
Label-Free Detection of Neuronal Differentiation in Cell
Populations Using High-Throughput Live-Cell Imaging of
PC12 Cells
Sebastian Weber1,2., Marı́a L. Fernández-Cachón1,2., Juliana M. Nascimento1,2, Steffen Knauer1,2,

Barbara Offermann2, Robert F. Murphy1,2,3, Melanie Boerries1,2*., Hauke Busch1,2*.

1 Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-University Freiburg, Freiburg, Germany, 2 Center for Biological Systems Analysis, Albert-Ludwigs-

University Freiburg, Freiburg, Germany, 3 Lane Center for Computational Biology and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh,

Pennsylvania, United States of America

Abstract

Detection of neuronal cell differentiation is essential to study cell fate decisions under various stimuli and/or environmental
conditions. Many tools exist that quantify differentiation by neurite length measurements of single cells. However,
quantification of differentiation in whole cell populations remains elusive so far. Because such populations can consist of
both proliferating and differentiating cells, the task to assess the overall differentiation status is not trivial and requires a
high-throughput, fully automated approach to analyze sufficient data for a statistically significant discrimination to
determine cell differentiation. We address the problem of detecting differentiation in a mixed population of proliferating
and differentiating cells over time by supervised classification. Using nerve growth factor induced differentiation of PC12
cells, we monitor the changes in cell morphology over 6 days by phase-contrast live-cell imaging. For general applicability,
the classification procedure starts out with many features to identify those that maximize discrimination of differentiated
and undifferentiated cells and to eliminate features sensitive to systematic measurement artifacts. The resulting image
analysis determines the optimal post treatment day for training and achieves a near perfect classification of differentiation,
which we confirmed in technically and biologically independent as well as differently designed experiments. Our approach
allows to monitor neuronal cell populations repeatedly over days without any interference. It requires only an initial
calibration and training step and is thereafter capable to discriminate further experiments. In conclusion, this enables long-
term, large-scale studies of cell populations with minimized costs and efforts for detecting effects of external manipulation
of neuronal cell differentiation.
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Introduction

Neuronal differentiation and morphogenesis have been a

subject of intense research during the last decades [1]. A central

question is the elucidation of the intricate orchestration of

signaling on the proteome and transcriptome levels that controls

the decision between proliferation and differentiation of neuronal

progenitor cells [2–4]. Much research in the field of neuronal cell

research has focused on characterizing neurite growth of single

cells by measuring average neurite length or the number of

branching points [5,6]. However, this leaves out the important

question, under which treatment conditions differentiation of the

whole cell population occurs. This is addressed in the following by

means of an automated high-throughput data-driven analysis of

live-cell imaging.

As a model system we use the neuroendocrine PC12 cell line.

This is a popular substitute to study the processes of neuronal

differentiation [7], since study on primary neuron cells is hindered

due to the low yield of primary neurons from animal models and

the difficulties of primary neuron cell culture. The popularity of

PC12 cells originates from their ease of handling, ability to expand

indefinitely, and relative high transfection capability [8]. Upon

stimulation with nerve growth factor (NGF), PC12 cells change

their morphology by flattening and growing neurites, resembling

the phenotype of sympathetic ganglion neurons.

Despite the progress in deciphering the early molecular events

that decide between proliferation or differentiation within PC12

cells [2,4,9], a thorough classification of the differentiation status of

the whole cell population based on cell morphology still remains

challenging. For more than 30 years, the state of the art has been

the manual or semi-automated measurement of neurite formation

from photomicrographs [10]. Neurite measurements are time and

labor intensive, as they require tuning and adaptation to the

respective experiment as well as frequent interventions in the semi-
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automated case. Moreover, this approach is error prone, as under

NGF stimulation PC12 cells tend to simultaneously differentiate

and proliferate by growing in clumps. This can make it hard to

manually detect enough single cells suitable for neurite measure-

ments [11]. Nonetheless, these methods are still utilized extensively

in many research laboratories due to the relatively low costs and

ease of implementation [12–15].

Automated image analysis using fluorescently labeled cells to

visualize neurite outgrowth/length has gained popularity in recent

years [16–18]. The differentiation status is derived from the

relation of cell body diameter to neurite length, which, however,

requires both single, individual cells as well as a sufficient

fluorescent signal [19–21]. While the advantage of high signal-

to-noise ratio in fluorescently labeled cells is obvious, there are

disadvantages associated with immunofluorescence as well. In

general, immunofluorescence is performed either on fixed or live

cells. The former is a terminal analysis, disallowing temporal

follow-up studies, while the latter requires extra steps of

transfection and involves possible risks of photo-toxicity. This

can influence cell homeostasis and constitutes an extra source of

error due to heterogeneous transfection rates, which can be a

problem for primary neurons in particular.

Work has also been done on automated analysis of phase

contrast images to measure neuronal morphology changes without

the need for fluorescent markers [5,6,22]. These approaches

focused on explicit detection of developmental changes of single

neurites that requires continuous monitoring of individual cell

plates. Thus, parallel monitoring of differently treated cell

populations with the same microscopic device becomes more

complicated. Moreover, these approaches require low cell densities

or even single cells as well as manual adjustment of many

parameters, i.e. even per cell plate and/or cell location. Hence,

scalability of these approaches to the cell population level and/or

compound or parameter screening is limited.

To cope with these biological and technical difficulties in

detecting differentiation of neuronal cell populations, we present

an adaptive, automated machine learning approach based on

supervised classification using an initially broad image feature set.

