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Abstract

Whole genome protein-protein association networks are not random and their topological properties stem from genome
evolution mechanisms. In fact, more connected, but less clustered proteins are related to genes that, in general, present
more paralogs as compared to other genes, indicating frequent previous gene duplication episodes. On the other hand,
genes related to conserved biological functions present few or no paralogs and yield proteins that are highly connected and
clustered. These general network characteristics must have an evolutionary explanation. Considering data from STRING
database, we present here experimental evidence that, more than not being scale free, protein degree distributions of
organisms present an increased probability for high degree nodes. Furthermore, based on this experimental evidence, we
propose a simulation model for genome evolution, where genes in a network are either acquired de novo using a
preferential attachment rule, or duplicated with a probability that linearly grows with gene degree and decreases with its
clustering coefficient. For the first time a model yields results that simultaneously describe different topological
distributions. Also, this model correctly predicts that, to produce protein-protein association networks with number of links
and number of nodes in the observed range for Eukaryotes, it is necessary 90% of gene duplication and 10% of de novo
gene acquisition. This scenario implies a universal mechanism for genome evolution.
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Introduction

Genome evolution is determined first by the processes that

modify DNA and then by those mechanisms that either neutrally

keep or naturally select these mutations by their phenotypic effects.

The connection between DNA variations and the consequent

phenotypic alterations is far from being simple and is elusive to

determine. However, it is reasonable to assume that, after

evolutionary time spans, these DNA variation mechanisms have

left their mark on the genome.

Phenotypic effects are consequence of the existing associations

between proteins which rule cellular metabolism. As proteins are

expressed from genes, protein-protein associations will express

eventual changes in genotypes and are prone to natural selection.

Consequently we may speculate that natural selection, by defining

genome evolution mechanisms, has left its mark on organisms’

protein-protein association matrices. This is not a novel idea.

Barabási and collaborators [1,2] have described genomes of

different organisms as networks where nodes are either genes or

proteins, and links correspond to associations between the nodes.

They proposed an evolution dynamics for the genome considering

that genes are sequentially added to a network following a

preferential attachment rule: each newly incorporated gene

interacts with a gene already on the network with a probability

that is proportional to its degree, that is, to the number of other

genes with which it already interacts. The resulting artificial

network is scale free and described well the available experimental

data at that date.

However, the properties of a gene already in the network are

not the only driving force for a novel gene attachment. There are

different molecular mechanisms acting as novelty source in gene

formation, such as exon shuffling, retroposition, mobile elements,

horizontal gene transfer, gene duplication, etc., and the connec-

tions of a new gene certainly reflect its origin together with the

nature of the genes it connects to [3]. Although the relevance of

these mechanisms differs between Eukaryotes and Prokaryotes,

gene duplication is recognizably the most important and there is

plenty of evidence that it plays an essential role on genome

evolution [4]. One major feature of a duplicated gene consists of

inheriting its parent connections and this property is determinant

to the whole network design.

Vázquez and collaborators [5,6] proposed a model for genome

evolution where genes are incorporated by duplication followed by

mutations which are translated as adding and/or deleting links on

a protein-protein association matrix. In this model, genes are

randomly chosen to duplicate and parameters are set to produce
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gene networks where the probability that a gene product is

associated to k other proteins decays as a power law as k increases.

A drawback for this approach, using randomly chosen genes, lays

on the experimental fact that the probability to fix a given

duplication episode greatly varies according to the properties of

the duplicating gene [7–9].

Since the contributions by Barabási and collaborators, the

amount and quality of data regarding both genomes and protein-

protein association have greatly increased. For example, STRING

database increased from few organisms at 2001 to 1133 organisms

in 2011 [10–12]. Also, databases regarding protein-protein

association for some organisms have been largely enhanced. Here

we analyze data considering 31 core eukaryote organisms, which

strongly suggest that highly connected genes stem from duplication

mechanisms acting preferentially on genes that are highly

connected, but not excessively clustered. These conclusions are

made evident here by presenting the quantities as functions of
k

kmax
, where kmax is the maximum degree in the network. We also

propose an adequate ordering for genes to globally illustrate

topological properties of the protein-protein association matrix.

Considering these conclusions based on the information

provided by STRING database we propose a genome evolution

dynamics where the probability that a gene duplicates grows with

its degree and decreases depending on how clustered it is. We also

consider a Barabási mechanism of acquiring genes de novo based on

preferential attachment. The results of these simulations are

capable of describing different aspects of the network topology,

besides predicting the ratio of duplicated and de novo acquired

genes.

