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Abstract

Localizing genes that are subject to recent positive selection is a major goal of evolutionary biology. In the model organism
Drosophila melanogaster many attempts have been made in recent years to identify such genes by conducting so-called
genome scans of selection. These analyses consisted in typing a large number of genetic markers along the genomes of a
sample of individuals and then identifying those loci that harbor patterns of genetic variation, which are compatible with
the ones generated by a selective sweep. In this study we conduct an in-depth analysis of a genomic region located on the
X chromosome of D. melanogaster that was identified as a potential target of recent positive selection by a previous
genome scan of selection. To this end we re-sequenced 20 kilobases around the Flotillin-2 gene (Flo-2) and conducted a
detailed analysis of the allele frequencies and linkage disequilibria observed in this new dataset. The results of this analysis
reveal eight genetic novelties that are specific to temperate populations of D. melanogaster and that may have arisen during
the expansion of the species outside its ancestral sub-Saharan habitat since about 16,000 years ago.
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Introduction

Localizing genes that are subject to recent positive selection is a

major goal of evolutionary biology. Recent methodological and

theoretical advances are facilitating their identification by allowing

the shift from candidate-locus approaches to genome-wide

analyses. This is particular relevant for studying the effects of

recent positive selection, which may be hampered by the

confounding effects of demography. Within a population an

ecologically favored allele might rise in frequency and become

fixed in the population. This process is often caused by

environmental changes or colonization of new environments. In

case the favored allele already exists in the population selection

operates on standing genetic variation, otherwise a favored

mutation must arise de novo. If selection is strong, the fixation of

the beneficial mutation can have a joint effect on linked neutral

sites, which are also expected to increase in frequency. This

process, known as genetic hitchhiking [1], generates a signal of i)

reduced genetic variation at the target of selection [2,3], ii) a

skewed site frequency spectrum (SFS) due to an excess of rare and

high-frequency derived alleles [4,5,6], and iii) increased linkage

disequilibrium (LD) on both sides of the target of selection but

reduced LD between them [7,8,9].

The search for adaptive signals is usually carried out using a

large number of loci on a genome-wide scale to identify regions

that show considerable deviation from neutral expectations. As

generally known, however, standard neutrality defined by the

Wright-Fisher model is rarely met in natural populations, thus

cautioning on the use of the classical neutrality tests. In fact,

population structure and demographic events such as population

bottlenecks or population size expansion can mimic genetic

footprints of selection and possibly lead to false positives

[5,10,11]. However, a useful neutral expectation may be provided

by a demographic null model that is fitted to the demographic

history of a population [12].

This approach has been used by Glinka et al. [13] and Ometto

et al. [14] who performed a chromosome-wide scan of DNA

variation in a derived European population of Drosophila

melanogaster and compared it to a putative ancestral population

from Southeast Africa. More than 250 loci on the X chromosome

were used to evaluate the contribution of adaptive evolution in the

European population. The demographic null model of the

European population was defined as a bottleneck caused by the

post-glacial colonization of Eurasia around 10,000–15,000 years

ago [14,15,16,17]. While the bottleneck could account for most of

the reduction of variation observed in the European population,

the analysis revealed several loci and regions whose very low level

of genetic variation and highly skewed SFS were not compatible

with the expectations under such a demographic scenario.

In this follow-up study, we concentrate on one of these low-

variation regions comprising about 20 kb centered around the

cytological position 13A1 between landmarks X:14810552 and

X:14829908 (FlyBase, FB2012_06, released November 6th, 2012).
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Overall, five genes are located within this region: CG9504,

CG9503, CG32591, CG9009, and CG32593.

CG9504 and CG9503 are two of the 12 genes that were assigned

to the GMC oxidoreductase family and are clustered on the X

chromosome of D. melanogaster [18]. The functions of these GMC

homologues are still largely unknown except for CG9504, which

was described as ecdyson oxidase (Eo) [19]. An expression analysis

showed an up-regulation of both Eo and CG9503 during

embryonic and metamorphic development, possibly indicating a

joint function in the ecdysteroid metabolism [18]. Remarkably, the

GMC cluster is located within the second intron of the Flo-2 gene

with opposing transcription orientations. This arrangement is

conserved throughout four distantly related insect species: D.

melanogaster, Anopheles gambiae, Apis mellifera, and Tribolium castaneum

[18], consistent with the occurrence of strong purifying natural

selection.