In fact, similar supervised machine learning methods have been

developed to determine cell viability from dark field microscopy

images [23]. Here we show that our method is capable of detecting

the differentiation status of live-cell populations irrespective of cell

density and without the need for any cell interference such as

fluorescent markers or staining. The method requires initialization

with only 3 steps: (i) specification of three cell morphology

parameters, (ii) measurement of a calibration data set to capture

the characteristics of experimental factors like the microscope, and

(iii) a measurement of training images of differentiated and

undifferentiated cells. As a source of training data, we used

unstimulated (CTL) and NGF-stimulated cells and monitored both

over a period of six days after first stimulation. A large initial

image feature set is used for robustness and to avoid bias under

varying experimental conditions. The set of image features was

first reduced by a feature selection step to achieve maximal

classification performance for specific training images. We

evaluated our final classifier on hold-out and biologically

independent data sets. Since NGF simultaneously promotes

differentiation, cell survival, and proliferation [24], we demon-

strate that our system can measure differentiation independently of

proliferation over time. We therefore validated our approach

under enhanced or reduced proliferation conditions, using

epidermal growth factor (EGF) and mitomycin treatment,

respectively. Moreover, we ensured that the classifier approach

is applicable to both high and low cell densities, which are typically

encountered when studying primary neuron populations. We

compared our approach to the prior (manual counting) state of the

art technique, quantifying neurite lengths, and found equivalent

results. In summary, we have developed a classifier capable of

detecting differentiation within a mixed live-cell population of

possibly densely growing differentiating and proliferating neurons

using phase-contrast images. Automated feature selection provides

maximal adaptability for different cell cultures and experimental

conditions with the goal that our procedure can be applied in a

broad spectrum of neuronal research.

Materials and Methods

Cell Culture and Stimulation
PC12 cells (ATTC, Middlesex, UK) were cultured in RPMI

1640 medium containing 10% horse serum (HS), 5% fetal calf

serum (FCS), 1% L-Glutamine and Penicillin/Streptomycin at

37uC in 5% CO2. Cells were seeded on collagen-coated 6-well

plates (500:000 cells per well) for 24 h before stimulation. PC12

cells were treated with 50 ng/ml rat Nerve Growth Factor-b
(NGF; Promega, Madison, WI, USA) to induce differentiation.

Proliferation was stimulated via treatment with 75 ng/ml human

Epidermal Growth Factor (EGF; R&D Systems, Wiesbaden,

Germany). The individual components were added every 48 h

during six days. To reduce cell proliferation, 0:4 mg/ml mitomycin

c (Carl Roth, Karlsruhe, Germany) was added once for one hour

and washed out before first stimulation. The mitomycin c

concentration was chosen to ensure maximal cell viability at

lowest proliferation rate, as shown by the low apoptosis even after

48 h of treatment (cf. Section ‘Quantification of apoptosis’ and

Figure S1). Each condition (CTL + mitomycin, NGF +
mitomycin and EGF + mitomycin) has been monitored in

technologically independent duplicates. In addition, a second

biologically independent experiment (cells originated from a

different passage) with the treatments CTL, NGF and EGF has

been carried out for validation purposes. To assess the effect of cell

density and to test our classifier in a third independent

experimental setup, we applied the NGF treatment to PC12 cells

at a greatly reduced density of 100:000 cells per well.

Microscopic Imaging
Live phase-contrast images from PC12 cells under different

conditions were acquired using a Nikon Eclipse Ti Inverted

Microscope (Nikon Germany, Düsseldorf, Germany) equipped

with a Perfect Focus System (PFS) and a cooled Digital Sight

Camera (DS-QiMc; Nikon Germany, Düsseldorf, Germany). The

recorded images were saved as 12 bit gray-scale with 1024|1280
pixels at a 20x magnification and a resolution of 12:8 pixels per

mm. The images were acquired at defined positions on the

motorized microscope table by a line-wise scanning of each well

around its center, taking approximately five minutes per well.

Before and after imaging one well the cells were placed back in the

cell incubator. The primary data set was created by taking 300
images, once every 24 h for six days from two wells each under the

six conditions. The second, biologically independent experiment

was carried out on two wells each for conditions CTL, EGF and

NGF (without mitomycin). Imaging was carried out with identical

instrument parameters for the same time period of six days and the

same 24 h interval. Per well and day 150 images were recorded for

the secondary data set, unless stated otherwise. The third

independent experiment was imaged with low cell density under

that same conditions, yet for NGF and CTL alone and with 150
images per well. For calibration purposes we recorded a fourth

data set of two collagen-coated wells without cells (containing just
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growth medium) over three days with 150 images per measure-

ment.

Immunostaining
Immunofluorescence labeling of PC12 cells was carried out as

previously described [25]. Cells were cultured for five days in

35 mm m-imaging dishes (ibidi; Munich, Germany). Cells were

fixed with 4% paraformaldehyde on days 1,3,5 and subsequently

permeabilized with 0:2% TritonX in PBS for five minutes. Cells

were labeled with a monoclonal anti-Tubulin antibody (diluted

1:500; Sigma-Aldrich, St. Louis, MO, USA) for one hour. The

secondary antibody Alexa Fluor 488-conjugated donkey anti-

mouse immunoglobulin (diluted 1:800; Invitrogen, Darmstadt,

Germany) was incubated together with the nuclear marker DAPI

(0:1mg/ml, Sigma-Aldrich, St. Louis, Mo, USA) for one hour. The

resulting images were captured with a Nikon Eclipse Ti Inverted

Microscope (Nikon Germany, Düsseldorf, Germany) equipped

with a cooled Digital Sight Camera (DS-QiMc; Nikon Germany,

Düsseldorf, Germany) using a 60x oil objective lens. Digitized

images were processed by NLS software (Nikon Germany,

Düsseldorf, Germany) and Adobe Illustrator (Adobe Systems).