Results

Building Protein-protein Association Matrices
Many different gene networks may be built, depending on how

nodes and links are defined. Regulatory gene networks, for

example, consider regulation between genes to assign gene

association [13], metabolic pathways may be represented by

graphs where the direct interaction between gene products stand

for links [14], or gene co-expression may be taken into account

when specifying the connections in a gene network. Depending on

how the network is built, genes present different network

properties as their degree, clustering coefficient, centrality, etc.

Here we investigate the marks that evolution by natural

selection has left on the topology of a gene network. Natural

selection acts on the organism phenotype that is strongly defined

by the organism genotype. Advantageous gene product associa-

tions have certainly been selected, and probably the topology of

these associations are a consequence of this selection pressure.

Consequently, the gene network we must consider here is a

network whose links may be acted on by natural selection. As

virtually all kinds of associations between genes or gene products

may end up with a phenotypic consequence, we must consider all

kinds of associations. Furthermore, we will consider a genome

evolution model describing only those genes that have already

been selected to be conserved for evolutionary time spans.Building

a gene network with all kinds of gene association (or gene product

association) implies an extensive amount of work, which is only

made possible by integrating the results obtained by different

scientists, laboratories, and techniques. The techniques vary from

very accurate ones, where the evidence for a gene-gene association

has been observed in vivo by different laboratories, to high-

throughput experiments where, for example, many gene products

are assessed simultaneously in solutions that are not simulating the

interior of a cell. Also there may be predicted gene-gene

association, based on computational inference by similarity

between gene products in different organisms. Such a large

diversity of techniques to assign gene-gene association leads to a

variable confidence degree in the trueness of the results, and a

confidence scoring is a necessary tool. The problem resides in

controlling the degree of false positives, which is too high when all

high-throughput evidence is considered, and of false negatives,

which is too high when only evidence from very accurate

experiments are taken into account.

Fortunately, STRING provides an integrated database for gene-

gene association that considers different organisms and kinds of

evidence, with the required control of a confidence score. Other

databases yield different gene networks, but they either i) present a

small number of organisms as compared with STRING, ii) assume

specific criteria for assigning gene-gene associations (as only gene

regulation [13] or only physical evidence of protein-protein

association [15]) and/or iii) do not provide a confidence scoring

aiming at false positives control. On the other hand, after choosing

STRING as the adequate database, it is still necessary to choose

the adequate value for the confidence score.

For that we produced gene networks for all 31 core eukaryote

organisms in STRING database, version 8.3 [10–12], with

confidence scores 0.400, 0.500, 0.600, and 0.700, 0.800, and

0.900 using ‘‘experimental’’ and ‘‘database’’ (95% of these

interactions) added with ‘‘neighborhood’’, ‘‘fusion’’, ‘‘co-expres-

sion’’, and ‘‘co-occurrence’’ evidence. Text S1 we discuss

STRING confidence score and present a plot of number of links

versus number of nodes considering all confidence scores for the

six most studied eukaryotes: there is a sudden drop on the curves

as the confidence scores grows from 0.800 to 0.900, signaling that

many links are discarded at that point. We chose to work with

confidence scores from 0.700 to 0.900.

Gene networks are built such that each node corresponds to a

protein with at least one known protein-protein association, and

links correspond to these associations. To each network node i we

assign a degree ki, which is its the number of links. For each

organism and score we produce a network and calculate the

probability P0 kð Þ that a protein has k links, defined as

P’(k)~
N(k)

N
ð1Þ

where N is the number of nodes and N kð Þ is the number of nodes

with degree k. To compare different organisms, with different

genome sizes, we considered a rescaled degree to obtain the

probability of finding a protein with a given degree k, as follows

P
k

kmax

� �
~kmaxp’(k), ð2Þ

where kmax is the maximum degree in that network.

Figure 1a presents the average, taken at intervals of
Dk

kmax
~0:02,

of the network degree distribution, P
k

kmax

� �
versus

k

kmax
for three

different confidence scores: 0.700, 0.800 and 0.900. The inset

presents the degree distributions of all 31 core eukaryote

organisms, with different colors for different scores. The blue line

in Fig. 1a is a power law fit, F
k

kmax

� �
~0:02

k

kmax

� �{1:4

, which

describes P
k

kmax

for initial values of
k

kmax

. At values of
k

kmax

near
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0.7, this degree distribution presents a local maximum, associated

to the cloud of points with higher values of probability presented in

the inset. The probability of proteins with degree near kmax

increases and indicates a genome evolution dynamics where high

degree genes are probable to appear. As the main mechanism of

genome evolution is gene duplication [3,4], it is reasonable to

assume that the local maximum in P
k

kmax

� �
for large

k

kmax
is due

to high duplication probability for more connected genes.

