haplotypes with only

three common between the two groups (Table 4). When

comparing 2-row and 6-row barley, more haplotypes and higher

diversity were observed in 2-row barley (Table 4).

Association between SNPs and phenotypic traits
Because two SNPs (positions 196 bp and 483 bp in HSP17.8)

were rare alleles (frequency ,1%), and three SNPs (positions

104 bp, 267 bp and 300 bp) or two SNPs (positions 525 bp and

565 bp) were in complete linkage disequilibrium, five SNPs

(positions 196 bp, 483 bp, 104 bp, 267 bp and 565 bp) were

excluded from further analysis. Although two SNPs (position 469

and 582 bp) were synonymous variations, they may be in complete

linkage disequilibrium with other non-synonymous mutations,

which could result in biological changes in the organism. Therefore,

these two SNPs were further analyzed. Thus only six SNPs

(positions 300 bp, 428 bp, 469 bp, 525 bp, 582 bp and 599 bp)

were used in association analysis. Significant association (P,0.05)

was observed for four distinct SNPs with at least one of the evaluated

traits except for spike length, and four of the associations were highly

significant (P,0.01) (Table 6). These associated SNPs explained

2.0% to 4.6% of the variation for individual traits. FLA was

significantly associated (P,0.01) with one SNP (position 469 bp in

HSP17.8) in 2009/2010, which explained 3.9% of the phenotypic

variation. NGS was significantly associated (P,0.01) with one SNP

Figure 1. Detection of polymorphisms for a targeted region of the HSP17.8 gene by EcoTILLING. Sampled images of the IRD 800 and IRD
700 channels are shown at left and right, respectively. The specific cleavage products appear as intense dark bands between 127 to 512 bp with
molecular weights listed to the left in each channel image by arrows. Complementary fragments in corresponding lanes between the IRD 700 and IRD
800 channel images labeled with the same box pattern (including rectangle, oval and diamond). The sizes of complementary fragments in the IRD
700 labeled and the IRD 800 labeled add up to the size of PCR fragment (639 bp). Several intense dark bands near the bottom of the gel in both
channels result from random mispriming. Molecular weights are provided by the GelBuddy program. The size of the DNA ladder is listed to the right
of the IRD700 image.
doi:10.1371/journal.pone.0056816.g001

SNPs of HSP17.8 in Barley
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Table 2. Phenotypic scores from field trials.

Traits a 2009/2010 2010/2011

SL (192) NGS (192)
TKW
(192) LC (210) PH (210) FLA (210) SL (195) NGS (195)

TKW
(195) LC (210) PH (210)

cm grains/spike g SPAD cm cm2 cm grains/spike g SPAD cm

Range 5.2–12.6 3.0–54.7 13.7–66.2 26.3–54.5 11.0–79.4 7.2–82.0 4.6–13.2 5.0–68.0 21.3–72.6 30.7–59.6 44.0–115.5

Average 6

SD
8.561.4 23.6612.2 41.569.7 42.465.9 47.6617.1 42.6613.5 8.561.7 32.9614.7 40.669.0 46.664.8 78.2613.3

SPON 8.461.7 14.266.5 38.5612.2 40.265.4 45.1619.2 30.0611.4 8.761.8 29.1615.7 31.064.4 44.563.8 77.5612.6

VUL-LR 8.561.3 25.6612.2** 42.269.0* 43.065.9** 48.1616.7 45.5612.3** 8.561.6 33.7614.4 42.668.4** 47.164.9** 78.4613.5

2-Row 8.961.5* 14.567.1 42.9611.2 41.465.7 44.3617.8 34.9611.4 9.0461.6** 24.2613.4 39.4610.6 45.964.5 74.5612.8

6-Row 8.261.3 30.2610.8** 40.568.4 43.265.9* 49.8616.3* 48.1612.2** 8.261.5 39.2612.3** 41.567.6 47.265.0 80.8613.1**