Quantification of Apoptosis
PC12 cells were treated with 0:4mg=ml mitomycin c as

described in the previous section or with 1mM H2O2 as a positive

control. Apoptotic cell death was examined after 24 and 48 h

according to the method of Nicoletti [26] using a Cyan ADP Flow

Cytometer (Beckman Coulter; Miami, FL, USA). Three indepen-

dent experiments were performed, where 50000 cells were

counted and the results were presented as % of specific DNA

fragmentation using the formula: (percentage of experimental

apoptosis - percentage of spontaneous apoptosis)/(100 - percent-

age of spontaneous apoptosis) |100.

Quantification of Cell Differentiation by Human Counting
PC12 cell differentiation was determined on days 1 and 3 by

manual measurements of the longest neurite length per cell, which

was set in relation to the average cell diameter. Images were

measured for the conditions NGF without and with mitomycin.

On day 1 in total 58=50 images with an overall of 252=593 cells

for without/with NGF were recorded and on day 3 53=50 images

with 241=554 cells were counted respectively. A cell is defined to

be differentiated if its longest neurite in relation to the average cell

diameter is larger than 1:5.

Image Features
We first filtered all images for outliers. A range filter counted all

pixels, for which the difference in the maximal and minimal pixel

intensity in a neighborhood of a lr|lr square per pixel was larger

than a threshold tr. We required the number of counted pixels to

be larger/smaller than the area corresponding to 1 cell/the whole

image area minus 1 cell, where we set the cell area to pr2
c (cf.

Table 1). This avoided empty or underexposed images, and

completely filled images due to overexposure. In addition we

required that at least one segment was detected by the ROI

method below. We set the threshold tr using the width of the

68:3% quantile of the pixel intensity distribution (image feature

aq68), which we calculated for each image of the calibration data

set. The distribution of this value differed between wells and days.

We determined the mean value of the image feature aq68 over all

images per well and used the more conservative larger value of the

two wells for the final threshold value tr. These rules identified a

total of 19 images as outliers, of which 16 were found in one of the

wells with NGF without mitomycin treatment. We verified these

manually, and observed that these images were either recorded

with very low contrast and out of focus or showed predominantly

background. In order to assure proper stratification of the cross-

validation scheme used later, we selected the other well to train the

system.

Next, each image was filtered by a median filter to reduce noise

(using a local neighborhood of a lm|lm square). Then we

identified regions of interest (ROI) containing cells using an edge

detection and the image was thresholded by te. Afterwards, a

morphological closure was applied with a structuring element of a

disk having a radius of rs pixels, which was set to a value

comparable to the size of a neurite. Finally, small artifacts of at

most ta pixels were removed from the image. The obtained ROIs

were then segmented into disconnected regions. To determine an

optimal edge detection algorithm and an appropriate threshold te

for the edge detection, we use the calibration data set described

above. We evaluated the edge detection algorithms Canny,

Prewitt, Sobel, Roberts and a Laplacian of Gaussians method.

As selection criteria we required the edge detection to be robust

against experimental factors, such as between- and intra-well

variability. We determined the threshold t(i)
e for each image i with

the described method, which marks a fraction of 1% of the image

as ROI. The Canny algorithm required a second threshold ~ttevte

to detect weak edges. Because of this we considered the Canny

edge detector in four variants. We set the second threshold ~tte to

1%, 5%, 10% and 50% of the larger threshold te and evaluated the

influence of the well and measurement day by a two-way

ANOVA. This revealed a weak interaction of these factors and

a significant difference in the mean threshold depending on the

well and day. Evaluating the pairwise average differences between

wells and different days, scaled by their standard deviations,

showed that the difference between wells was larger than the

differences per well over time (intra-well), i.e. each well was more

homogeneous in time than it was to its paired well at a given time.

Moreover, this comparison showed that the Canny edge detector

with the second threshold ~tte set to 1% of te had the least difference

across time. Hence, we selected this Canny edge detector and set

the threshold te to the mean over all thresholds SteT per well and

selected the larger of the two values, since this will suppress

background noise more robustly.

In summary we required eight constants to extract the image

features, which are listed in Table 1. From these eight parameters

three were determined by the size of a typical cell and an average

neurite, three were calculated automatically from the calibration

data set, and the remaining two are standard parameters used for

image filtering. Finally, a set of 12 global image features, 10 ROI-

based features, and five per segment ROI image features were

calculated (see Table 2). The latter features were summarized per

image by taking the mean and standard deviation values over all

segments in a given image. As many of the image features

constitute count variables with a dependence of the variance on

the mean value, we applied variance stabilizing transformations as

suggested by Anscombe [27]. The image features fi segment,
segmentConv, and faSum were limited by the total number of

pixels N and were hence transformed by the arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fizc

Nz2c

r

transform suitable for Binomial variables. The parameter c was set

to 3=8 as recommended by Anscombe. All other variables related

to areas and pixel intensities were assumed to constitute Poisson

distributed count data and were transformed by the square root

function. Entropy image features were log transformed.