Figure 1b presents the same data in a linear plot, where the

standard deviations for each average value of P
k

kmax

� �
are

shown, to evince that deviations from the power law fit is

significant. Each point is an average over 31 core eukaryote

organisms, justifying a Z test for significance. The difference

between the power law fit and the average P
k

kmax

� �
for

confidence score 0.800 is shown in the inset for Fig. 1b, in units

of standard deviations for P
k

kmax

� �
, calculated at intervals of

k

kmax

~0:02. The maximum in degree distribution is significantly

different from the power law. This is a novel result which has been

evinced by plotting the distributions as functions of
k

kmax
, instead of

functions of k or
k

N
. From now on, we shall refer to

k

kmax
as the

relative degree of a node, which varies in the interval (0,1).

Figure 1c plots, as a function of
k

kmax
,the average clustering

coefficient SCTk=kmax

, defined as the fraction of existing

connections between the neighbors of a gene with k neighbors in

relation to the maximum number of such connections
k(k{1)

2
.

The inset in Fig. 1c individually shows the corresponding data for

all core organisms. For all three scores this curve is initially

constant, presenting local minimum and maximum for, roughly,
k

kmax
&0:4 and

k

kmax
&0:6, respectively, decreasing after that: the

most connected genes are not the maximally clustered. Observe

that, while the maximum in P
k

kmax

� �
occurs for

k

kmax

&0:7, the

maximum for the clustering coefficient occurs before that.

Figure 1d plots the average relative degree of the neighbors

SknnT of a gene as a function of
k

kmax
. The inset individually shows

the corresponding data for all core organisms. For all scores this

curve is initially increasing, presenting a local maximum at roughly
k

kmax

&0:8, decreasing after that. It means that the most connected

genes are not connected only to the most connected genes.

Summarizing, these plots indicate that i) P
k

kmax

� �
does not

follow a power law; ii) it presents a local maximum for
k

kmax
&0:7;

iii) the clustering coefficient is not uniform, presenting a local

minimum and maximum; and iv) the network is assortative up to
k

kmax
&0:8, with SknnT decreasing after that. These observations

suggest modules of high average degree which are highly clustered.

This behavior is evinced by the superposition of data from a large

number of organisms, plotted against a normalized degree
k

kmax
.

For comparison, in Text S2 we present plots where the degree k is

normalized by the total number of genes of each organism: there

this behavior is not as clearly unveiled.

We have also considered other databases. However, STRING

agglutinates information from these other databases, with the

further advantage of a confidence scoring. In Text S3 we explicitly

present and discuss the same results for BIOGRID [15] and

IRefweb [16], where we have also simulated a confidence scoring

by neglecting all information in these databases that were scored as

low confidence in STRING database: in these cases the results are

the same as using STRING. In fact, compared to other databases,

high confidence scoring in STRING is generally more stringent in

what regards assigning protein-protein association based on

techniques prone to false positives as high-throughput experi-

ments.

There is another relevant aspect for genome evolution:

Duplication events can be assessed by analyzing gene families,

i.e., genes sharing the same ancestral gene. Some gene families

have mainly orthologs, while others are composed by a great

number of paralogs, indicating many duplication episodes [7,17].

The reason why some genes are prone to duplicate while others

avoid duplication is controversial. However, duplication is clearly

not randomly fixed and functional characteristics of the parent

gene certainly influence new born genes fates. It has been

discussed that genes presenting substrate promiscuity are prone to

fix duplication while other genes avoid duplication because it

probably leads to deleterious effects [18].

Protein-protein interaction networks properties have been used

as evidence for genes with increased duplication probability. In

particular, Prachumwat and Li have obtained a negative

correlation between duplication and connectivity in Saccharomyces

cerevisiae [19]. However, connectivity per se is somewhat ambiguous,

since there are at least two classes of hub genes: (i) hubs taking part

of biological modules, called intramodular hubs; and (ii) hubs which

connect biological modules, called intermodular hubs. Intramodular

hubs connect to several proteins which are highly connected

among themselves and are jointly performing some biological task

[20]. These hubs are hardly ever pleiotropic. On the other hand,

intermodular hubs are generally pleiotropic and connect to

different biological modules, interacting with different partners

in different moments and/or different cellular compartments

[21,22]. Mathematically these two kinds of hubs may be

differentiated by using two node indices: connectivity and

clustering coefficient. The first merely counts the number of

interacting nodes with a given node. The second index measures

the level of interactions between the neighbors of a given node.