Correlations

NGS 20.019 20.146*

TKW 0.193** 20.050 20.005 20.140

LC 0.004 0.137 0.028 20.171* 0.058 0.219**

PH 20.018 0.076 0.310** 0.259** 20.113 1.66* 20.086 0.049

FLA 20.016 0.242** 20.077 0.211** 20.023

Average 6 standard deviation (SD) of genotype subsets (SPON: H. spontaneum, VUL-LR: H. vulgare landraces) and different row types are given.
aFLA: flag leaf area (cm2), SL: spike length (cm), NGS: number of grains per spike, LC: leaf color (SPAD), PH: plant height (cm), TKW: 1000 kernel weight (g); number in
bracket indicates number of plants scored and measured
*indicates significant level (P,0.05) of difference between means, or correlation between phenotypic traits
**indicates highly significant level (P,0.01) of difference between means, or correlation between phenotypic traits
doi:10.1371/journal.pone.0056816.t002

Table 3. List of nucleotide polymorphisms in HSP17.8 and their effects on codon frequencies.

Nucleotide changea Bandb Frequencyc Effectd PARSESNPe SIFTf

G104Ag + 0.019 Non-coding

T204G + 0.010 F26V 12.3 0.45

G267A + 0.019 A49 =

G300C + 0.019 E60D 6.6 0

C428T + 0.024 T103M 9.7 0.01

C469T + 0.143 L117 =

G483A + 0.010 R121 =

G525A + 0.014 M135I 9.4 0.02

G565A + 0.014 A149T 8.6 0.6

C582Ag + 0.014 I154 =

C599Gg + 0.100 S160C 7.5 0

ND +(407 bp) 0.005

ND +(394 bp) 0.005

aFirst letter indicates common bp at this site, followed by position of SNP in sequence on GenBank accession number AK368988.1, and then nucleotide which is the rare
variant at this site.
bAll nucleotide changes identified by sequencing were first by EcoTILLING as a band on gel image. In one sample, 407 bp and 394 bp were identified on EcoTILLING gel
for which a corresponding polymorphism could not be confirmed by sequencing.
cFrequency was calculated by dividing the number of similar nucleotide changes identified on EcoTILLING gel by the number of samples analyzed.
dFirst letter indicates the common amino acid at this site, followed by position of SNP within predicted protein sequence and then amino acid change induced by the
variant nucleotide polymorphism. ‘ = ’ means no change in amino acid encoded by that codon (synonymous variation).
eA non-synonymous SNP is predicted to be damaging to encoded protein if PARSESNP score is .10 (bold).
fA non-synonymous SNP is predicted to be damaging to encoded protein if SIFT score is ,0.05 (bold).
gPutative polymorphisms in gel regions with high levels of noise from primer mispriming, one fragment evidently appeared on one image channel and the
corresponding fragment in alternative image channels could not be unambiguously assigned.
doi:10.1371/journal.pone.0056816.t003
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at position 599 bp, which explained 3.3% and 4.6% phenotypic

variation in 2009/2010 and 2010/2011, respectively. One SNP

(position 300 in HSP17.8) significantly associated (P,0.05) with PH

was observed, accounting for approximately 2% phenotypic

variation in 2009/2010 and 2010/2011. LC showed significant

(P,0.05) association with three SNPs (position 469 bp, 525 bp and

599 bp in HSP17.8), which explained 2.8%, 3.9% and 2.4% of the

phenotypic variation, respectively. TGW was significantly associat-

ed (P,0.05) with one SNP at position 300 bp in 2009/2010, which

explained 2.6% phenotypic variation.

