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Abstract

In this paper, we introduce a biologically inspired model to generate complex networks. In contrast to many other
construction procedures for growing networks introduced so far, our method generates networks from one-dimensional
symbol sequences that are related to the so called Collatz problem from number theory. The major purpose of the present
paper is, first, to derive a symbol sequence from the Collatz problem, we call the step sequence, and investigate its structural
properties. Second, we introduce a construction procedure for growing networks that is based on these step sequences.
Third, we investigate the structural properties of this new network class including their finite scaling and asymptotic
behavior of their complexity, average shortest path lengths and clustering coefficients. Interestingly, in contrast to many
other network models including the small-world network from Watts & Strogatz, we find that CS graphs become ‘smaller’
with an increasing size.
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Introduction

The analysis of networks is a prospering field that spans many

disciplines ranging from biology, mathematics and statistics to the

social sciences [1–6]. Starting with the study of random networks

[7], the interest of the community shifted in recent years to so

called complex networks [8,9]. In contrast to random networks, which

show a Poisson distribution in the node degrees, many complex

networks exhibit a power law distribution [8,10]. The attention in

complex networks can be at least partly attributed to the fact that

they appear to be omnipresent in nature. This makes such

networks not only interesting from a theoretical but also from

a practical point of view [11–13].

The major purpose of the present paper is three-fold. First, we

derive a symbol sequence from the Collatz problem, we call a step

sequence. The Collatz problem [14,15] is from number theory and it

refers to the mathematical statement that starting from any natural

number, the iterative application of a certain mathematical

function leads always to the number 1, possibly, via intermediate

natural numbers. Hence, the Collatz problem leads to the

generation of one dimensional symbol sequences of natural

numbers that all end at 1. Second, we introduce a new

construction procedure for growing networks that is based on

the step sequences from the Collatz problem. For this reason we are

calling the resulting networks CS (Collatz step) graphs. This will

simulteneously lead to the definition of a new class of complex

networks. Third, we investigate the structural complexity and the

scaling behavior of step sequences and CS graphs, including an

estimate for the asymptotic complexity of CS graphs.

In contrast to many other generation procedures for growing

networks introduced so far [2,16–18], our method constructs

networks from one-dimensional symbol sequences that are related

to the Collatz problem [14,15]. We would like to emphasize that

we are not the first to map one-dimensional objects to networks.

For instance, for time series data this has been done in [19–24]

and in [25,26] prime number related networks have been

constructed. An even older example for such a construction

principle can be found in [15] constructing a so called Collatz graph.

In this paper, we tie on the work in [15], however, constructing

networks from a different type of sequences that can be derived

from the Collatz problem. Interestingly, we will show that Collatz

graphs and CS graphs are entirely different and we will argue that

this is related to the differences in the underlying sequences,

respectively the difference in their complexity.

In this context it is interesting to note that the conjecture made

by the Collatz problem is to date mathematically unproven.

However, it has been numerically verified up to natural numbers

as high as 5:7646|1018 [27]. For this reason it can be assumed

that this intricate problem is capable of generating symbol

sequences which are truly complex.

The motivation for our network model is based on the working

mechanism of a biological cell. In a cell, a linear symbol sequence,

the DNA, is transcribed into mRNAs and then translated into

proteins which form protein interaction, signaling or other types of

gene networks [28–30]. That means our construction procedure,

which may appear unconventional at first if compared to well

known mathematical mechanisms to generate growing networks

[17,18], is in fact employed by nature. In addition to this, we want

to note that protein interaction networks and signaling networks

can be considered as complex, not only because they exhibit

a power law distribution in their degrees, but because these

networks form an integral part of the functioning of living cells.
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Further, studies have shown that also the DNA sequence itself can

be considered as a complex symbol sequence [31,32]. This

suggests that the complexity of the DNA sequence carries over to

the complexity of gene networks. In this context it appear plausible

to assume that not any arbitraray DNA sequence leads to complex

(gene) networks but the DNA sequence needs to be complex itself.

From an abstract point of view, we base our network model on

these observations by exploiting the mechanism of the biological

counterpart. Specifically, we use symbol sequences that are related

to the Collatz problem [14,15] as starting point for our model.

This paper is organized as follows. In the next section, we

introduce all mathematical definitions and preliminaries we need

for our analysis. Further, we define step sequences, CS graphs and

our procedure to generate growing networks. In the results section,

we present our analysis of step sequences and CS graphs, studying

their complexity and scaling behavior. Further, we provide

estimates for the asymptotic complexity, average shortest path

lengths and clustering coefficients of CS graphs. This paper finish

with a discussion and conclusions.