Li and collaborators [23] demonstrated that highly connected

proteins with low clustering coefficient (intermodular hubs) are

more probable to stem from duplicated genes as compared with

proteins that are highly connected and highly clustered (intra-

modular hubs). According to these authors, intramodular hubs

represent the network most stable and conservative part, while

intermodular hubs represent evolutionary dynamic network

regions with a high duplication rate. Similar results have been

found by Fraser [21].

Genome Evolution Model
These characteristics of genomes may be numerically simulated

by an evolution dynamics with two different gene acquisition

mechanisms: de novo formation and duplication. The first

mechanism follows Barabási preferential attachment rule, which

simulates an enhanced attachment probability shown by genes

with more active domains. The second mechanism describes the

facts discussed above: genes are chosen with higher probability

An Evolutionary Signature in Genome Networks
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when they are more connected, but less clustered. Protein-protein

association information may be organized as a binary matrix

whose elements are noted by Mij , such that Mij~1 in case

proteins labeled by indices i and j are associated and Mij~0

otherwise. Now, the clustering coefficient Ci for the ith gene is

defined as [24,25]

Ci~
2

ki ki{1ð Þ
XN

j~1

XN

l~1

MijMjlMli, ð4Þ

which gives the ratio of existing links between the neighbors of the

gene i to the maximum possible number of such links (which is

equal to the number of combinations of ki elements 2 by 2).

The duplication probability for the ith gene is defined as

pD
i ~

ki 1{Cið ÞP
kj 1{Cj

� �, ð5Þ

where the denominator guarantees a normalized probability. This

assumption reproduces the features shown by organisms protein-

protein networks that i) degree distributions have a local

maximum for
k

kmax
near 1 (Fig. 1) and ii) more clustered genes

are less prone to duplicate [7,22,26]. For illustration, in Text S4

we presents the average value of duplication probability versus the

average evolutionary plasticity index (EPI) [7] for different

metabolic pathways or gene families: there is a defined positive

Figure 1. Topological quantities for all 31 core eukaryote organisms from STRING database. Three different confidence scores: 0.700,
0.800 and 0.900 (black, red and green lines in all graphs, respectively). All measurements are taken as functions of node degree rescaled by the
maximum degree of the corresponding network, k=kmax

. All averages were taken over intervals Dk=kmax
~0:02. (a) Average degree distribution

compared with a tentative power law fit (blue line). (b) Average degree distribution in linear scale, showing the increase in the degree distribution for
higher degree. The inset presents the distance between the power law fit and the average of networks with score 0.800 measured in number of
standard deviations. (c) Clustering coefficient and (d) mean nearest neighbor degree averaged over all core organisms. The insets in panels (a), (c),
and (d) show individual results for all 31 core organisms for each score.
doi:10.1371/journal.pone.0056579.g001
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correlation between EPI and duplication probability as given by

Eq.(5). Here we remark that the network properties as clustering

coefficient or degree for each node must be obtained from the

whole network, comprising all genes and protein-protein associ-

ation. Genes that are intermodular hubs in the whole network may

become intramodular when considering a partial network. Natural

selection acts over the whole organism, consequently, when

correlating network properties and evolutionary plasticity, one

should consider all nodes and links. So, gene families as RNA

binding proteins (RBP) [20], for example, must be considered as a

part of the whole genome, that is, the links with other proteins

must also be considered when calculating their network properties.

Simulations start with 5 nodes, each linked to two others,

forming a ring. To acquire a new gene we first choose either de novo

mechanism, with probability 1{qð Þ, or duplication, with proba-

bility q. If the de novo mechanism is chosen, each existing node i is

linked to the new one with probability
kiP

kj

, and the procedure is

repeated until the new node presents at least one link. In case of

duplication, the node to be duplicated is chosen by using the

probability defined in Eq.(5). Duplication implies creating a new

node linked to its parent and with the same neighbors.

After duplication, mutations are implemented by deleting links

between either the parent or the child with a common neighbor

with probability m. In fact, a hallmark of gene duplication is the

subsequent speciation of at least one gene copy [27].

To compare with simulated genome evolution dynamics we

chose those organisms for which there is more information

regarding protein-protein association. Figure 2a shows the number

of links versus the number of genes for the 31 core eukaryote

organisms for 0.800 confidence score. Observe that data for very

well studied organisms present larger numbers of genes and links,

that is, more information is available. In what follows we

considered 6 organisms, marked with orange dots in Fig. 2a

(Homo sapiens, Mus musculus, Arabidopsis thaliana, Drosophila melanoga-

ster, Saccharomyces cerevisiae, and Gallus gallus).

