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Abstract

Individualized approaches to prognosis are crucial to effective management of cancer patients. We developed a
methodology to assign individualized 5-year disease-specific death probabilities to 1,222 patients with melanoma and to
1,225 patients with breast cancer. For each cancer, three risk subgroups were identified by stratifying patients according to
initial stage, and prediction probabilities were generated based on the factors most closely related to 5-year disease-specific
death. Separate subgroup probabilities were merged to form a single composite index, and its predictive efficacy was
assessed by several measures, including the area (AUC) under its receiver operating characteristic (ROC) curve. The patient-
centered methodology achieved an AUC of 0.867 in the prediction of 5-year disease-specific death, compared with 0.787
using the AJCC staging classification alone. When applied to breast cancer patients, it achieved an AUC of 0.907, compared
with 0.802 using the AJCC staging classification alone. A prognostic algorithm produced from a randomly selected training
subsample of 800 melanoma patients preserved 92.5% of its prognostic efficacy (as measured by AUC) when the same
algorithm was applied to a validation subsample containing the remaining patients. Finally, the tailored prognostic
approach enhanced the identification of high-risk candidates for adjuvant therapy in melanoma. These results describe a
novel patient-centered prognostic methodology with improved predictive efficacy when compared with AJCC stage alone
in two distinct malignancies drawn from two separate populations.
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Introduction

The art of prognosis has a long history, as physicians have

attempted to understand the clinical behavior of disease. Ancient

Egyptians estimated patient survival in order to arrive at an initial

conclusion of either ‘‘a patient I will treat’’ or ‘‘a patient not to be

treated’’ (the former with a chance to cure and the latter thought

to be incurable). More recently, prognostic models have been

developed using computerized analyses of large databases of

patients with commonly recorded factors in order to predict

outcome. In such factor-centered analyses, results are usually

stated in terms of relative risks, odds ratios and P-values associated

with each factor. In the realm of cancer, staging classifications are

developed from these prognostic analyses and constitute the

primary means of predicting patient outcomes and of making

treatment decisions. However, they are not routinely the products

of patient-centered analyses. Assigning a 5-year survival probabil-

ity to a group of patients in a particular stage of a given

malignancy is not the same as providing a separately tailored

prognostic probability for each individual patient.

Patient-centered analyses take a different approach. Prognostic

conclusions are stated in terms of an individual patient’s

probability of experiencing and/or the time required to experience

some salient event, such as recurrence or death. Prognostic factors

do help to determine these probabilities and elapsed times, but the

factors, themselves, are not the primary focus of the analyses.

Patient-centered success measures must reflect the accuracy of

individual probabilistic predictions rather than the relative potency

of the prognostic factors. In addition, patient-centered prognoses

must identify and exploit the most relevant factors that can drive

clinical decisions for an individual patient. The risk of progression

or death may best be predicted by addressing factors beyond those

incorporated into the staging classification and by analyzing

available prognostic factors in specifically novel ways. In this

manuscript, we developed a patient-centered prognostic method-

ology and applied it to established databases of melanoma and

breast cancer patients to determine its predictive accuracy, when

compared to predicting strictly on the basis of initial stage.

Materials and Methods

Ethics Statement
This prognostic analysis was approved by the institutional

review boards at the University of California, San Francisco, and

at the California Pacific Medical Center. The analysis was based

on a chart review of the majority of patients entered into the

datasets. Consequently, it was deemed minimal risk by these

review committees, and informed consent was not required.
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Written informed consent was obtained from the patients whose

tissues were tested as part of the analysis. These procedures were

approved by the aforementioned institutional review boards.

Study Populations
We accumulated a cohort of 1,222 United States patients,

diagnosed with primary cutaneous melanoma between 1971 and

2006, whose demographic composition appears in Table S1. The

mean and median follow-up times were 7.93 years and 7.44 years,

respectively.

In addition, we had access to a previously described [1] dataset

of 1,225 breast cancer patients from Turku, Finland, with a mean

and median follow-up of 9.97 and 8.5 years, respectively. The

demographic composition of the breast cancer cohort appears in

Table S2.

Analysis of Prognostic Factors
Melanoma. Fifteen prognostic factors were recorded at the

time of diagnosis of primary cutaneous melanoma and distributed

into two prognostic factor groups. The first factor group comprised

six factors, including three histological factors incorporated into

the current AJCC staging classification (i.e., tumor thickness,

ulceration, and mitotic rate) [2], and three clinical factors included

in analyses of the AJCC melanoma staging committee (i.e., age,

gender, and tumor site) [3,4]. The following nine histological

factors were included in a second factor group: histological

subtype, Clark level, presence or absence of microsatellites,

vascular involvement, regression, degree of tumor vascularity,

level of tumor infiltrating lymphocytes, number of positive lymph

nodes, and the within-subgroup initial AJCC stage. The potential

prognostic significance of these factors was previously reviewed

[5]. The manner in which these additional prognostic factors were

defined, measured, and coded was described previously [6,7].