Methods

In this section we introduce the basic definitions and notations

we need to introduce our network model. This includes a brief

description of the Collatz problem as far as it is necessary for our

analysis.

Basic Definitions: Collatz Problem, Sequence and Graph
A Collatz sequence is defined for every natural number n[N

according to the iterative application of the following mapping.

T(n)~

1 if n~1

3nz1 if n odd and nw1
n
2

if n even :

8><
>: ð1Þ

For example, for n~3 we obtain the sequence

C3~3?10?5?16?8?4?2?1. This sequence is called the

Collatz sequence for n~3. Further examples for the first 20 natural

numbers can be found in Fig. 1. That mean the iterative

application of Eqn. 1 maps the natural number n~3 after t~7

steps to 1, i.e., T(3)7~(T 0T 0T 0T 0T 0T 0T)(3)~1. Further appli-
cation of Eqn. 1 cannot lead to other results because ‘1’ is a fixed

point of the above mapping. If one considers the natural numbers

as states of the transformation, the above sequence can be

visualized in the state space by consecutive mappings between

adjacent states. A visualization of the state space for the first 20
Collatz sequences is shown in Fig. 1. Due to the fact that the state

space is discrete, its representation corresponds to a network. This

network has been termed the Collatz graph [15].

We would like to note that the number of elements in the state

space corresponds to the number of natural numbers that are

traversed from the initial natural number n to 1. However, we would

like to emphasize that these elements do not necessarily

correspond to the consecutive natural numbers 1,2,3, . . . n. If

a state space of a set of sequences, e.g., fC1, . . . ,C20g, is

considered than the number of elements in this state space is the

union of the elements of the individual sequences, i.e.,

DC1| . . .|C20D. It is interesting to note that there are two types

of states, which can be naturally distinguished from each other.

The first type of states consists of the natural numbers, n, that were
used as initial value to generate a Collatz sequence, Cn, whereas

the second type of states are states with values wn. In order to

visualize this, in Fig. 1, we show states of the first type in gray color

and states of the second type in orange.

Based on the above mapping in Eqn. 1, Lothar Collatz

conjectured in 1937 that every natural number, n[N, will be

mapped to 1 by its iterative application. This is also know as the

3nz1 conjecture or the Syracuse problem [33,34]. To date, this

conjecture remains mathematically unproven, however, numeri-

cally it has been verified up to 5:7646|1018 [27]. In this paper we

will not be concerned with the proof of this conjecture, but with

the the disposition of the step sequence, that can be derived from the

Collatz problem, as discussed in the next section.

Step Sequence and CS Graph
In addition to the state space generated by the application of,

T(n), there are other, different symbol sequences one can obtain

that are also based on T(n). In the following, we will derive such

a symbol sequence.

In order to define our new symbol sequence properly, we need

to introduce two functions, l and H. The first function, l : N?N,

l(n)~t, for nw1 with T(n)t~1, ð2Þ

defines a mapping from a natural number n to the number of

iteration steps t it takes T(n) to map to 1. For this reason, we call l
the step function.

Based on T and l, we define a second mapping H : N?Nn{1

by

H(n;T)~(l(2), . . . ,l(n{1),l(n)), for nw1: ð3Þ

That means H is a vector valued function whose components

are indexed by Hi(n)~l(iz1) for i[f1, . . . ,n{1g. The function

H(n;T) allows to generate symbol sequences of length n{1 whose
elements assume values in N. For example, H(5;T) generates the
sequence (1,7,2,5). Further examples can be found in Fig. 2. We

call a symbol sequence generated by H(n;T) a step sequence because
the value of each component i of this sequence corresponds to the

number of iteration steps the mapping T needs to be applied to

map iz1 to 1. In the following, we write H(n;T) briefly as H(n).

For a step sequence H(n) there is a natural representation in form

of a network. More precisely, let the different elements of a step

sequence correspond to the vertices V of a network and the edges E
are defined by consecutive subsequences of length 2 of the step

sequence.

Definition: CS Graph
We define a Collatz step graph, briefly called CS graph and

denoted by GCS(n), for a step sequence H(n) in the following way.

Vertex set:

V (n)~fmDA(m and i) with m~Hi(n) for i[f1, . . . ,n{1gg ð4Þ

Edge set:

E(n)~femk DA(m,k and i) with m~Hi(n) and k~Hiz1(n)

for i[f1, . . . ,n{2gg ð5Þ

Structural Properties of Collatz Step Graphs
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Weighted edge set:

W (n)~fwmk~vDA(m,k,v and i) with m~Hi(n)

and k~Hiz1(n)

for i[f1, . . . ,n{2g for which v[N is the number of

different i’sg
ð6Þ

The networks defined in this way are directed and weighted,

and the edge weights assume values in N|0, whereas wmk

corresponds to the number of times the state k follows state m on

the step sequence H(n). On a mathematical note, we want to remark

that due to the fact that a Collatz step graph is constructed based on

a step sequence H(n), the resulting network is indexed by n. That

means for each nw1 one obtains a CS graph GCS(n).