CG9009, named pudgy (pdgy), encodes a long chain fatty acid

CoA ligase and is up-regulated in the case of food deprivation [20].

As transcriptional target gene of the insulin pathway, the

expression of pdgy is crucial for several metabolic parameters,

such as glycogen storage and lipid homeostasis [21]. In general,

nutritionally regulated genes are expected to orchestrate the

energy homeostasis control, including the ability to mobilize stored

energy resources, and pdgy is of vital importance in this process.

CG32593, flotillin-2 (Flo-2), is highly conserved among a wide

range of species (orthologous to the vertebrate reggie 1) and encodes

for Flotillin-2, a scaffolding protein that is involved in the

formation of non-caveolar lipid rafts [22]. In Drosophila, Flo-2 has

been found to be required to delimit the spread of epidermal

wound response [23] and is an important component of the

morphogens Wnt and Hedgehog [24]. It is a single transmem-

brane protein that is characterized by a short membrane-

anchoring segment at the N-terminal part of the protein and a

large cytoplasmic C-terminal domain [25]. The exact mode of

membrane association is dependent on co-translational protein

modifications at highly conserved N-terminal regions. If these

regions are altered by mutations or if the protein is truncated the

ability of membrane anchoring is lost. Flo-2 is expressed

predominantly in neuronal structures such as the optic lobes and

the central brain during all developmental stages of D. melanogaster

[26]. Overexpression of Flo-2 leads to detrimental effects during

the development of eyes, ocelli, bristles, and wings [27], while

knockout mutants surprisingly show no noticeable phenotypic

abnormalities. As Flo-2 covers almost the entire genomic section of

the candidate region we will refer to it as the ‘Flo-2 region’.

Using the full-length sequence of the Flo-2 region in both the

European and African population samples mentioned above we

applied two statistical tests for selection: 1) SweepFinder based on

information of the SFS [28], and 2) the v statistic based on

measures of LD [7,29]. The demographic null-model was inferred

by simulations from the colonization model suggested by Laurent

et al. [30]. Similar approaches were successfully used in other case

studies of selective sweeps in D. melanogaster in our laboratory

[31,32,33].

Materials and Methods

Fly Strains and Conditions of Culture
Intraspecific data were collected from highly inbred D.

melanogaster lines, 12 derived from a European population (Leiden,

The Netherlands) and 12 from an African population (Lake

Kariba, Zimbabwe). All stocks were kept at 23uC, 45% humidity,

and under constant light conditions. Development took place on a

high-nutrient killed yeast food medium (12 ml) in glass vials of

200 ml. For interspecific comparison, we used the annotated

sequence of D. sechellia (http://flybase.org, Release 5.31) [34].

Sequence Data Collection and Analysis
Primers were designed based on the D. melanogaster genome

(FlyBase, Release 5.1). We amplified and sequenced the complete

genomic region X:14810552-X:14829908 using 36 partially

overlapping DNA fragments (primers are given in Table S1).

DNA sequences were obtained from individual male flies and

generated as described in Glinka et al. [13]. Sequences were

assembled into contigs using the program Seqman (DNAstar,

Madison, WI, USA). Finally, sequences for all lines were aligned

using the algorithm MUSCLE (Edgar 2004) with the online tool

available at http://mobyle.pasteur.fr/cgi-bin/portal.py [35], cre-

ating a 20,011 bp alignment of 24 D. melanogaster lines and D.

sechellia as outgroup. Sequences have been deposited in GenBank

(accession numbers: KC460991-KC461010).

Basic population genetic parameters were estimated by a sliding

window analysis (window size of 1,000 bp with 500 bp overlap)

using the program DnaSP 5.0 [36]. We estimated nucleotide

diversity using p [37] and hW [38]. The allele frequency

distribution was measured with the summary statistic Tajima’s D

[39] and based on the total number of segregating sites. The

interspecific divergence to D. sechellia was determined for all 24

inbred lines of D. melanogaster. Furthermore, we used D. sechellia to

polarize the state of the segregating sites in our population sample.

A variant was considered ancestral if it was shared between both

species and derived if it was present only in D. melanogaster.