Discussion

Natural variation in the barley population
To characterize genetic variation in HSP17.8, 171 H. vulgare

landraces and 39 H. spontaneum accessions from 30 countries in

three continents were characterized for allele diversity. EcoTIL-

LING revealed 11 SNPs and nine haplotypes after analysis of

126,000 bp sequences in HSP17.8. Of the 11 unique SNPs, ten

were in the coding region, which included four silent synonymous

mutations and six missense mutations. Of the six missense

mutations, four SNPs were predicted by the SIFT program to

severely affect protein function, and one mutation was predicted

by PSSM program to severely damage the function of the

predicted protein. Because there is a 20% false-positive error in

SIFT [31], some mutations predicted to be deleterious may be

functionally neutral. However, these scores may be useful in

prioritizing mutations for further study and analysis of possible

contributions and roles of HSP17.8 in stress tolerance.

Tajima’s D is used to measure deviation from neutral evolution

by comparing diversity estimates based on nucleotide diversity (h)

and average pairwise nucleotide diversity (p). Parameters h and p

Table 4. Frequency of HSP17.8 haplotypes, nucleotide diversity (p), haplotype diversity (HD) and Tajima’s D test for different barley
populations.

Frequency of haplotypesa
No.
SNPs p

No.
haplotypes HD

Tajima’s
D

H1 H2 H3 H4 H5 H6 H7 H8 H9

Overall (210) 0.667 0.143 0.100 0.024 0.019 0.014 0.014 0.010 0.010 11 0.00118 9 0.526 21.46671

Geographic
regionsb

AFR (40) 0.825 - 0.175 - - - - - - 1 0.00049 2 0.296 0.37079

MEA (44) 0.455 - 0.250 0.114 0.091 0.045 - - 0.045 7 0.00212 6 0.722 20.56398

NEA (106) 0.660 0.264 0.019 - - 0.009 0.028 0.019 - 6 0.001 6 0.497 21.06616

APS (14) 0.786 0.143 0.071 - - - - - - 2 0.00068 3 0.385 20.95919

EUR (6) 1.000 - - - - - - - - - - 1 - -

Genotype subsetc VUL-LR (171) 0.684 0.158 0.123 - - 0.006 0.018 0.012 - 6 0.00098 6 0.494 20.91134

SPON (39) 0.590 0.077 - 0.128 0.103 0.051 - - 0.051 7 0.0019 6 0.63 20.86422

Row type 2-row (87) 0.621 0.057 0.149 0.057 - 0.023 - 0.023 0.023 6 0.00107 7 0.55 21.08501

6-row (123) 0.699 0.203 0.065 - - 0.008 0.024 - - 5 0.00094 5 0.469 20.81416

aHaplotypes are ordered by overall frequency in all barley accessions.
bAFR: Africa, APS: Arabian Peninsula, EUR: Europe, MEA: Middle East Asia, NEA: North East Asia.
cSPON: H. spontaneum; VUL-LR: H. vulgare landraces.
Numbers in brackets indicate number of plants scored and measured.
doi:10.1371/journal.pone.0056816.t004

Table 5. Distribution of polymorphic SNPs across nine HSP17.8 haplotypes.

Haplotypes SNP position
Total number of
accessions

104 196 267 300 428 469 483 525 565 582 599

H1 G T G G C C G G G C C 140

H2 G T G G C T G G G C C 30

H3 G T G G C C G G G C G 21

H4 G T G G T C G G G C C 5

H5 A T A C C C G G G C C 4

H6 G T G G C C G G G A C 3

H7 G T G G C C G A A C C 3

H8 G T G G C C A G G C C 2

H9 G G G G C C G G G C C 2

SNPs relative to the most common sequence (haplotype H1) are indicated in bold. The number of SNP positions is relative to the sequence on GenBank accession
number AK368988.1
doi:10.1371/journal.pone.0056816.t005
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are affected differently by natural selection. In this study, Tajima’s

D neutrality test revealed no evidence of natural selection for

HSP17.8 (Table 4) but under some kind of purifying selection as

revealed by a high negative value of Tajima’s D. This insignificant

result may be attributed to the low number of SNPs observed,

which weakens the neutrality test. This result agrees with previous

reports on other functional genes in barley [36] and CPsHSP-2 in

Machilus kusano [37]. However, the Tajima’s D value in Africa was

positive, which may result from balancing selection or bottleneck

effect.