A well known technical artifact in phase-contrast microscopy is

the spatial dependence of illumination intensity of culture well
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micrographs [17], which changes radially from the center to the

edge. Together with a drift and readjustment errors of the

microscope settings during the long-term observation over several

days, this lead to an unique spatiotemporal correlation between

the images in each measurement. This spatial correlation pattern

translated by the line-wise scanning into an auto-correlated

sequence of the recorded images. In fact, the mean image

intensity varied periodically between 10% and 70% of the

maximal intensity. We restricted our analysis to the image features

that are least affected by these auto-correlations. For this, we test

for an AR(1) type autocorrelation with the Breusch–Godfrey test

[28] in each image feature under the observed conditions. The 10
image features having the least auto-correlations were selected for

downstream analysis.

Supervised Image Classification
Clear examples of the undifferentiated and differentiated

morphologies are needed to train the classifier. Since the rate

and extent of differentiation may vary from experiment to

experiment, we automated the choice of which day after

stimulation to use as examples of the differentiated phenotype

for training (and used the CTL cells from the same day as

examples of the undifferentiated phenotype). To minimize the

need for parameter choices, we applied the parameter-free Fisher’s

linear discriminant analysis (FDA) and set up a nested and

stratified cross-validation procedure to fix the remaining free

parameters, the training day and the optimal set of features. We

split the primary data set as follows: (i) A training set consisting of

70% of the images from one well of each condition, (ii) a hold-out/

verification set, consisting of the remaining 30% of the images

from that well, and (iii) all remaining images from the other well

for each condition (to use as an independent set for testing of the

final system). The latter data set constituted a technical replicate

for verification. Finally, we used the secondary, biologically

independent as well as the experimentally distinct data set as a

further verification of the final approach.

For the nested cross-validation, we first split the training data set

into 10 equally large folds for each stimulus condition. In the first

step of the cross-validation, a feature selection out of the 10 pre-

filtered features that were robust against spatial intensity variability

was performed. We selected each possible selection of eight out of

nine folds for training and used the remaining fold for testing our

performance criteria. The feature selection was implemented by a

step-wise forward and backward search algorithm. Starting from

an empty set, each feature not in the set was subsequently added

and each feature in the set was subsequently removed. For each set

the performance was determined by an 8-fold cross-validation of

the correctness rate. The search algorithm stopped once the

correctness rate improved by less than 1%. To evaluate the

performance of the resulting feature set we used the Gini index G,

calculated with ROCR [29]. G is related to the area under the

curve of the true positive versus true negative rate (AUC) via

G~2AUC{1, falling into the range ½0,1�. A value of 0 indicates

random guessing and a higher value indicates a better separation

power than random. Despite training on a specific day, the

calculation of the Gini index G included the image feature data on

all days, as we sought a FDA classifier which performs optimally

on any given day. Per day and fold we thus obtained a Gini index

G and we chose the feature set with the largest Gini index G.

Once the optimal feature set was determined, we selected, as

before, each possible selection of nine out of 10 folds for training,

and used the remaining fold on all days for evaluation of the Gini

index. Hence, we obtained 10 Gini indices per day, based on

which we chose the day with the largest average G. For all further

verifications, we then trained five independent FDA classifiers with

the obtained set of parameters by using two consecutive folds of

the original 10 folds of the training data set. Thereby, each FDA

was trained with only n~42 images per condition, which we

expected to be a realistic sample size in biological applications.

Moreover, this allowed assessment of the variation in the

performance of the FDA classifier in the following, since all

classifiers are statistically independent of one another. Finally, we

determined a decision threshold td for each trained classifier. The

strategy to determine the appropriate threshold depends on the

actual application of the classifier. Here we chose to maximize the

probability for a correct classification decision on all days and,

hence, selected the decision threshold td for which the sensitivity

equals the specificity. Each of the five FDAs was trained on two

folds and we used the data from the remaining eight folds of all

Table 1. Parameters.

Constant Value Definition

Parameters depending on cell morphology

rs 0.5 mm Radius of the disk used for the morphological fill in. Set to the length scale of a neurite; rounded to a
radius of 6.5 pixel corresponding to a diameter of 13 pixel.

rc 2.5 mm Approximate lower bound of the cell radius, rounded to 32 pixel.

ta 50 pixel Minimum number of pixels per segment (set to approximately one half of the area of the

morphological fill in element, i.e. pr2
s =2).

Parameters set automatically by calibration data set

tr 112 a.u. Threshold above which the local range difference of a pixel is counted for the outlier detection in a
12bit image.

te 0.0833 a.u. Threshold for the strong edge detection of the Canny edge detector.

~tte te
:10{2 a.u. Threshold for the weak edge detection of the Canny edge detector.

Parameters used in default setting of MATLAB

lm 3 pixel Side length of the square used as local neighborhood for the median filtering.

lr 3 pixel Side length of the square used as local neighborhood for the range filtering.

Parameters used for image feature extraction.
doi:10.1371/journal.pone.0056690.t001
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days to set the decision threshold td, which we used for the

downstream analysis.

Results and Discussion

Mixed Phenotype Cell Populations
PC12 cell populations treated with NGF respond with a mixed

phenotype of both proliferation and differentiation as shown in

Figure 1. Proliferation over six days was visible from the increased

cell confluency (Figure 1, first and second rows). The hallmarks of

differentiation are a flattened cell body followed by neurite

outgrowth (Figure S1 and Figure 1). The latter, however, is much

harder to detect, because these morphological changes are subtle

on the population level, which shows over time an increased

number of cells growing in clumps. To ensure that our image

classifier distinguished the differentiation from the proliferation

phenotype, we monitored PC12 cells under enhanced or reduced

proliferation. PC12 cell proliferation is enhanced under EGF

treatment [2], while mitomycin is known to suppress proliferation

[30]. Under mitomycin treatment, apoptosis rates only increased

slightly (Figure S2), while cell numbers were reduced over six days,

irrespective of the stimuli (Figure 1,+mitomycin). As a side effect

the numbers of cells growing in clumps were likewise reduced,

thereby enhancing the neurite visibility of differentiating cells

(Figure 1, Day 6, + mitomycin).