The present simulation model has two parameters, duplication

probability q and mutation probability m. For the numbers of links

Figure 2. Evolution of simulated models. Barabási-Albert, duplication-divergence and duplication-acquisiton networks (red, blue
and green lines, respectively). The black dots represent all core organisms from STRING database, where six well studied organisms are
highlighted in orange. (a) Number of links, (c) mean degree and (e) maximum degree are shown as functions of the total number of nodes in the
network. The degree distribution was calculated in five snapshots of the evolution of (b) Barabási-Albert, (d) duplication-divergence, and (f)
duplication-acquisition models, in intervals of 2000 nodes.
doi:10.1371/journal.pone.0056579.g002
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and genes of simulated networks to fall in the same intervals as

more extensively investigated organisms (Fig. 2a), qmust be of the

order of 0.90, which is experimentally verified: Zhou et al. [4] have

studied Drosophila melanogaster genome and compared to other

organisms in D. melanogaster subgroup. They have found that

duplication is responsible for 80% of new genes, and 10% is

generated by retroposition, here taken as an additional form of

gene duplication. We are left with one single parameter, m, set to

0.05 to match the observed relation between number of links and

nodes presented by protein-protein association matrices of real

organisms (Fig. 2a). Results for different values of these parameters

are discussed in Text S5.

We also simulated two other well described models for genome

evolution: Barabási and Albert model [1], based on a preferential

attachment rule, and Vazquez et al. [5,6] model, where genomes

are built by duplicating randomly chosen genes. For both models,

parameters are set to ensure that the number of links and nodes

are roughly the same as in the protein-protein association networks

obtained from STRING database for confidence score 0.800 (For

other parameter values, see Text S5). In Barabási-Albert model,

each new node is connected with 15 neighbors, and in the

duplication-divergence model each node is linked with its parent,

and has 0.4 of mutation probability. For brevity, we considered the

most cited models in the literature although other interesting

models also address genome growth [28–31].

Figs. 2a, 2c, and 2e present, as a function of N, the plots of

number of links NL, average degree SkT, and maximum degree,

kmax, for experimental results (dots) and simulated models (solid

lines). As discussed, the chosen model parameters ensure that the

simulated number of links crosses the region with best investigated

organisms (orange dots). The experimental points indicate that the

number of links is proportional to the number of nodes, that is,

NL*N1. This behavior is clearly shown by both Barabási-Albert

and our model, and is further evinced by Fig. 2c, that shows a

constant average degree for experimental dots and these two

models. Finally, Fig. 2e shows that, for the simulations, kmax

increases with, roughly,
ffiffiffiffiffi
N
p

. The results for organisms are not in

contradiction, although they are not conclusive. Anyway, this

behavior explains why using kmaxinstead of N as the normalization

constant in Eq. 2 yields different results.

Figs. 2b, 2d, and 2f present P
k

kmax

� �
versus

k

kmax
for the three

simulated models, measured in networks of different sizes. Observe

that clearly Barabási-Albert and our model converge to a scaling

invariant distributions that superpose as N??, while for

Vázquez (D–D) model this convergence is either not true or too

slow. This is a relevant point: although real genomes are finite, we

may speculate that when large enough they present a scale

invariant degree distribution. If this is true, the data collapse

predicted by scaling invariance, together with a significant fit of

the collapsed degree distribution of all core organisms, is as a

strong evidence of a common mechanism universally ruling

eukaryotes genome growth.

On the other hand, degree distributions for real organisms may

present finite size effects. For example, both STRING data and

D–A model results show that smaller networks present a higher

local maximum in P
k

kmax

� �
for large

k

kmax
. To properly compare

the simulations results with experimental networks with variable

sizes, we considered a weighted average of the degree distribution,

as follows.

For each model, we produced 10 samples in each size range,

with size ranges being Nv1000, 1000vNv2000, …, 6000vN,

and obtained the distributions of degree, clustering coefficient, and

average degree of the neighbors as functions of
k

kmax

. To compare

with the set of all 31 core eukaryote organisms, presenting,

respectively, 6, 15, 2, 4, 2, 0 and 2 organisms in each size range,

we produced weighted averages over the size ranges for the

topological distributions, using the weights 6/31, 15/31, 2/31, 4/

31, 2/31, 0/31 and 2/31. These results are shown in Fig. 3.