A Wilcoxon rank sum test was performed to compare the

nucleotide diversity of the Flo-2 region with the entire X

chromosome [14]. To avoid multiple testing due to window

overlaps, only non-overlapping neighboring windows were select-

ed for the analysis.

Demographic Modeling
The selective sweep detection methods used in this study (i.e.

SweepFinder and v) requires the specification of a neutral

demographic model. For this we used a slightly modified version

of the demographic model of Laurent et al. [30], which describes

our current understanding of the demographic history of African,

European, and Asian natural populations of D. melanogaster. In this

study we re-estimated the parameters of the Laurent et al. [30]

model using an Approximate Bayesian Computation (ABC)

approach [40], while adding to the summarized dataset the

number of fragments that are monomorphic in the African,

European, and Asian samples. These fragments are generally

removed from ABC estimations because standard statistics like

Tajima’s D [39] are undefined when the number of segregating

sites is zero, which in turn causes technical problems in subsequent

calculations. Nevertheless, the frequency of such monomorphic

fragments within a genome scan does carry information about the

past action of genetic drift within a population and should be taken

into account in ABC model inference. This inclusion forces our

demographic model to account for the fact that genomic regions

lacking genetic variation, like the Flo-2 region, can arise due to

genetic drift alone without invoking the action of positive selection.

Times of divergence and effective population sizes of the three

populations were estimated applying the ABC algorithm described

in Laurent et al. [30] to a genome-wide nucleotide polymorphism

dataset taken from previous studies [13,14,30,41]. The observed

values for the number of monomorphic fragments within the

African, European, and Asian populations are 0, 16, and 46,

respectively. The prior distributions used for the ABC estimations

are described in Table S2.

Selection in the Flo-2 Region of D. melanogaster
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Selective Sweep Analysis
First, the European dataset was analyzed using the SweepFinder

algorithm [28]. Typically, SweepFinder compares the SFS of a

small region of the genome (‘window’) to the SFS of the rest of the

chromosome, which is considered neutral. In this study, the

neutral SFS has been estimated using simulations of the above-

mentioned version of our demographic model for the European

population. For data analysis, we defined 1,000 overlapping

windows of variable sizes according to the strength of selection and

recombination rate.

We calculated the composite likelihood ratio (CLR) for each of

these 1,000 windows along our sequence alignment for two

models: a model without selection based on the neutral SFS vs. a

model of a recent selective sweep, as suggested by Kim and

Stephan [6] and later modified in SweepFinder by Nielsen et al.

[28]. Thus, we consider the spatial pattern of allele frequencies

along the studied genomic sequence, as predicted by a selective

sweep model given the background pattern of a bottleneck.

Incorporating the demographic history of the European popula-

tion in the estimation of the null distribution controls the false-

positive rate [29]. As the European sample lacks genetic variation

for a large part of the sequence we included monomorphic sites in

our analysis. We used the combined dataset of the European and

African samples to determine the state of monomorphic European

sites that were polymorphic in Africa. This is expected to increase

the power for detecting the signature of a selective sweep.

Second, the European dataset was subjected to an analysis of

LD using the v statistic developed by Kim and Nielsen [7]. The

selective sweep model predicts elevated levels of LD within the two

flanking regions of the selected site, while LD is not expected to

extend across the two regions. This pattern is identified based on

high values of v. As before, the dataset was split into 1,000

overlapping windows spanning between 2,000 and 10,000 bp. The

borders of the two flanking regions were allowed to vary, and the

window size was chosen according to the size for which v assumes

the maximum value [29].

Statistical significance of the maximum values assumed by both

statistics, CLRmax and vmax, was inferred from 10,000 neutral

coalescent simulations using a slightly modified version of the

demographic model of Laurent et al. [30]. To do these simulations

we fixed h using the effective population sizes estimated/used by

the Laurent et al. model and divergence-based mutation rate

estimates. This approach was preferred over the one that fixed the

number of segregating sites, which has been shown to be

associated with statistical biases [42]. The recombination rate

(3.6461028) was obtained from the D. melanogaster recombination

rate calculator [43]. Only the European subset of each simulation

was used to assess the 95th percentile of the null distribution.