In Fig. 2 we visualize GCS(n~20) for the step sequence,

H(n~20)~(1,7,2,5,8,16,3,19,6,14,9,9,17,17,4,12,20,20,7), ð7Þ

shown on the bottom in the Fig. 2. Due to the fact that the vertices

in this network correspond to the number of steps to map a certain

natural number to 1, rather than to the natural numbers n

themselves nor to the intermediate numbers as for the Collatz

sequence, we emphasize this distinction in the meaning of these

elements in a CS graph by a different node color, compared the

Collatz graph in Fig. 1. In Fig. 9 we show more complex CS

graphs for n~103 (left) and n~104 (right). In this case, the

networks consist of 141=287 nodes and 356=3201 edges.

Descriptively, the definition of a CS graph can be visualized by

traversing a step sequence from the first element to the last element,

corresponding to the vertices in the network, and by connecting

consecutive elements with an edge. If an element of the step sequence

appeared already at an earlier step, no new vertex is included, but

only an edge to this vertex.

Growing Network Model
Using the definitions from the previous section one can

alternatively formulate a growing network model for CS graphs,

called GMCS. That means this model grows a CS graph, GCS(n),
as a function of natural numbers. Algorithm 1 describes this model

formally. We formulate the GMCS in terms of the step sequence H,

however, we would like to note that an equivalent formulation can

Figure 1. Collatz sequences and Collatz graph. Left: Examples of Collatz sequences, Cn, for the first 20 natural numbers. Right: A
network representaion of these sequences is called the Collatz graph.
doi:10.1371/journal.pone.0056461.g001
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be achieved by using the step function l instead, because according

to Eqn. 3 one can write,

H(n)~(l(2), . . . ,l(n{1),l(n)), for nw1: ð8Þ

Interestingly, in contrast to many other models for growing

networks, e.g., random networks or scale-free networks [2,16–18],

the construction principle of CS graphs is different. The difference

to these models is that an one-dimensional symbol sequence, given

by H(n), is used to determine the growth of the network. In the

results section, we investigate different structural aspects of the step

sequence to the resulting CS graphs. Another difference between our

model and, e.g., [2,16–18] is that for a fixed n one obtains always

the exact same graph GCS(n). This is due to the fact that the

underlying step function is deterministically formed. However, we

will demonstrate that the generated networks exhibit nevertheless

an astonishing complexity.

Availability: An R implementation of GMCS is available from

The Comprehensive R Archive Network (CRAN; http://cran.r-project.

org/).

Results

In the following, we study, first, characteristics of the step sequence

and its scaling behavior. Then we investigate structural features of

CS graphs, their scaling behavior and the complexity of these

networks.

Algorithm 1 GMCS: Growing network model for CS graphs.

1: Given: n[N with nw2.

2: Initialize: V~1, E~1, W~1.

3: Calculate: H(n)~(H1(n) . . . ,Hn{1(n)).

4: i~1.

5: V~Hi~1(n)|V .

6: while ivn do.

7: if Hiz1(n)V then.

8: V~Hiz1(n)|V .

9: end if.

10: if EHi(n),Hiz1(n)E then.

11: E~EHi(n),Hiz1(n)|E.

12: end if.

13: if WHi(n),Hiz1(n)W then.

14: WHi(n),Hiz1(n)~1.

15: W~WHi(n),Hiz1(n)|W .

16: else.
17: WHi(n),Hiz1(n)~WHi(n),Hiz1(n)z1.

18: end if.

19: i~iz1.

20: end while.

21: Return: CS graph with (V ,E,W ).

Properties and Scaling of the Step Sequence
In order to quantify the behavior of the step sequence H we, first,

calculate the autocorrelation function, R, for a step sequence of

length n~107. Fig. 3 A shows a visualization of R in a double

logarithmic plot. There, one can see that up to lag~10000 there is
still a relatively high correlation (higher than expected for

a random sequence) between the shifted sequence indicating the

presence of a long term memory. Usually, the presence of a long

term memory in a symbol sequence is assumed as an indicator for

Figure 2. Collatz step graph. Left: The results of the step function as a function of n. Bottom: The step sequence H(n~20) that is
based on the results of the step function. Right: From H(n~20) a CS graph can be constructed.
doi:10.1371/journal.pone.0056461.g002
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the complexity of the sequence [35,36]. We quantify this

observation by performing a linear regression of the logarithm of

the autocorrelation function and the lag,

log (R)~c1| log (lag)zc0 ð9Þ

with c1~{0:327, c0~{0:327: ð10Þ

The scale-free nature of the autocorrelation function, R,

provides quantitative evidence for the complex nature of the step

sequence H.