The prognostic impact of nine molecular factors (NCOA3,

SPP1, RGS1, WNT2, FN1, ARPC2, PHIP, POU5, and p65

subunit of NF-kB), constituting a third factor group, was examined

in tissues from 375 of the 1,222 melanoma patients using

immunohistochemical analysis. The individual role of several of

these markers in melanoma progression, including the methods

used for immunohistochemical staining and scoring, was previ-

ously described [8–11]. The prognostic significance of several of

these molecular factors has been validated in other tissue sets or by

other investigators [10,12–14].

Breast Cancer. We performed a similar analysis in our

cohort of 1,225 breast cancer patients. The available prognostic

factors were divided into the following three groups: the first factor

group included patient age, anatomical location of the primary

tumor within the breast, size of the primary tumor along its longest

dimension (in millimeters), mitotic count, and ulceration of the

primary tumor. The second factor group consisted of the following

twelve factors: primary tumor type (ductal or lobular), tumor

grade, necrosis, tubule formation, nuclear pleomorphism, inflam-

mation, estrogen receptor level (fmol./mg.), progesterone receptor

level (fmol./mg.), bilaterality, T scale value, N scale value, and M

scale value. The third factor group consisted of the following two

factors: radiation therapy (yes or no), and type of adjuvant therapy,

if any.

Statistical Analysis
To develop a patient-centered prognostic algorithm for disease-

specific death within 5 years of diagnosis, both the 1,222

melanoma and 1,225 breast cancer patients were first stratified

into three risk-defined subgroups, based on AJCC stage at

diagnosis, if available, or T, N, and/or M stage. In the melanoma

cohort, this resulted in a low-risk subgroup containing 503

patients, an intermediate-risk subgroup containing 423 patients,

and a high-risk subgroup containing 296 patients. In the breast

cancer cohort, the low-risk subgroup encompassed 552 patients,

the intermediate subgroup comprised 387 patients, and the high-

risk subgroup included 286 patients. Stratifying both samples into

these three subgroups served to maintain sufficient subgroup sizes

to support stable statistical estimates, while preserving the rank

order of 5-year survival rates by stage inherent in each cohort.

Then, each prognostic factor was transformed, separately within

each risk subgroup, via the Scale Partitioning and Spacing

Algorithm (SPSA) into a corresponding Univariate Impact

Reflecting Index (UIRI), as described in Methods S1.

For each of the nine prognostic factor group and patient risk

subgroup combinations, an individualized prognostic algorithm

was developed (described in Methods S1). The algorithm was

based on the logistic regression analysis whose dependent variable

was experience or non-experience of disease-specific death within

five years of diagnosis and whose independent variables were the

UIRI values calculated for the risk factors and patient subgroup

constituting that combination. A composite prognostic algorithm

was then constructed by merging the logistic regression outputs of

the three patient risk subgroups, when all risk factors (i.e., their

UIRI values) were used as independent variables of the regression.

The prognostic efficacy of the composite algorithm was assessed

using three measures: the AUC generated by a receiver operating

characteristic (ROC) analysis; its mean individual probabilistic

prediction error; and its minimally achievable misclassification

rate (the latter two are defined in Methods S1). All reported P

values are two-sided.

Results

To develop a patient-centered approach, we analyzed a cohort

of 1,222 patients with primary cutaneous melanoma (Table S1)

and a separate cohort of 1,225 patients with breast cancer (Table

S2).

A Tailored Prognostic Model for Melanoma
Initially, we stratified our melanoma cohort, based primarily on

initial stage, into three patient subgroups. The low-risk subgroup

had a 94.6% 5-year disease-specific survival (DSS), the interme-

diate-risk subgroup had a 75.4% 5-year DSS, and the high-risk

subgroup had a 49.3% 5-year DSS. The three subgroups had

significantly different survival characteristics, when assessed by 5-

yr DSS (Kruskal-Wallis test corrected for tied observations,

P,0.001) and by Kaplan-Meier analysis (Log-rank test,

P,0.001, Fig. 1A).