Compared to previous reports on barley [36,38], nucleotide

diversity (p= 0.00118) of HSP17.8 was lower, and the level of

haplotype diversity (0.526) was higher in this study. The average

frequency of SNPs was 1 per 54.5 bp, which was similar to that

found in Chen et al. (1 SNP/53.8 bp) [39], lower than Zeng et

al.(1 SNP/9.8 bp) [40], and higher than Rostoks et al. (1 SNP/

200 bp) [41]. The discrepancy in SNP frequency among studies

may be due to differences in genomic regions assayed, and

number, content and geographic origins of germplasm used

[38,42,43]. As predicted, H. spontaneum had a higher nucleotide

diversity (p) and haplotype diversity than H. vulgare landraces in

Figure 2. Composition of HSP17.8 haplotype in accessions of different geographic region. AFR: Africa, APS: Arabian Peninsula, EUR:
Europe, MEA: Middle East Asia, NEA: North East Asia. H (H1–H9) represents haplotype as described in Table 5.
doi:10.1371/journal.pone.0056816.g002

Table 6. SNPs of HSP17.8 associated with agronomic traits of barley using a significance level corresponding to a= 0.05.

Growing season Traits SNP position F P R2 Elite allele
Frequency of elite
allele

2009/2010 FLA 469 C.T 10.44** 0.0014 0.039 T 16.67%

NGS 599 C.G 7.07** 0.0085 0.033 C 89.06%

LC 469 C.T 6.13* 0.0141 0.028 T 16.67%

TGW 300 G.C 5.78* 0.0172a 0.026 G 98.10%

PH 300 G.C 5.08* 0.0252a 0.023 G 98.10%

2010/2011 LC 525 G.A 10.26** 0.0016a 0.039 G 98.57%

NGS 599 C.G 9.80** 0.0020 0.046 C 89.23%

LC 599 C.G 6.09* 0.0145 0.024 C 90.00%

PH 300 G.C 4.42* 0.0368a 0.020 G 98.10%

FLA, flag leaf area (cm2); NGS, number of grains per spike; LC, leaf color (SPAD); PH, plant height (cm); TKW, thousand kernel weight (g).
Number of SNP positions is relative to the sequence on GenBank accession number AK368988.1
R2 is the fraction of total variation explained by the marker.
aDue to low minor allele frequency, these results should be evaluated with caution.
*(P,0.05) indicates SNP significantly associated with traits.
**(P,0.01) indicates SNP highly significantly associated with traits.
doi:10.1371/journal.pone.0056816.t006
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this study, which agrees with previous reports [38,44,45]. It is

likely that H. vulgare landraces would have gone through a

population bottleneck during domestication, which resulted in a

reduction in genetic diversity[38,45]. Comparing genetic diversity

across geographical regions, accessions from Middle East Asia

exhibited the highest nucleotide diversity (p), which agrees with

studies of Malysheva-Otto et al. [46] and Varshney et al. [23].

One plausible reason was that the Middle East’s ‘fertile crescent’

region was the center of origin of barley and the main distribution

region of wild barley [47,48]. This important result may indicate

that variations in HSP17.8 in wild barleys and Middle East

landraces might offer elite alleles for the improvement of stress

tolerance in barley. To date, a number of wild barley and Middle

East types have been used in barley breeding programs [49].

Different ecotypes of barley germplasm show their specific traits

in terms of ecology, morphology and physiology [50]. Different

ecotype populations from several different geographic regions may

include abundant genetic variation associated with phenotypic

traits. As extremely low nucleotide diversity could be observed in

one ecotype, only a small number of ecotype populations may be

sufficient to capture already adequate genetic variability [51].

Since wild and cultivated barley are cross-compatible, it is possible

to increase the genetic diversity of barley using wild ancestors as a

parent in crosses with cultivated barley [52]. There is evidence

that the introgression of chromosome segments from wild

progenitors improves agronomic performance of an elite cultivar

[52–54].