Results

Sequence Data Collection and Analysis of the Flo-2
Region

To detect positive selection in the European sample of D.

melanogaster we sequenced one of the low-variation regions

discovered by Ometto et al. [14] using 12 inbred lines from the

Netherlands (Leiden) and 12 inbred lines from the ancestral

African range (Zimbabwe). The full sequence comprises 20,011 bp

in total and is referred to as the Flo-2 region. It is closely located to

one of the fragments sequenced by Ometto et al. [14] that was

added to Figure 1.

The sliding window analysis showed a conspicuous reduction of

genetic variability for the European sample compared to the

African one, with a valley of low variation of around 10 kb in size

(6.7 kb–16.8 kb; see line with black square, Figure 1). In the

European sample the mean value of nucleotide variation in the

Flo-2 region is hE = 0.0024, which is significantly lower than the

observed value for the entire X chromosome in European D.

melanogaster (hEX = 0.0047, [14]; fine dashed horizontal line in

Figure 1; Wilcoxon rank sum test, P = 0.0026). The corresponding

genetic region in the African sample has a nucleotide diversity of

hA = 0.0141, which matches the mean value of the entire X

chromosome (hAX = 0.0131 [14]; wide dashed horizontal line,

Figure 1; Wilcoxon rank sum test, P = 0.1766). Our fully

sequenced fragment covers several genes including Eo, CG9503,

CG32591, parts of pdgy and eight different transcripts of Flo-2

(Figure 1, Gene map, from left to right). Nonetheless, functional

constraint as the sole cause of this pattern of genetic variability in

the European sample can be ruled out as the level of genetic

variation of the African sample is intermediate to high, and

divergence to the sibling species D. sechellia remains constantly high

at around 6%.

Tajima’s D statistic is negative in the European sample for most

parts of the Flo-2 region with an average value of DE = 20.6416 (D

XE = 20.103, [14]; Figure 1, D Europe). The African sample

shows an average value of DA = 20.2088 in the Flo-2 region, a

value that is above the European value and the African

chromosomal average (D XA = 20.608, a value that was consid-

ered to reflect population growth [14]; Figure 1, D Africa). Thus,

in the Flo-2 region hallmarks of positive directional selection

(including reduced variation and skews in the SFS) are only

observed in the European population.

Demographic and Selective Sweep Analyses
The results of our demographic analysis are summarized in

Table 1. Adding the number of monomorphic fragments to the

vector of observed statistics in our ABC inference procedure did

not change much the demographic estimates proposed by Laurent

et al. [30]. The SweepFinder statistic for the Flo-2 region is

significant at the 5% threshold obtained by neutral simulations (see

Materials and Methods; Figure 2, CLR). The v statistic assumes

relatively high values, but is not significant (Figure 2).

Private European Alleles
Geographically restricted genetic hitchhiking suggests that the

target of selection should be fixed in the European population

sample and absent in the African population sample. Overall there

are 11 fixed different nucleotide substitutions between the African

and the European sample within the Flo-2 region (1–11, Table 2;

black diamonds in Figure 1). Four of them are located within

exons, while the remaining are located within Flo-2 introns. In

eight such cases the European population differs from the

ancestral state of the African population (i.e., African D. melanogaster

and D. sechellia share the same state), suggesting that they are

derived private European alleles. The overrepresentation of eight

derived alleles in the 10-kb segment of reduced variation within

the20-kb long Flo-2 region is highly significant (binomial

distribution, P = 0.004). In the following we describe these fixed

differences in detail according to their location across the genes

present in the Flo-2 region.

CG9503. Three fixed differences are located within the gene

CG9503: one within the first exon, and two within the second

exon. Within the second exon the substitution that is private to the

European sample leads to an alteration of the amino acid

sequence. Namely, a serine (Ser = ancestral state) is substituted

by an asparagin (Asn) at the amino acid position 473. This

substitution is not expected to alter the gene function as both

amino acids have equivalent characteristics (hydrophilic, aliphatic,

Selection in the Flo-2 Region of D. melanogaster
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polar, neutral). The two other fixed differences are synonymous

substitutions in the African sample while the European alleles are

of ancestral state.