Another indicator for the complexity of H can be revealed with

the help of two histograms obtained for even and odd elements of

the step sequence. More precisely, we define for an even natural

number n the following two sequences,

He(n)~(H2(n),H4(n), . . . ,Hn{2(n)), ð11Þ

Ho(n)~(H1(n),H3(n), . . . ,Hn{1(n)): ð12Þ

The histograms for He and Ho are shown in Fig. 3 B. One can

see that both histograms can be clearly distinguished from each

other indicating subtle differences between the odd and even

elements of H. A possible explanation for this effect can be found

in the asymmetric construction of the Collatz sequence that is

based on T(n), given in Eqn. 1, because this mapping treats even

and odd numbers of n differently. However, this behavior is not

trivial, because the asymmetry in even and odd sequence elements

is not present in the autocorrelation function, R, if the sequences

He and Ho are used for its calculation (results not shown).

The last property of H we study is the scaling behavior of the

mean number of steps, �tt(n;T), it takes the mapping T(n) to

converge, which corresponds to the time to reach its fixed-point.

More precisely, we define,

�tt(n;T)~
1

n{1

Xn{1

i~1

Hi(n), ð13Þ

and perform a linear regression for �tt on the logarithm of the length

n of the step sequence (�tt~cc log (n)). This gives a scaling factor of

c~23:8 with a p-value of v10{9. From our result follows that the

scaling of �tt is well approximated by the logarithmic growth in n,

which means that even for natural numbers as large as n~106, the
mapping T converges in average in only about �tt(n;T)~150
iteration steps.

Complexity and Scaling of CS Graphs
Now we turn to the investigation of structural properties of CS

graphs. We start by studying the scaling of the edge weights. The

results of this scaling for three different CS graphs obtained for

n~f104,105,106g (green, red, blue) are shown in the double

logarithmic plot in Fig. 4. More precisely, this figure shows the

frequency distribution of the edge weights of the CS graphs. Here,

the edge weights correspond to the number of times these edge

have been visited when traversing the step sequence from its first to its

last element, as defined in Eqn. 6. One can see that all three

networks follow asymptotically a power law with nearly the same

exponent of {0:92. Further, the change toward larger values of n
effects only the range of the power law behavior, but not its

exponent.

Next, we study the finite and asymptotic structural complexity

of the CS graphs. There are many measures that have been

suggested over the past decades to quantify the complexity of

networks [37–43]. However, currently, there is no generally

Figure 3. Properties of step sequences. A: Autocorrelation function, R, of the Collatz step sequence. B: Histogram for even and odd sequence
elements of H.
doi:10.1371/journal.pone.0056461.g003
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accepted gold standard available that is comparable to the

Kolmogorov complexity for symbol sequences [44–46]. For our

specific context and the construction of the CS graphs based on

the symbol sequence H, a recently introduced measure termed edge

reduction [47] seems to be most appropriate. The edge reduction is

based on so called power graphs GP which are obtained from an

underlying network G by grouping nodes and edges that are

similar to each other. For example, if a vertex is star-like connected

to a group of other vertices, then the group of nodes appears as

one node in a power graph, see Fig. 5 A. Another example is

a bipartite connection of two groups of nodes, as shown in the

right figure in Fig. 5 A.

The measure itself is defined by.

er~
#E(G){#E(GP)

#E(G)
: ð14Þ

Here #E(G) corresponds to the number of edges in network G
and #E(GP) is the numbers of edges in the power graph GP.

Hence, er measures the reduction in the number of edges in the

power graph compared to G. It is important to note that power

graphs form a lossless representation of the original network G,
which reduces the network complexity by explicitly representing

reoccurring network substructures. The underlying construction

principle of edge reduction reminds of self-similarity, observed, e.g., in

fractal structures [48,49]. For this reason we consider edge reduction

as an intuitively plausible quantification of the structural

complexity of networks.