Other parameters values in each model yield different results, as

discussed in Text S5: the description of topological quantities are

worse in these cases. Similar averages for the six, best investigated

organisms are shown in Figure S1.

Duplication-acquisition Model Reproduces the Topology
of Protein-protein Association Networks

For each network, we calculated the weighted average for

probabilityP
k

kmax

� �
, the clustering coefficient SCTk=kmax

, and

the relative degree SknnTk=kmax

of the neighbors of a node with

degree, defined as

SknnTk=kmax

~
1

N kð Þ
XN

i~1

d ki{kð Þ
ki

Xki

SjTi

kj

kmax
, ð6Þ

where SjTi stands for a sum over the nodes j that are neighbors to

node i, and d ki{kð Þ~1 if k~ki and d ki{kð Þ~0 otherwise.

The black dots in Fig. 3 refer to protein-protein association

networks of the 31 core eukaryote organisms. All plots indicate

large clustering coefficients for all degrees, decreasing as
k

kmax

approaches 1: very high degree nodes are less clustered than less

connected nodes. In organisms, the average number of connec-

tions of the neighbors, SknnT, first increases with the node degree

and then decreases, reinforcing the fact of very high degree nodes

not presenting the largest clustering coefficient. Figure 3 presents

three columns, one for each model, where we show i) raw data for

the 31 eukaryotes as black points, weighted averages for ii) the 31

eukaryotes as green lines and for iii) simulation as red lines. The

first column shows that B–A model produces a degree distribution

that follows a power law, a clustering coefficient that is roughly

constant at a value much less than those shown by the organisms

data. Furthermore, SknnT does not depend on
k

kmax
. The deviation

from the STRING dots reflects that Barabási-Albert model yield

scale free networks with a global central hub.

The second column presents the results for the Duplication-

Divergence (D–D) model. Here, this distribution clearly does not

follow a power law, due to the chosen parameters (link deleting

probability of 0.4), that fixed the ratio of number of links to

number of nodes at the desired values (see Fig. 2a). The average

clustering coefficient decreases too abruptly, as compared to

organisms data: as degree increases, the clustering decreases as

*
k

kmax

� �{0:7

. However, the average degree of the neighbors

presents a mild increase, meaning that genes connect to groups of

genes with slightly larger degrees.

The third column in Fig. 3 refers to the results of our model. In

Fig. 3c, P
k

kmax

� �
describes very well the data from STRING. For

high values of
k

kmax
, degree distribution reproduces the local
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maximum as shown by real organisms, although for smaller

degrees. The clustering coefficient, shown in Fig. 3f, describes the

major part of the interval, presenting a more intense decrease as

k

kmax

?1. The varying character of assortativeness as
k

kmax

increases is also evident in Fig. 3i: SknnT first increases to a

maximum up to 0:45 kmax.

Comparing the three columns we conclude that D–A model

better catches the topological properties of protein-protein

association networks, according to the currently available data in

STRING, although the description is not perfect.

Global Aspect of Protein-protein Association Matrix
Furthermore, to evince global properties of the networks, the

protein-protein association data that is organized on the matrix M

where each axis represents the protein list in a given order. The

matrix elements Mij are assigned with value 1 (0) if there is (not) an

association between the genes at positions i and j of the list. For

illustrational purposes, these association matrices may be repre-

sented by plots where a black dot at position i, jð Þ indicates that

Mij~1.

We obtain the sets of genes of each organism from STRING

database and dispose them in randomly ordered lists. Each

possible order for a gene list implies a different configuration for

matrix M, for which a cost function E may be defined as

E~
XN

i~1

XN

j=i

da
i j

DMi,j{Miz1,j DzDMi,j{Mi{1,j D
zDMi,j{Mi,jz1DzDMi,j{Mi,j{1D

� �
, ð7Þ

where di j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di2{j2D

p
is proportional to the distance on the

matrix from the point i,jð Þ to the diagonal (when i~j), and a is a

parameter, here taken a~8. Minimization of this function, by

changing the genes localization on the list, implies approximating

mutually interacting genes, as discussed by Rybarczyk-Filho et al.

[32].