Flotillin-2. The intronic region of Flo-2 carries seven fixed

differences between the European and the African populations, six

of which are of derived state in the former (Table 2). One fixed

difference is located at a synonymous site of Flo-2 without causing

an amino acid substitution. Another fixed difference between the

European and African samples is an indel polymorphism due to a

dinucleotide microsatellite within the first exon of the transcript C

of the Flo-2 gene (Figure 1, gene map, Flo-2-C), and which results

in the exon being 20 bp longer in the European sample than the

African sample. Since the African D. melanogaster lines share the

same state with D. sechellia, the most parsimonious hypothesis is

that European lines gained the additional nucleotides. Interest-

ingly there are a total of 38 indels spread along the Flo-2 region

(Figure 1, black triangles on the x-axis) but only this one is fixed

between the African and European samples (Table 2, nr. 12). The

annotated version of transcript form Flo-2-C at Flybase (version

FB2010_05, released May 28th, 2010) is strongly supported by a

full-length cDNA clone generated and sequenced by Rubin et al.

[49]. The sequence has been subjected to integrity checks for

accuracy, the presence of an open reading frame (ORF) as well as

the start and a stop codon. Interestingly, not all of our studied D.

melanogaster lines have an ORF (Table S3, Flo-2-C alignment starts

at transcription site +46). Specifically, seven African lines show

premature termination codons and two lines have frame shifts due

to microsatellite length polymorphism leading to a stop codon loss.

The remaining three African lines have a gene version that forms

the Flo-2-C splicing variant in the correct way (lines 186, 377, 384).

In contrast, in the European sample the majority of the lines – ten

out of the twelve – have an integral Flo-2-C. Of the two European

Figure 1. Nucleotide variation of the Flo-2 region in an African and European sample of D. melanogaster. A) The valley of reduced genetic
variation in a European sample of D. melanogaster compared to an ancestral population sample from Africa (solid lines; first y-axis, hW). The fully
sequenced 20,011-bp fragment of the Flo-2 region is connected with an adjacent fragment of Ometto et al. [14], indicated by squares at coordinate 0
(white square-Africa; black square-Europe, distance to the fully sequenced Flo-2 region around 3,000 bp, hW values were interpolated between the
two fragments). The x-axis shows the relative position on the X-chromosome. The dashed horizontal lines show the average nucleotide variation of
the X-chromosome for the African population sample (wide dashed line, hAX = 0.0131) and the European population sample (dashed line,
hEX = 0.0047). Black triangles show the position of indels; black diamonds indicate fixed nucleotide differences between both samples. The second y-
axis corresponds to divergence of D. melanogaster to D. sechellia (dashed line). The gene map gives the name and the position of the coding
sequence of all genes located within the valley of reduced variation. These genes are Eo, CG9503 CG32591, pdgy (partly) and eight different transcripts
of Flo-2. B) Tajima’s D statistic (solid lines) is shown for the African and European sample of D. melanogaster (white square-Africa; black square-
Europe). The horizontal lines show the average value of Tajima’s D for the X chromosome of the African population sample (wide dashed line,
DXA = 20.608) and the European population sample (dashed line, DXE = 20.103). Significance values are indicated as follows: # P,0.10; *P,0.05;
**P,0.01.
doi:10.1371/journal.pone.0056629.g001

Selection in the Flo-2 Region of D. melanogaster
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lines lacking a functional Flo-2-C, one possesses an ORF destroyed

by an insertion and in the second there is evidence for a

recombination event that created a premature termination codon

(lines 11, 13). Likewise D. sechellia lacks an ORF for transcript Flo-

2-C due to a premature termination codon and to the same

insertion found in the European D. melanogaster sample.

Discussion

Sequence Analysis Across the Flo-2 Region
Ometto et al. [14] analyzed X-linked chromosome-wide pat-

terns of DNA variation in the European population of D.

melanogaster and found candidate loci that deviated from the

demographic null model. In this follow-up study, we used one of

these candidates to characterize the detailed pattern of nucleotide

diversity and detect the possible action of positive selection.

Nucleotide diversity of the fully sequenced Flo-2 region in the

European sample shows a selective sweep-like pattern: a valley of

reduced genetic variation of around 10 kb in size and flanking

parts that steadily increase to neutral levels of European variation.

Tajima’s D statistic is strongly negative for the European

population and, in some segments, significantly different from

zero. The Flo-2 region is characterized by a high density of genes

that are functionally and structurally well-conserved, suggesting

strong evolutionary constraints. Divergence to D. sechellia remains

constant at around 6% and thus excludes purifying selection and/

or low mutation rates as major causes of low genetic diversity.