To quantify the above observations we assumed that cell

proliferation is proportional to cell confluency and hence used the

image feature faSum (cf. Table. 2) to measure the image area

covered by cells. Figure 2 shows a linear regression of the logit

function for the faSum image feature under each condition (CTL,

NGF and EGF, + mitomycin). In the absence of mitomycin, the

slopes of the regression lines for CTL and NGF stimulus are

statistically equivalent, while the EGF stimulus displays the largest

slope, i.e. the fastest proliferation, as depicted in Figure 1 (cf.

Table 3). This supports the validity of the faSum image feature as

a measure for proliferation. Under mitomycin treatment all slopes

are significantly lower and of the same magnitude, indicating a

Table 2. Feature Definition.

Feature Definition

Global

intensity Average of the absolute deviation of each pixel intensity from the mean pixel intensity.

mean Average pixel intensity.

med Median pixel intensity.

std Standard deviation of the pixel intensity.

mad Median absolute standard deviation of the pixel intensity distribution.

Etot Total entropy.

Emean Average of the local entropy.

Emed Median of the local entropy.

Estd Standard deviation of the local entropy.

aiqr Inter quartile range of the pixel intensity distribution.

aq68 Width of the central 68% quantile of the pixel intensity distribution.

aq95 Width of the central 95% quantile of the pixel intensity distribution.

ROI dependent

segment Area of the pixels determined to be ROI.

segmentConv Area of the pixels after applying a convex hull covering to each segmented region.

skeleton Total length of skeletonized ROI.

skeletonBranch Number of branching points of skeleton.

skeletonEnd Number of endpoints of skeleton.

endpoints Endpoints of ROI image.

Euler Euler number of image.

caSum Total convex hull covering area summed over all segments (can become larger than 1 due to overlapping).

faSum Total area of pixels within all segments after filled in holes.

numObj Number of identified segments.

Per segment ROI dependent, summarized by mean and standard deviation

solidity Ratio of the filled area (with holes closed) and the convex hull area.

caRel Convex hull covering area of the segment in percent of the segment size.

faRel Area of pixels in the segment after filling in holes in percent of the segment size.

ecc Eccentricity of a fitted ellipsoid covering the segment.

ext Extent of the filled area of the segment.

Initial feature set considered for image analysis. The per segment calculated image features are summarized for each image by their mean and standard deviation. All
image features that measure an area are recorded in percent of the total number of pixels. Pixel intensity related image features are given in percent of the maximal
pixel intensity. For applied transformations see Material and Methods.
doi:10.1371/journal.pone.0056690.t002
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strong decrease of proliferation in all experimental conditions with

respect to no mitomycin treatment, as expected. Nevertheless, all

slopes are still strictly positive, which indicates that the applied

mitomycin concentration retained cell viability. This is in line with

the observation from the micrographs (Figure 1).

Detecting Neuronal Cell Differentiation
The extent of cell differentiation was easier to observe under

mitomycin treatment. For this reason we evaluated the FDA on

both data sets separately. However, the training of the FDA was

carried out using only CTL and NGF stimulated cells without

mitomycin treatment. Applying the training algorithm (cf.

Material and Methods) we selected day 4 as the optimal training

day and chose three image features. The selected features were the

means of ecc, solidity and ext (cf. Table 2). Since all these features

were related to the presence of large, partially filled regions, we

suggest that the discrimination of the differentiated and the

undifferentiated morphology occurs on the basis of how cell

growth areas are physically connected. Undifferentiated cells grew

in dense, yet disconnected colonies. In contrast, differentiating

cells tend to connect these areas of high cell density by means of

their extended neurites.

In order to assess how variable independently trained FDA

classifiers behave, we trained five independent classifiers based on

the 10-fold split of the image data (cf. Material and Methods).

Since each of these five FDA classifiers has its individual decision

threshold t
(i)
d , we standardized the scores F

(i)
j of each classifier i for

image j by

~FF (i)
j ~

F
(i)
j {t

(i)
d

IQR(F
(i)
j )=c

,

with c~2
ffiffiffi
2
p

erf {1( 1
2

) and the dispersion IQR(F
(i)
j ) determined

on the remaining 8-folds of the training data not used for training

of the ith FDA. Figure 3 summarizes the standardized responses of

the five FDA classifiers on the hold-out data set by their medians.

The FDA shows a high confidence (large distance from 0) for

classifying NGF treated cells within the first four or five days for

cells treated without or with mitomycin, respectively. Due to the

increasing cell confluency the detection of neurite structures

became increasingly difficult at later days, decreasing the

confidence of the FDA classifier. As this correlates with cell

proliferation speed, image classification for differentiation worked

longer in the case of mitomycin treatment. The unstimulated

PC12 cells (CTL) were classified as non-differentiating on all days

and under all treatments. The EGF condition was close to the

decision threshold in absence of mitomycin. It was furthermore

systematically closer to 0 than CTL in the case of mitomycin

stimulation, ultimately confirming that the early day FDA

classifiers were picking up only the differentiation phenotype.