In order to study the edge reduction of CS graphs numerically, we

generate a random sample of 500 natural numbers fnig500i~1 from

the interval ½105,107� and construct for these numbers their

corresponding CS graphs fGCS(ni)g500i~1. Then we determine for

each CS graph its edge reduction, fer(ni)g500i~1. Because the values of

er are restricted to the closed interval between zero and one, the

edge reduction cannot grow infinitely, but needs to converge

asymptotically for large values of n. For this reason we fit a logistic

function [50,51],

er(n)~
a

1z exp (b{c| log (n))
, ð15Þ

to these values, modeling the growth of er(n) with respect to n. The
results are shown in Fig. 5 B. The parameters we obtain from

a nonlinear least square fit are shown in table 0. All parameters are

highly significant as indicated by very low p-values. We use this

result to predict the asymptotic edge reduction for n??. From Eqn.

15 we obtain

e?r ~ lim
n??

r(n)~a+sa: ð16Þ

That means the limiting edge reduction of a CS graph is

e?r ~0:8362+0:0052.
To contrast this result with random and highly structured

(simple) networks we calculate the edge reduction measure also for

500 random networks and 500 trees. The results from this are

shown in Fig. 6 A and B. We would like to note that the obtained

edge reduction values for random networks and trees are much

smaller respectively larger than for CS graphs. These results are

intuitively plausible because random objects are difficult to

compress, whereas simple object compress easily. Also, it is

generally observed that complex objects fall between random and

simple objects [52], as is the case for CS graphs.

The second note we would like to make relates to the time scale

it take the random networks and the trees to reach a steady-state

value. As one can see from Fig. 6 A and B, the random networks

and the trees reach for about 5000 nodes in a network values that

fluctuate around their corresponding mean values, indicated as

black lines. The CS graphs show for step sequences of length up to

107 still a tendency to increase their er values. However, we would

like to point out that the shown x-axes relate to different variables.

Whereas in Fig. 6 A and B the x-axes correspond to the number of

nodes in a network, in Fig. 5 B it indexes the length of the step

sequence. To relate both scales with each other to obtain a fair

comparison we, first, estimate the length of the step sequence for

which the edge reduction of CS graphs is close to its limiting value

e?r ~0:8362. Inverting Eqn. 15 and using e’r~a{sa~0:831 as

such an approximation, because this value is within one standard

deviation of the estimated limiting value, we obtain.

n~10
1
c½b{ ln (a’r

{1)�
~1011:882: ð17Þ

Then, we perform a linear regression for the number of nodes

N in CS graphs and the length of the step sequence n, in a double

logarithmic scale (see Fig. 5 C). The result of this is given by

log (N)~c1| log (n)zc0 ð18Þ

with c1~0:154,c0~1:721:

From this, we estimate the number of nodes in a CS graph that

results from a step sequence of length n~1011:882, as predicted above.

Using Eqn. 18 this gives N~3555 nodes. Interestingly, this

Figure 4. Power law scaling of the edge weights in CS graphs.
The color corresponds to different sizes of n with n~f104,105,106g
(green, red, blue).
doi:10.1371/journal.pone.0056461.g004
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number is slightly smaller than for the random networks and trees.

However, the order of magnitude of the node sizes of all three

network types, random networks, trees and CS graphs, is of

comparable order.

The next question we address relates to the connectivity

structure of CS graphs. There is the general misbelief that complex

networks should show a power law behavior in their degree

distributions [8,10]. In Fig. 6 C and D we show the in- and out-

degree distribution of a CS graph obtained for n~107. As one can
see, the shown distributions are not scale-free, although, there is

a very narrow region toward high degrees which might develop

into a power law for an increasing size N of the network. Hence,

despite the fact that many types of complex networks exhibit

a scale-free distribution in their degrees this is no necessary

condition to constitute a complex network. Another example for

this are the well-known small-world networks [5,53] that do also not

have a power law degree distribution.

Another interesting property of CS graphs is their structural

connectivity pattern. In Fig. 7 we show different transformations of

the adjacency matrixW of the CS graph, GCS(n~5|104). Figure
A shows the adjacency matrix, W , itself. Due to the fact that a CS

graph is a weighted network we use different colors to emphasize

Figure 5. A: Examples of lossless transformations underlying the construction of power graphs and the edge reduction measure. B:
The edge reduction of CS graphs as a function of the length of the step sequence. C: Scaling of the size, N , of CS graphs as a function of the length, n,
of the step sequence.
doi:10.1371/journal.pone.0056461.g005
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different weights. Figure B shows a binary transformation (gb) of

W , which maps non-zero elements to one and leaves zero

elements unchanged, i.e.,

Wb
ij~gb(Wij)~

1 if Wijw0

0 if Wij~0:

�
ð19Þ

The resulting network, Wb, looks similar to, W , which can be

attributed to the fact that most edge weights of W are of

a comparable size. This is also supported by the exponential

distribution of the in- and out-degrees, shown in Fig. 6.

In Figure 7 C we emphasize non-symmetric elements in W .