Furthermore, the corresponding region in the African sample

agrees well with the average value for X-linked nucleotide diversity

without any appreciable decline. Thus it is unlikely that the low

genetic variability of the European population is a consequence of

an ancestral low polymorphism.

Selective Sweep Analysis
We used two statistical tests for the sweep analysis of the Flo-2

region: v and SweepFinder. Both statistics capture different

aspects of the data: v is based on LD, while the CLR of

SweepFinder is dependent on the SFS. Statistical significance was

inferred using neutral coalescent simulations that were based on a

slightly modified version of the demographic model of Laurent

et al. [30]. SweepFinder revealed a statistically significant depar-

ture from neutral expectations of the European sample, suggesting

that the Flo-2 region has been a target of positive selection during

the recent history of the European population. The results of the

LD analysis were only marginally significant. In the following we

discuss the genetic processes that have occurred in this part of the

Flo-2 region and may have created novelties on which selection has

possibly operated.

European Genetic Novelties
The European population sample has eight fixed nucleotide

substitutions, all being private and derived, and the majority of

which (six out of eight) are located in intronic regions of the Flo-2

gene. The results of previous studies indicate that nucleotide and

indel changes in introns can affect gene expression [44,45,46].

Interestingly, the second intron of Flo-2 harbors the genes of the

GMC oxidoredutase cluster (including Eo and CG9503), suggesting

that they may indeed contain functional regulatory elements.

Gene expression analysis of our European and African population

samples revealed, however, no significant differences in the levels

of Eo expression between populations for males [47], and only

Table 1. Results of the demographic analysis.

Chromosome X Chromosome 3

Parameters mode Q 2.5% Q 97.5% mode Q 2.5% Q 97.5%

Current African population size 4,635,114 2,392,436 28,700,928 4,346,139 2,141,666 28,089,983

Current European population size 1,586,481 760,318 4,866,692 1,200,356 577,222 4,831,432

Current Asian population size 338,810 91,417 4,540,468 530,964 90,852 4,745,731

Bottleneck size of the European population 22,975 10,898 87,811 38,948 21,591 95,993

Bottleneck size of the Asian population 10,741 3,554 90,142 13,887 5,207 91,777

Exit out of Africa 15,628 7,700 36,616 13,894 7,359 24,953

Colonization time of the South-Asian continent 3,264 1,194 7,518 4,188 1,135 8,594

Time of the expansion of the African population 27,643 2,383 369,569 33,536 3,869 378,727

Size of the ancestral African population 1,890,641 580,795 2,457,912 2,272,767 1,013,009 3,477,120

The parameters of the neutral demographic model that was used for the sweep analysis are given for the African, European and Asian population of D. melanogaster.
The exit out of Africa, the times of colonization (times of divergence) and the respective population sizes were estimated by means of ABC using data from the X
chromosome and chromosome 3.
NOTE.–The time estimations (i.e., modes and credibility intervals) are provided in years assuming ten generations per year. Population sizes are given in effective
numbers of individuals.
doi:10.1371/journal.pone.0056629.t001

Figure 2. The sweep analysis reveals two profiles: the solid line
shows the CLR of SweepFinder, the dashed line shows the
result of the v statistic. The horizontal lines give the 5% significance
threshold for the CLR test (solid line, THCLR = 32.3) and the v statistic
(dashed line, THv = 65.2).
doi:10.1371/journal.pone.0056629.g002

Selection in the Flo-2 Region of D. melanogaster
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marginally for females [48]. Nonetheless, both Eo and CG9503 are

highly expressed only during embryonic and metamorphic

development and have tissue-specific expression [18]. Similarly,

Flo-2 experiences a restricted tissue-specific expression in later

developmental stages. As CG9503, Flo-2 is in fact expressed in the

wing disc, where its over-expression leads to detrimental effects

during the development of wings [26]. A closer examination of

intergenic and intronic regions around the GMC oxidoreductase

cluster and the study of the development- and tissue-specific

expression patterns may ultimately reveal the existence of

regulatory elements and their role in the adaptive history of

Drosophila.