Figure 1. Phase contrast images of live-cells under the monitored conditions for days 2 and 6 after treatment. The images have been
selected using the FDA classifier that has its median FDA score on training day 4. For clearer examples of the differentiated state, we selected for the
NGF without mitomycin treatment images which correspond to the 95% quantile instead of the 50% median. Small inserts show the resulting ROI for
each image. The white arrows indicate outgrown neurites on day 6. The proliferative effect of both EGF and NGF treatment without mitomycin is
evident from the increased ROI on day 6. Mitomycin treatment inhibits proliferation and enhances the visibility of neurites. Bar, 10 mm.
doi:10.1371/journal.pone.0056690.g001
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Differentiation Detection Performance Assessment
We next verified the classifier performance on technically and

biologically independent, as well as on experimentally distinct

samples. As a first validation, we found the technically indepen-

dent EGF stimulation (Figure 3) as being classified similar to CTL,

because both showed a proliferation phenotype. We further

classified a technically and a biologically independent replicate

using the five independent FDA classifiers from above. The former

replicate was measured in parallel with the training data in a

separate cell culture well, the latter was measured in a different

experimental run with a different cell passage. Moreover, we used

an experimentally distinct sample, which was carried out with a

much lower cell density of only 1=5 of the other experiments to

mimic conditions of primary neuron culture, wherein cells grow

individually, well separated from each other. Figure 4 depicts the

Gini index of separation for all cases. The index stays above 0:8 for

all cases within the first four days and declines thereafter for the

samples with high initial cell density. With mitomycin treatment,

the Gini index is even larger than 0:9 for the first 5 days. In

addition, the experimentally distinct sample with a lower cell

density shows no decrease for the Gini index after 4 days. This

supports the conclusion that the FDA indeed learned the

differentiation phenotype from the training data, observing the

same effect as before that mitomycin pronounces the differentiated

phenotype and suppressed proliferation.

To complement our verification we performed a sensitivity and

specificity analysis based on the three independent data sets. We

used in each case NGF treated cells as positive reference and used

the CTL together with the EGF stimulated cells as negative

reference. For all cases, the sensitivity and specificity of the FDA is

Figure 2. The image feature faSum measures qualitatively the
cell area fraction occupying the well. As an approximation to cell
content in a well, we show here the faSum feature. It corresponds to the
white ROI area as shown in Figure 1. Since cells can vary in size this is
only a qualitative measure of cell numbers. The upper panel (A) shows
each condition without mitomycin treatment, whereas the lower panel
(B) depicts the respective well with mitomycin treatment. Red circles
and solid lines indicate the medians of the measurements of CTL cells,
green squares and dotted lines of NGF stimulated cells and blue
triangles and dashed lines of EGF stimulated cells. The error bars mark
the 68:3% c.i. and the lines depict linear regression analyses with slopes
listed in Table 3. While the slopes of the regression lines in (B) with
mitomycin are all statistically equivalent, the slope of the EGF treated
cells in (A) is significantly larger then the respective NGF and CTL cells.
This well reflects the biological known circumstance that EGF promotes
proliferation.
doi:10.1371/journal.pone.0056690.g002

Table 3. Proliferation kinetics.

2 mitomycin + mitomycin

stimulus slope [1/d] s [1/d] slope [1/d] s [1/d]

CTL 0.382 0.012 0.151 0.012

NGF 0.358 0.016 0.165 0.012

EGF 0.587 0.012 0.154 0.012

Slopes of the linear regression lines for proliferation, see Figure 2.
doi:10.1371/journal.pone.0056690.t003

Figure 3. Median responses of the five independent FDA
classifiers using the hold-out data set. The error bars depict the

68:3% c.i. Panels (A) and (B) show the FDA classifier response (~FFj ) to
cells without or with mitomycin treatment, respectively. The lines are
shown to guide the eye and depict the measurement medians for the
different treatment conditions. CTL: red circles and solid lines, NGF:
green squares and dotted lines, EGF: blue triangles and dashed lines.
The horizontal line through the origin 0 marks the decision threshold.
FDA scores larger than 0 correspond to the differentiated cell status
while scores below correspond to undifferentiated cells. Only on day 2
EGF treated without mitomycin in panel (A) are slightly above 0, such
that approximately 50% of the cells under this condition are falsely
classified as differentiated. However, NGF treated cells are always far
away from the decision threshold 0 within the first four days. Hence, a
more conservative threshold would remedy the false decision for EGF
on day 2 while still correctly classifying NGF treated cells.
doi:10.1371/journal.pone.0056690.g003
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in the range of 80% until day 4 (see Figure 5A). Thereafter, the

sensitivity declines without mitomycin treatment for the wells

which were initially loaded with the higher cell density. Thereby,

this asserts that the loss of detection performance is caused by cells

growing in overlapping clumps, leading to a much more difficult

detection of the differentiation phenotype. This is also shown with

the third experimentally distinct sample. Due to the low cell

number there is no decline of either sensitivity and specificity. The

sensitivity on the other hand remains above 90% in the case of

mitomycin treatment until day 5 (see Figure 5C). The reason for

the systematic shift of the specificity close to 75% is most likely due

to the use of EGF as a further negative control. The FDA classifier

systematically assigned scores to EGF stimulated cells that were

closer to the decision threshold 0, which led to a certain

misclassification of EGF stimulated cells and a decrease in

specificity.