That means, we apply the following transformation:

Wij
0~gs(Wij)~

0 if Wij ~ Wji

Wij otherwise :

�
ð20Þ

Then, we transform W ’ to a binary matrix

W ’b~gb(W ’)~gb(gs(W )), as described above. Figure 7 C shows

Figure 6. The edge reduction for random networks (A) and regular trees (B). The x-axis gives the number of nodes in these networks. Figure
C and D show the in- and out-degree distribution of a CS graph for n~107 .
doi:10.1371/journal.pone.0056461.g006

Structural Properties of Collatz Step Graphs

PLOS ONE | www.plosone.org 8 February 2013 | Volume 8 | Issue 2 | e56461



W ’b. We are applying this transformation in order to demonstrate

that the visual impression from Fig. A that W is symmetric, is not

true. If W would be a symmetric matrix Fig. C would look quite

different to Fig. A, because W ’b would correspond to the zero

matrix.

If we consider a more general transformation than in Eqn. 20

considering the components of W as similar when they are both

larger than zero, but not necessarily equal,

Wij
0’~

0 if Wij w 0 ; Wjiw0

Wij otherwise ,

�
ð21Þ

we obtain a matrix W ’’. Interestingly, also the binary matrix

W ’’b~gb(W ’’) is not a zero matrix, as can be seen in Fig. D. This

establishes that CS graphs are pseudo-symmetric in the sense that

they are strictly considered not symmetric but, nevertheless,

appear to be symmetric, as can be seen in Fig. 7. Overall, our

results suggest that the general connectivity structure of the CS

graphs is intricate and robust against different transformations.

Average Shortest Path Lengths and Clustering
Coefficients
Next, we investigate the scaling of the average shortest path

lengths, L, in CS graphs. Here, the average shortest path length is

defined as the average over all shortest paths of all pairs of nodes in

a network. In the following, we perform such an analysis for

Figure 7. CS graph with 287 nodes obtained for n~104. A: Adjacency matrix W . B: Binary adjacency matrix Wb . C: Non-equal elements W ’b. D:
Non-symmetric elements W ’’b .
doi:10.1371/journal.pone.0056461.g007
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undirected and directed CS graphs, whereas the undirected CS

graphs are obtained from directed CS graphs by neglecting the

directionality of edges.

Our results are shown in Fig. 8 A and C. Due to the fact that the

average shortest path lengths decay for the undirected and

directed CS graphs, we fit a nonlinear decay function,

L(n)~vz
a

1z exp (b{c| log (n))
, ð22Þ

in order to determine their finite scaling and asymptotic behavior.

In Eqn. 22, L(n), corresponds to the average shortest path length

in dependence on the size of the step sequence, n. Table 2 gives the

fitted parameter values for Eqn. 22. We would like to emphasize

Figure 8. Average shortest path lengths. A: Scaling of the average path length in dependence on the size of the step sequence n. B: Histograms
of the shortest path lengths for four different values of n. The colors correspond to the vertical lines in Fig. A.
doi:10.1371/journal.pone.0056461.g008
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that due to the decay of the average shortest path lengths, the sign

of c is now negative, in contrast to the results for the growth model,

given in table 1.

From Eqn. 22, we predict the asymptotic average shortest path

lengths for n??. From Eqn. 22 we obtain,

L?~ lim
n??

L(n)~v+sv

~
3:069+0:006 undirected CS graphs

4:134+0:009 directed CS graphs:

( ð23Þ

It is very interesting to see that L(n) decays for larger values of n
and, hence, the size of the CS graphs. This is quite different to the

behavior of random, scale-free and small-world networks, because

all these models increase their path length with increasing size of the

network. More precisely, the scaling for the average shortest path

length for these three network models is [8,18]:

L* ln (N) random network ð24Þ

L*
ln (N)

ln ( ln (N))
scale-free network ð25Þ

L*N1=(d{1): ln (N) small-world network ð26Þ

An explanation for this behavior of CS graphs can be given with

the help of the distribution of shortest path lengths, as shown in

Fig. 8 B and D. In these figures, we show four different histograms

for undirected and directed network, each for a different size n of

the step sequence, as indicated by the color of these histograms,

which correspond to the vertical lines in the Fig. 8 A and C. From

the histograms one can see that the diameter of the CS graphs,

which is the maximal length of all shortest paths, decreases slightly

from n~5000 to n~5:105. Further, the absolute number of

shortest paths increases strongly, as can be seen from the

increasing values of the y-axes. Taken together, this results in an

overall decrease in the average length of the shortest paths.