Figure 3. Comparison of topological measures for simulated networks. The black dots represent the superposed networks for all core
organisms from string database with confidence score 0.800, the green lines are averages taken in intervals of Dk=kmax

~0:02, and the red lines are
weighted averages of simulated networks. The upper, central, and lower rows show, respectively, degree distribution, clustering coefficient, and
nearest neighbor mean degree. Each column refers to a simulated model: Barabási-Albert on the left, duplication-divergence on the center and
duplication-acquisition on the right.
doi:10.1371/journal.pone.0056579.g003
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The ordering algorithm starts from a randomly ordered matrix

configuration and proceeds by randomly choosing a pair of genes

whose positions are tentatively swapped. The cost function for this

changed configuration is calculated and, in case the cost decreases,

the change is accepted. If the cost function increases by DE, the

change is accepted with probability e{DE=T , where T is a

parameter. This procedure is intended to avoid metastable states

in the optimization of Eq.(3). Finally, when DE~0, the change is

accepted with 50% probability. The algorithm proceeds by

randomly choosing another pair of genes and the procedure is

repeated until the value of the cost function is stabilized.

Randomly ordered lists yield association matrix configurations

with black dots spread over the whole plot. Ordering the gene list

by minimizing the cost function evinces topological properties of

protein-protein association networks. Figure 4a–f presents the

ordered matrices for the six organisms listed above. Observe that

points concentrate near the diagonal, implying that there may be

an association (Mij~1) between the products of genes localized at

not far apart positions i and j. Not all networks may be put in

formats like those shown by Figs. 4a–f. See Fig. 4-g which

represents a network built using Barabási-Albert algorithm, or an

Erdös-Rényi network, presented on Text S6. In fact, this format

reveals that genomes (Figs. 4a–f) do not present one central hub

linked to the whole network (which could indicate scale free

networks) but, contrarily, present many hubs with neighborhoods

that do not span the entire system.

Figures 4g–i present ordered association matrices for simulated

networks. Barabási-Albert (B–A) model (Fig. 4g) clearly shows only

one module, with a central hub connected to all network.

Duplication-Divergence (D–D) model, on the other hand, shows

a slimmer structure around the diagonal, and Duplication-

Acquisition (D–A) model presents a central hub not connected

to the whole network. The ordering algorithm is further discussed

in Text S6, where the same panels as Figure 4 are presented, but

zooming at the central regions: the hierarchical structure of

clusters, evinced by small solid squares, is clearly present in

organisms and Duplication-Acquisition model. In Text S6 we also

present the orderings obtained with a~1, which stresses further

the clustered structures.

Together, figures 1 and 4 evince different aspects of real

genomes. First, degree distribution is not a power law. Second,

there is an accumulation of high degree nodes, which may be

explained by an enhanced duplication probability for highly

Figure 4. Ordered association matrices. This figure presents the association matrices for Homo sapiens, Mus musculus, Arabidopsis thaliana,
Drosophila melanogaster, Saccharomyces cerevisiae, Gallus gallus, Barbási-Albert model, duplication-divergence model and duplication-acquisition
model after running the ordering algorithm. The black dots represent protein-protein association between two nodes.
doi:10.1371/journal.pone.0056579.g004
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connected gene products. Finally, hub genes are not central to the

whole network, which presents hierarchical clusters.

Discussion and Conclusions

In this paper we have presented evidence obtained from

protein-protein association data that degree distribution is not

scale free, presenting an increased probability for high degree

nodes, and that there are a few hub nodes in these networks,

probably organized in a hierarchical way. Furthermore, when

scaled by the maximum degree in each network, kmax, the degree

distribution seems to approach a scale invariant state as the

number of genes in the network increases. However, real genomes

still present finite size effects. This scenario indicates a universal

mechanism for genome evolution.

The understanding of genome growth mechanisms is a central

point in evolutionary biology. It is well established that gene

duplication is the main process for new genes emergence.

Therefore, it is reasonable to think that gene duplication

represents an essential feature for genome evolution. This idea

has been used by Vázquez in his genome evolution model

including gene duplication as genetic novelty source [5,6].

However, in that model, genes are randomly chosen to duplicate

whereas experimental evidence indicates that gene duplication is

not random. There are huge differences in the fixation probability

of a gene duplication event. Depending on gene niche, the new

copy could be selectively fixed or eliminated [18]. This concept

becomes clear when gene families are assessed. There are some

gene families composed basically by vertically inherence (i.e.

orthologs), without duplication episodes. On the other hand, there

are gene families composed by great number of duplication-

generated genes (i.e. paralogs) [7,17]. The question is what gene

characteristics will increase the fixation probability of its duplica-

tion?

The local maximum shown in Figure 1a gives us a clue about

gene duplication dynamics. According to the figure, there is an

increased probability of very connected proteins, indicating a

genome evolution dynamics favoring hub genes emergence.