Sample Size Requirements
An important aspect for the applicability of our classification

approach concerns sample sizes, i.e. the number of images

required to be recorded for a statistical significant decision of cell

differentiation status in a cell population. To this point we showed

that classification results remained robust, i.e. the classifier

response varied only marginally, using the training sample size

of n~42 per condition. A FDA classifier is essentially the weighted

sum of image feature values. Thus, we considered its result as a

normally distributed variable. The sample size , i.e. the number of

images per well, required to measure a mean response m, which is

different from the decision boundary td at a significance level of

95%, is at a sensitivity of 80%

n~(2:8h{1)2,

where h{1~s=(m{td) is the effect size. For a conservative

estimate of n, we considered the minimal effect size for days 2 to 4
on the technically independent sample. We excluded days 5 and 6,

as the classification performance degraded due to the large cell

confluency in the wells. The minimal effect size for cells stimulated

with NGF in the absence of mitomycin was hmin~0:71
(hmed~0:89, 68:3% c.i. ½0:81,0:97�) and was observed on day 3.

This leads to a minimal number of images of n~16 for the given

experimental setup. However, of biological interest are usually

conditions and treatments that alter the effect size, and thus,

require a different sample size to reach statistical significance.

Therefore, it is important to consider the scaling of n with the

effect size. A rescaling of the effect size by a factor of a leads to an

adjustment of n by a{2. For example, treatment with mitomycin

Figure 4. Comparison of Gini indices for the hold-out data, the
technically independent data set, the biologically indepen-
dent, and the experimentally distinct data set. (A) stimulation
without mitomycin (B) stimulation under mitomycin treatment. The
hold-out data and technically independent data sets are marked by the
solid lines with blue triangles or red circles, respectively. Additionally,
the dashed/dotted lines in panel (A) depict the biologically indepen-
dent/experimentally distinct test sample, wherein the triangles and
circles mark the respective technically independent replicates within
this setup. Each point represents the median Gini index of the five
independent FDA classifiers and the error bars mark the 68:3% c.i. A
Gini index of 1 corresponds to perfect separation of differentiated and
undifferentiated images. Since in the training data set and in the
biologically independent data set the final cell density was high, the
detection performance degrades such that the Gini index declines at
later days. This is due to increasing build up of cell clumps rendering
the differentiated cell morphology much harder to detect, even to the
human eye. The experimentally distinct data set started from a lower
cell density such that fewer cell clumps occurred, making the detection
of differentiation feasible until day 6.
doi:10.1371/journal.pone.0056690.g004

Figure 5. Sensitivity and specificity of the classifier, when
considering NGF stimulated cells versus non stimulated CTL
cells and EGF stimulated cells as negative reference. Sensitivity
(A) and Specificity (B) for stimulation without mitomycin; (C) and (D) for
stimulation under mitomycin treatment, respectively. The solid lines in
panel (A) and (B) correspond to the technical replicate in the training
data set. The dashed lines denote the biologically independent data set
and include two technical replicates per condition. The dotted green
line corresponds to the experimentally distinct data set at a lower cell
density. Panels (C) and (D) show the results for the mitomycin treated
cells from two technical replicates stemming from two cell culture wells.
The symbols represent the median of the five independent FDA
classifiers and error bars mark the 68:3% c.i. While the overall
performance for day 5 and 6 degrades in the case of no mitomycin
for the experiments with higher cell density, the experimentally distinct
data set conducted at 1=5 of the respective cell density does not show a
degradation in detection performance as cell clumps are not growing
and hence do not limit the detection of the differentiated phenotype.
doi:10.1371/journal.pone.0056690.g005
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aids in the detection of differentiation, which is reflected by the

larger resulting minimal effect size of hmin~1:01 (hmed~1:08,

68:3% c.i. ½1:03,1:15�) on day 4. Therefore, only n~8 images are

necessary under these conditions for a statistically significant test

result at a sensitivity of 80%. However, in the case of

combinatorial cell treatments that decrease the effect size, e.g. if

inhibiting downstream pathways of NGF, more images are

required for the respective experimental setup. Hypothetically, if

the effect size is halved, the resulting sample size must be n~64,

i.e. four times larger than without the inhibitor.

Correspondence of Classifier Scores and Biological
Differentiation Criterion

The biological definition if a cell is neuronally differentiated is

traditionally based on the lengths of the cell’s neurites, which are

optionally set in relation to the cell diameter. In the following, we

define the quantitative measure of differentiation per cell as the

ratio of the length of its longest neurite lmax to the cell diameter d.

Whenever this ratio is larger than 1:5 the cell is considered

differentiated. Alternatively, log1:5(lmax=d) can be used, as a value

larger than 1 corresponds to differentiated and a value smaller

than 1 to undifferentiated cells. To show that our standardized

FDA ~FFj score is equivalent to this biological neuronal differenti-

ation criterion, we manually measured cell neurites and diameters

on the technical replicate well on day 1 and 3 with and without

mitomycin treatment. Due to locally high cell densities and

difficulties in accurately measuring a cell diameter d , we

determined a mean cell diameter of SdT~18:9mm ([18:5mm–

19:4mm] 68:3% c.i.). Per image j we measured the length of the

longest neurite of representative cells. Since the classifier score ~FFj is

determined per image (and not per cell within an image), we

considered the mean value SlmaxTj of all measured cells for an

image j. The Pearson correlation between ~FFj and

log1:5(SlmaxTj=SdT) is 0:68 ([0:6{0:75] 95% c.i.), such that a

linear association is a reasonable assumption. In Figure 6 the base

data in the form ~FFj versus log1:5(SlmaxTj=SdT) are shown together

with their respective mean values of the four measured conditions

and the linear regression line fitted to the base data. The 68:3%

c.i. of the linear line fit is shown in grey. The estimated slope is

0:48 ([0:45{0:52] 68:3% c.i.) and thus differs highly significant

from 0. Therefore, a large mean neurite length SlmaxTj for cells

within an image translates to a large score of the FDA. The

threshold for the biological criterion is 1 and can be converted

with the linear fit into an associated classifier threshold, which is

0:73 ([0:68{0:73] 68:3% c.i.). This value is somewhat higher than

the standardized threshold of 0. Hence, the biological criterion is

conservative, requiring a clearer morphology than the classifier

threshold of 0. However, reconsidering the response of the FDA in

Figure 3, one can observe that the FDA score is well above 1 for

the days 2{5 and hence is also compatible with the more

conservative 0:73 threshold.