In Fig. 9 we show a visualization of two undirected CS graphs,

which makes this behavior even more clear. For reasons of clarity

of the presentation, we removed loop connections. The left figure

shows the CS graph, GCS(n~103), with 141 nodes and 356 edges

that has been generated from a step sequence of length n~103,

whereas the right figure shows the CS graph, GCS(n~104), with

287 nodes and 3201 edges generated with n~104. It is interesting
to observe that both network structures are similar to a torus,

forming a kind of ring. For increasing n the torus gets more dense

in the sense that there are more nodes and edges around the ring,

however, the overall structure is conserved. The two figures in 9

include also two shortest paths of maximal length, corresponding

to the diameter of the networks, shown in green. The diameter of

GCS(n~103) is 10 and the diameter of GCS(n~104) is 8.
Considering Fig. 9 together with the Figs. 8 B and D, the shown

histograms can be interpreted easily. First, the maximal shortest

path length in the Figs. 8 B and D corresponds to the diameter of

the corresponding networks, which decreases slightly. Second, the

increasing number of shortest path lengths from n~5000 to

n~5:105 (see scale of the y-axes) is caused by the increasing

density of the nodes on the tori. Third, averaging over all shortest

path lengths leads to decreasing path lengths from small to high

values of n. This is not only because of a decreasing diameter of

the CS graphs but also due to the largely increasing number of

short path lengths (for instance shortest paths of length 2).

The shown CS graphs in Fig. 9 are undirected. However, for

directed CS graphs we obtain qualitatively similar results. This can

also be seen from the Figs. 8 C and D. The only quantitative

difference between undirected and directed CS graphs is that the

observed (average) path lengths are larger for directed CS graphs.

Finally, we study the clustering coefficients of CS graphs and

investigate if these networks exhibit a ‘small-world’ network

characteristics. The (global) clustering coefficient C, also called

transitivity [4], is defined as

C~
number of triangles|6

number of paths of length two
: ð27Þ

In Fig. 10, we show for 23 different CS graphs, generated from

n~100 to n~5:106, their average shortest path lengths in

dependence on the clustering coefficients (in blue). For reasons

of reference, we include in this figure also random (red), small-

world (green), scale-free (purple) and biological (green) networks.

The random networks have been generated with an Erdös-Rény

model [2]. More precisely, for each CS graph, we generate one

Erdös-Rény random network with the same size (number of nodes)

and the same number of edges. The small-world networks have

been generated with the algorithm of Watts and Strogatz with

a rewiring probability of 0:01 and three neighbors in an one-

dimensional model [5]. The scale-free networks have been

generated with the preferential attachment algorithm of [16]

and randomly selected exponents between 1:5 and 2:5. Also the

size of small-world and scale-free networks corresponds to the size

of the CS graphs. The three biological networks correspond to

a metabolic network, a PPI network from yeast and a neural

network from C. Elegans [9,54–56]. One can see that with an

Table 1. The parameters of a logistic function obtained from
a nonlinear regression.

parameter name value SD p-value

a 0.8362 0.0052 ,10–16

b 1.5029 0.1012 ,10–16

c 0.5535 0.0245 ,10–16

doi:10.1371/journal.pone.0056461.t001

Table 2. The parameters of the logistic decay function
obtained from a nonlinear regression.

undirected directed

parameter
name value SD p-value value SD p-value

a 1.590 0.089 1.94?10–12 2.000 0.143 9.33?10–11

b –7.451 0.424 2.47?10–12 –7.355 0.526 9.42?10–11

c –1.856 0.079 2.58?10–14 1.841 0.099 9.42?10–13

v 3.069 0.006 ,2?10–16 4.134 0.009 ,2?10–16

doi:10.1371/journal.pone.0056461.t002
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increasing length of the step sequence, the clustering coefficients of

the CS graphs increases whereas the average shortest path lengths

decrease simultaneously slightly. Overall, we find that the

clustering coefficients are generally larger than of random and

biological networks, and comparable with that of small-world

networks. This suggest, that CS graphs could be considered as

small-world networks, because they have a high clustering co-

efficient and a small average path length. We included the

biological networks in this figure to show that CS graphs are also

remarkably different to natural networks that represent complex

mixtures of scale-free, random and small-world networks, as

biological networks. Further, despite the fact that the three

biological networks consist up to thousands of nodes, and not

hundreds as all other networks, this imbalance does not lead to an

increasing similarity to CS graphs. In contrast, the larger the CS

graphs, the more different they become.

As the limiting value of the clustering coefficient, fitting a logistic

growth function as above (see Eqn. 15), we estimate.

C?~ lim
n??

C(n)~a+dalpha~0:609+0:004: ð28Þ

The blue cross in Fig. 10 indicates the limiting clustering

coefficient and average shortest path length (see Eqn. 23) for CS

graphs.