Association analysis between SNPs and phenotypic traits
In our previous studies, HSP17.8 in five barley accessions,

namely Martin, HS4-1, Moroc9-75, Tadmor and WI2291, was

up-regulated under drought stress with the expression fold changes

of 15.67, 19.43, 23.92, 2.48 and 1.15, respectively [12,55]. Simple

linear regression analysis between expression fold changes and six

agronomic traits was performed in five barley accessions, and

significant correlations were observed for PH, NGS, TKW, FLA

and LC with the R2 values of 0.138, 0.163, 0.169, 0.134 and

0.218, respectively, suggesting the high expression level of

HSP17.8 is likely associated with PH, NGS, TKW, FLA and

LC. In addition, BLAST search in GenBank (http://www.ncbi.

nlm.nih.gov/genbank/) showed that HSP17.8 exhibited nucleotide

sequence homology to a barley EST (GenBank accession

AL510041) that was located in 63.4 cM on chromosome 4H

[56]. Several previous studies also reported chromosome 4H had

QTLs for PH [57–59], TGW [57–59], NGS [58–60], LC [61] and

FLA [62]. Therefore, HSP17.8 may have cis affects for the QTLs

of PH, TGW, NGS, LC, and FLA located on chromosome 4H.

Association mapping has recently emerged as an alternative

approach to mapping QTL and genes associated with quantitative

traits using a diverse collection of germplasm lines or breeding

materials [63]. Compared to traditional QTL mapping, associa-

tion mapping is faster and provides greater capacity and power for

QTL/gene detection [19,20]. In addition, candidate-gene associ-

ation analysis is more precise than genome-wide association

analysis. Because association analysis links specific nucleotide

polymorphisms to trait variations, one may be able to associate

SNPs with specific biological effects [64]. Many agronomically

important traits are controlled by QTLs [65]. By association

analysis of 816 genome-wide markers, Varshney et al. [66]

identified one to eight significant QTLs for nine agronomic traits

in 223 barley accessions. With 204 polymorphisms in 24

transcription families, Yu et al. [67] found three genes associated

with the drought tolerance index and five genes with the drought

tolerance level in 95 diverse rice landraces. In the present study,

four SNPs in the HSP17.8 gene were significantly associated with

at least one agronomic trait investigated. Three SNPs at positions

469 bp, 525 bp and 599 bp of HSP17.8 were significantly

associated with LC, one SNP at position 469 bp with FLA, one

SNP at position 599 bp with NGS, and one SNP at position

300 bp with PH and TGW. Of the four SNPs associated with

phenotypic traits, three at positions 300 bp, 525 bp and 599 bp in

HSP17.8 were missense mutations which, according to SIFT, were

predicted to severely affect protein function. Association analysis

showed that the three missense mutations were deleterious

mutations. Due to low minor allele frequency for two SNPs

(positions 300 and 525), their association results should be

interpreted with caution. However, one SNP at position 469

associated with phenotypic traits was a synonymous mutation that

may not change the structure of the gene product. A plausible

reason for this result is the hitchhiking effort of a locus in positive

selection [68] or a false positive association. Thus, these SNPs

identified by association analysis need to be validated for

individual cultivars involved in crosses before they can be applied

to marker-assisted selection in the progeny [69,70]. The findings

from this study indicate that further research of these newly

detected SNPs in HSP17.8 is necessary to evaluate their possible

influence on agronomic traits and usefulness as future selection

markers in modern barley breeding program.

Conclusions

In this study, 11 SNPs were detected and nine unique

haplotypes were identified in HSP17.8 among 210 barley

accessions collected from 30 countries by EcoTILLING technol-

ogy, and 5 SNPs with missense changes are predicted to be

deleterious to protein function. Four SNPs significantly associated

with agronomic traits identified in this study can be used as DNA

markers in marker-assisted selection to improve these agronomic

traits after further validation of their functions in individual

cultivars.
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