Conclusions
We have demonstrated the feasibility of detecting neuronal cell

differentiation status in a live-cell population of mixed phenotype

over a time-span of multiple days on the basis of phase contrast

images. We accounted for the commonly observed heterogeneity

in the image intensity, stemming from spatial scanning of the cell

culture well, as well as from (re-)adjustment of instrument

parameters during the experimental time window of one week.

To compensate for these technical artifacts, we calibrated the ROI

detection using empty cell culture wells and identified image

features that are robust under intensity fluctuations. Apart from

the technical challenges, classification of neuronal PC12 cell

differentiation is furthermore hampered by the mixed phenotype

response of simultaneous proliferation and differentiation. When

stimulating PC12 cells with nerve growth factor (NGF), the cell

population undergoes differentiation and proliferation. While we

have shown that our classification approach detected differentia-

tion in such phenotypically mixed populations, we considered a

further treatment with mitomycin, thereby decreasing prolifera-

tion and consequently enhancing the detection of neuronal

differentiation. This was reflected in our findings, as mitomycin

increased the classification performance and improved the overall

detection robustness. The detection performance measured in

terms of the Gini index G is larger than 0:95 on the hold-out data

set and G&0:8 when considering an independent sample.

In summary, we have developed a novel data-driven, high-

throughput, approach for monitoring cell differentiation status in

label-free cell populations of a mixed phenotype. Importantly, we

also showed that the classifier score is equivalent to the biological

definition of cell differentiation if choosing an appropriate decision

threshold such that the neurite length to cell body diameter must

be greater than 1:5. Furthermore, we showed that our classifier

approach can detect cell differentiation also independently from

the cell density of a cell population. We expect that the ability to

monitor continuously live-cell populations for differentiation over

days will prove valuable for large-scale analyses, e.g. in toxicity

screens using neurite outgrowth measurement [31,32] or Systems

Biology analyses, when investigating dose-response behavior of

single versus population-averaged cell behavior [33].

Building on one of the main achievements of this work to

identify and verify suitable image features for classification of

differentiation future steps will be the implementation of a

regression to obtain a comprehensive description of the differen-

Figure 6. Correspondence of classifier score and biological
differentiation criterion. Per cell we measured the longest neurites
lmax and diameters d on day 1 (blue) and 3 (red) without (circles) and
with mitomycin (triangles) of cells receiving NGF stimulation. Transpar-
ent points represent individual cell and neurite length measurements
per image and bold symbols depict the respective mean values (with

95% c.i.) of the classifier score (~FFj ) of image j and the quantity
log1:5(SlmaxTj=SdT) on the given day. If this value is larger than 1,

marked by the vertical dotted line, the length of the longest neurite of a
cell is at least 1:5 times the cell diameter. This is a commonly used
biological threshold criterion for differentiation. The correlation with
the respective FDA scores is 0:68 and the fitted linear regression line
(black line, 68:3% c.i. shown in grey) has a positive slope of 0:48.
Therefore, the neurite length to cell diameter ratio is proportional to the
classifier score. The threshold of 1 of the biological criterion
corresponds to a threshold of 0:73 of the classifier on average
(horizontal dotted line), i.e. choosing this threshold for the FDA will
result in a decision of the FDA which is (on average) equivalent to the
biological definition.
doi:10.1371/journal.pone.0056690.g006
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tiation kinetics. This will enable in vitro studies to quantify the

effect of inhibitors/stimulants on the rate of differentiation in

label-free settings.

Availability
All scripts for image analysis and statistical calculations are

available to reviewers at http://www.zbsa.de/projekte/frias-

hauke-busch/research/Neuron_Classification;

For application of the procedure in another study, the user

should optimally supply a calibration and a training data set.

These need to be registered within the software framework or

simply replace the example data provided. With the calibrated and

trained system successive experiments can readily be processed.

The design of a user-friendly plugin to current Open Source

microscopy software suites is currently in preparation and will be

published in the near future.

Supporting Information

Figure S1 Immunostaining images of PC12 cells under
NGF treatment and control conditions at days 1, 3, 5
after initial stimulation. PC12 cells were labeled with a

monoclonal Tubulin-Alexa488 mouse antibody (green). Cell

nuclei were recognized by DAPI (blue). Cells were seeded at

100:000 cells per 35 mm dishes and were treated with 50 ng/ml

NGF as described in Materials and Methods. Clearly, under NGF

treatment, the outgrowth of neurites and a flatting of the cell body

is visible. Bar, 20 mm.

(TIF)

Figure S2 Effect of mitomycin treatment on PC12 cells.
PC12 cells were treated with 0:4mg=ml mitomycin or 1 mM
H2O2 as positive control for cell death up to 48 h. Samples were

taken after 24 h and 48 h, stained according to the Nicoletti

method and subjected to specific DNA fragmentation by flow

cytometry measurement. Data are representative of triplicates of

three independent experiments (Error bars represent standard

deviations). The stars denote a p-value v0:001 (one-sided t-test).

(PDF)
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