Discussion

The present paper introduced and studied a novel network

class. More precisely, we, first, defined and derived a one-

dimensional symbol sequence from the Collatz problem [14,15],

we called the step sequence. From investigating its structural

properties, we found that a step sequence exhibits a complex

behavior due to the presence of a long term memory. Second,

based on step sequences, we introduced a construction procedure for

growing networks and called the resulting networks CS graphs.

Due to the explicit connection to one-dimensional symbol

sequence our construction procedure is distinct to many other

well-known growing network models [2,16–18]. Third, we in-

vestigated the finite scaling and the asymptotic behavior of

structural properties of CS graphs. More specifically, we found

Figure 9. CS graphs. Left: CS graph, GCS(n~103), with 141 nodes, 356 edges and a diameter of 10. Right: CS graph, GCS(n~104), with 287 nodes,
3201 edges and a diameter of 8.
doi:10.1371/journal.pone.0056461.g009

Figure 10. Average shortest path lengths and clustering
coefficients. CS graphs (blue), random (red), small-world (green),
scale-free (purple) and biological (yellow) networks. The blue cross
indicates the limiting value for CS graphs.
doi:10.1371/journal.pone.0056461.g010
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that despite the fact that CS graphs do not exhibit a scale-free

distribution in their degrees, their edge weights follow a power law.

Moreover, we demonstrated that the values of the edge reduction of

CS graphs, which provides a measure for the structural complexity

of networks, are situated between the values observed for random

(random networks) and simple (trees) structures. This holds for

finite values of n as well as asymptotically and, hence, provides

evidence that CS graphs possess a complex network structure.

This is also supported by our investigation revealing the pseudo-

symmetric appearance of CS graphs. It is a well-know behavior

that complex objects fall between random (chaotic) and simple

(ordered) structures and it has been observed for a multitude of

different systems, e.g., for cellular automata or Boolean networks

[57–59].

In addition, we found that the finite scaling of the average

shortest path lengths of CS graphs can be approximated by

a logistic decay function. This results in the curious behavior that

growing CS graphs become ‘smaller’ with respect to their average

shortest path length. Interestingly, despite the seeming similarity of

CS graphs and small-world networks generated with the Watts &

Strogatz model [5] (see Fig. 9), this characteristics makes them

distinct from each other.

We would like to re-emphasize that the CS graphs investigated

in this paper, are constructed from one-dimensional symbol

sequences (Collatz step sequences) generated by the iterative

mapping of natural numbers, governed by Eqn. 1, starting from

a natural number n. For this reason, we consider it natural to

present our result about the structural properties of CS graphs

with respect to n. Instead, usually, properties of networks are

studied in dependence on the size of the networks (number of

nodes) N. First, we would like to note that there is a simple scaling

between n and N , shown in Fig. 5, which allows to convert the

results. Second, all statements in this paper are independent of

particular values of n and, hence, of N (N follows from n, not vice
verse). This includes also the asymptotic results. Third, other

network models are not constructed from one-dimensional symbol

sequences [2,16–18], for this reason their results cannot be

presented in dependence on such a ‘n’. Lastly, we present the

network properties of CS graphs as a function of n to provide

a constant reminder to the reader about the origin of these

networks, which is notably distinct.

Over the last decades, there have been many suggestions to

define the complexity of one dimensional symbol sequences

[44,48,60–67]. However, none of these methods can be considered

as gold standard for all types of applications. For this reason, it

does not surprise that the quantification of the complexity of

networks, which apparently form more intricate objects than one

dimensional symbol sequences, is even less well developed [40].

For this reason, we did not attempt to compare different network

complexity measures with each other in order to identify the ‘best’

one, but selected pragmatically the edge reduction [47] as a feasible

measure to study structural characteristics of networks quantita-

tively. However, it would be interesting for a future study to

investigate the transition of complexity from the sequence level, on

which our construction procedure of CS graphs is based, to the

network level. Due to the established complexity on the sequence

(step sequence) and the network (CS graph) level, our construction

procedure seems to conserve complexity. However, a quantification

of this observation could be instructive.

Another interesting aspect of the present paper that deserves

more attention in future studies is the general building principle of

our growing network model. To our knowledge, this procedure

has not been systematically studied yet, despite the fact that it

forms such a distinct mechanism compared to many other growing

network models, e.g., random or scale-free networks [2,16–18].

This would also be interesting from a biological point of view

because our growing network model has been inspired by the

biological processes of gene regulation leading to the formation of

different types of gene networks [29,30,68]. Hence, such a growing

network model appears from a biological perspective very natural.
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