In D. melanogaster the Flo-2 gene has experienced a large

transcript diversification, with isoforms that have distinct expres-

sion patterns. While the transcripts Flo-2-A/E and Flo-2-B/F are

continuously expressed in larvae and adult flies, expression of Flo-

2-C was shown to be restricted to larvae and pupae [49].

Interestingly, our results revealed that a functional Flo-2-C is

shared by fewer African lines (three out of twelve) than European

lines (ten out of twelve), although it is premature to associate this

observation to adaptive processes. Since Flo-2-C is just one of the

several functional isoforms of Flo-2, it does not suffer the genetic

load typical of nonsense mRNA. Under such relaxed conditions

negative selection might be negligible and facilitates the diversi-

fications of the Flo-2 gene. For instance, another premature

termination codon was found in the Flo-2-G transcript of D.

melanogaster (Figure 1, gene map) with a surprisingly high

population frequency of 31.6%. Neumann-Giesen et al. [25]

showed that a truncated Flotillin-2 has the ability to form homo-

oligomers that enhance membrane association with full-length

Flotillin-2. Thus, Flo-2-C might be a new gene variant whose gene

product extends the function of the original Flo-2.
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(2012) Insulin signaling regulates fatty acid catabolism at the level of CoA
activation. PLoS Genet 8: e1002478.

22. Stuermer CA, Lang DM, Kirsch F, Wiechers M, Deininger SO, et al. (2001)
Glycosylphosphatidyl inositol-anchored proteins and fyn kinase assemble in

noncaveolar plasma membrane microdomains defined by reggie-1 and -2. Mol

Biol Cell 12: 3031–3045.
23. Juarez MT, Patterson RA, Sandoval-Guillen E, McGinnis W (2011) Duox,

Flotillin-2, and Src42A are required to activate or delimit the spread of the
transcriptional response to epidermal wounds in Drosophila. PLoS Genet 7:

e1002424.

24. Katanaev VL, Solis GP, Hausmann G, Buestorf S, Katanayeva N, et al. (2008)
Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of

Wingless and Hedgehog in Drosophila. EMBO J 27: 509–521.
25. Neumann-Giesen C, Falkenbach B, Beicht P, Claasen S, Luers G, et al. (2004)

Membrane and raft association of reggie-1/flotillin-2: role of myristoylation,
palmitoylation and oligomerization and induction of filopodia by overexpres-

sion. Biochem J 378: 509–518.

26. Hoehne M, de Couet HG, Stuermer CA, Fischbach KF (2005) Loss- and gain-
of-function analysis of the lipid raft proteins Reggie/Flotillin in Drosophila: they

are posttranslationally regulated, and misexpression interferes with wing and eye
development. Mol Cell Neurosci 30: 326–338.

27. Stuermer CA, Plattner H (2005) The ‘lipid raft’ microdomain proteins reggie-1

and reggie-2 (flotillins) are scaffolds for protein interaction and signalling.
Biochem Soc Symp: 109–118.

28. Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, et al. (2005) Genomic

scans for selective sweeps using SNP data. Genome Res 15: 1566–1575.

29. Pavlidis P, Jensen JD, Stephan W (2010) Searching for footprints of positive

selection in whole-genome SNP data from nonequilibrium populations. Genetics

185: 907–922.

30. Laurent SJY, Werzner A, Excoffier L, Stephan W (2011) Approximate Bayesian

analysis of Drosophila melanogaster polymorphism data reveals a recent colonization

of Southeast Asia. Molecular Biology and Evolution 28: 2041–2051.

31. Beisswanger S, Stephan W, De Lorenzo D (2006) Evidence for a selective sweep

in the wapl region of Drosophila melanogaster. Genetics 172: 265–274.

32. Beisswanger S, Stephan W (2008) Evidence that strong positive selection drives

neofunctionalization in the tandemly duplicated polyhomeotic genes in Drosophila.

Proceedings of the National Academy of Sciences, USA 105: 5447–5452.

33. Svetec N, Werzner A, Wilches R, Pavlidis P, Alvarez-Castro JM, et al. (2011)

Identification of X-linked quantitative trait loci affecting cold tolerance in

Drosophila melanogaster and fine mapping by selective sweep analysis. Mol Ecol 20:

530–544.

34. Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, et al. (2009)

FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids

Research 37: D555–D559.
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