However, as discussed previously, there are at least two very

distinct classes of hub genes: (i) intramodular hubs, presenting high

degree and high clustering coefficient, and (ii) intermodular hubs,

presenting high degree and low clustering coefficient. The first one

takes part in modules, which generally comprises intricate

biological systems where all proteins exercise coordinate functions.

In many of those systems, stoichiometry relationship is needed and

a duplication event could be deleterious to the whole system. The

second connects different modules, commonly exercising pleiotro-

pic functions. Gene duplication theories always associate the

fixation of the new-born gene copy with new function develop-

ment [27]. Additionally, a gene performing more than one

function - when each function cannot be independently optimized

- could benefit from a duplication event where each gene copy is

rendered free to independently optimize different functions [33].

Intermodular hubs have been discussed as targets of gene

duplication [23]. This feature can be explained by the catalytic

versatility of intermodular hubs [34]. These promiscuous activities

often serve as starting points for the evolution of new functions if,

or when, necessary [35]. Example of intermodular hubs, members

of the Per-Arnt-Sim (PAS) receptor family recognize a huge

variability of ligands, from photons to polyaromatic hydrocarbons.

This receptor family presents 34 proteins in mammals and

thousand proteins among genomes of many other species, evincing

lots of duplication episodes [36]. Also, Szklarczyk et al. have shown

that for yeast in nearly 70% of small scale duplication events, the

paralogs do not remain working in the same complex and in at

least 40% their ancestor gene should participate in more than one

biological module [37].

On the other hand, intramodular hubs are associated to ancient

networks that have reached their architecture early in evolution

and any modification can affect their homeostasis [7]. This fact is

well exemplified by ribosomes and DNA repair mechanisms, both

very ancient systems with modular network architecture and both

composed by genes with almost none duplication episode fixed

though their evolutionary history [7,20].

Finally, a clear positive correlation between the network

quantity k (1{C) averaged over gene families and the average

evolutionary plasticity index as discussed in Text S4 further

supports the idea of intermodular hubs as preferential gene

duplication targets in comparison to intramodular hubs.

Here, we propose a simulation model for genome evolution,

Duplication-Acquisition model, where genes in a network are

either duplicated or acquired de novo using a preferential

attachment rule. However, according to our model, genes are

not arbitrarily chosen to duplicate: the duplication probability

linearly grows with gene degree and decreases with its clustering

coefficient. In other words, intermodular hubs have increased

probability to duplicate. With this simple rule, topological

distributions of biological networks are well described. This model

correctly predicts that, to produce protein-protein association

networks with number of links and number of nodes in the

observed range for eukaryotes, it is necessary 90% of gene

duplication and 10% of de novo gene acquisition.

A final remark on the model contemplates whole genome

duplication, which is not explicitly taken into account. However,

such a duplication in the first moment would not change the

results, since each gene would be connected to twice the number of

other nodes and, as also kmax duplicates, the relative degree of

each node,
k

kmax
remains the same. In a second moment, there

could be more room for evolution, but in this case, the fixation

probability would follow the same reasoning as in the original

model. So, we do not expect that whole genome duplication would

greatly change the genome topological distributions as compared

to our model.

To compare the networks we ordered gene lists for each

organism and model to produce protein-protein association

matrices yielding images of the network association structure.

These images give a global assessment of the networks, suggesting

that there is a system scale that is less than its size (see Fig. 4), with,

possibly, a hierarchical modular organization, as predicted by the

Duplication-Acquisition model (see Text S6).

The simulation model is not perfect. Phenotypic effects caused

by gene acquisition, duplication, or mutation cannot be fully

grasped by network gene properties only and, consequently, this

model is an over-simplification. However it does point towards a

positive correlation between duplication probability and degree,

while indicating a negative correlation between duplication

probability and clustering coefficient. Consequently, Duplication-

Acquisition model suggest how and where evolution works to build

genetic novelty.

Supporting Information

Figure S1 Comparison of topological measures for the
simulated networks. Black dots represent the superposed

networks for six organisms from STRING database with

confidence score 0.800 (Homo sapiens, Mus musculus, Arabidopsis

thaliana, Drosophila melanogaster, Saccharomyces cerevisiae, and Gallus
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gallus), red lines are averages of these networks taken in intervals
k=kmax

~0:02, and green lines are weighted averages of simulated

networks. Upper, central, and lower rows show, respectively,

degree distribution, clustering coefficient, and nearest neighbor

mean degree. Each column refers to a simulated model: Barabási-

Albert on the left, duplication-divergence on the center and

duplication-acquisition on the right.
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