For each prognostic factor group and patient subgroup we

developed a separate prognostic algorithm that best predicted 5-

year disease-specific death. Separate algorithms were merged into

a single, composite algorithm for each risk subgroup. Each

composite algorithm produced a corresponding composite prog-

nostic index. Values of this index were individual probabilities of

5-year disease-specific death assigned by the composite prognostic

algorithm to each patient. Under an ROC analysis, the composite

index generated an AUC of 0.867 (Fig. 2A). It was able to

correctly predict 84.0% of the 5-year disease-specific events,

resulting in a misclassification rate of 16.0%.

We compared the prognostic efficacy of the composite index

with several other prognostic methodologies. Initially, we assessed

the six routinely available prognostic factors by estimating

individual probabilities of 5-year disease-specific death from a

Tailored Prognostic Methodology
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multiple logistic regression of these factors. This produced an

AUC of 0.762, and a misclassification rate of 21.2% (Table 1).

Next, we performed a dummy-variable logistic regression using

AJCC stage, alone, to assign 5-year disease-specific death

probabilities in our melanoma sample and determined its

prognostic efficacy. This analysis yielded an AUC of 0.787

(Fig. 2A and Table 1) and reduced mean absolute probabilistic

prediction error (matched-pairs T-test, P,0.001, Table 1).

Then, we included the six prognostic factors and used initial

AJCC stage to stratify the 1,222 patients into the three risk

subgroups. The individual probability estimates generated by the

multiple logistic regression analyses for each subgroup were

merged, resulting in an AUC of 0.823, and further reduced mean

absolute probabilistic error (matched-pairs T-test, P,0.001,

Table 1).

We then incorporated the eighteen additional prognostic factors

and formed the composite algorithm described above to generate

the final prognostic index. Enhancing the model in these ways

increased the AUC to 0.867 and further reduced the mean

absolute probabilistic error (matched-pairs T-test, P,0.001,

Fig. 2A and Table 1).

We then constructed a separate weighted index designed to

reflect the relative predictive potency of each prognostic factor in

each risk subgroup (Table S3). Thus, tumor thickness, mitotic rate,

tumor vascularity, RGS1 expression level, and FN1 expression

level were uniformly potent predictors, with positive weights in all

of the three subgroups.

A Tailored Prognostic Model for Breast Cancer
We used the identical procedure to develop personalized

predictions of 5-year DSS for breast cancer patients, using data

from our cohort of 1,225 patients. We stratified the overall cohort

into three risk subgroups, based on the AJCC staging criteria for

breast cancer. The low-risk subgroup had a 88.6% 5-year DSS,

the intermediate-risk subgroup had a 60.2% 5-year DSS, and the

high-risk subgroup had a 19.9% 5-year DSS. The three prognostic

subgroups had significantly different survival characteristics, when

assessed by 5-yr DSS (Kruskal-Wallis test corrected for tied

observations, P,0.001) and by Kaplan-Meier analysis (Log-rank

test, P,0.001, Fig. 1B).

Application of the patient-centered approach to breast cancer

patients generated an AUC of 0.907 (Fig. 2B). The final composite

prognostic index developed for breast cancer was able to correctly

predict 84.1% of the 5-year disease-specific deaths, resulting in a

misclassification rate of 15.9%.

The initial factor-centered analysis consisted of five prognostic

factors that were as comparable as possible to the factors used in

the melanoma analysis (except for gender, as all patients were

women). Combining these factors via logistic regression and

developing an individually tailored probability of 5-year disease-

specific death resulted in an AUC of 0.743 (Table 2).

Next, we performed a dummy-variable logistic regression using

AJCC stage, alone, to assign 5-year disease-specific death

probabilities due to breast cancer and determined its prognostic

efficacy. This analysis yielded an AUC of 0.802 (Fig. 2B) and

reduced mean absolute probabilistic prediction error (matched-

pairs T-test, P,0.001, Table 2).

We then stratified the cohort using the three prognostic

subgroups with distinct DSS. The individual probability estimates

generated by the multiple logistic regression analyses for each

subgroup were merged, resulting in an AUC of 0.880 and a

further reduced mean absolute probabilistic error (matched-pairs

T-test, P,0.001, Table 2).

Finally, we incorporated fourteen additional prognostic factors

and formed the composite algorithm previously described to

generate the final prognostic index. This procedure increased the

AUC to 0.907 and further reduced the mean absolute probabilistic

error (matched-pairs T-test, P,0.001, Fig. 2B and Table 2).

A separate weighted index similarly identified prognostic factors

that were relatively potent predictors of 5-year disease-specific

death in each risk subgroup (Table S4). Thus, mitotic rate and

tumor grade were uniformly potent predictors, with positive

weights in all of the three subgroups.

A Split-Sample Validation of the Tailored Prognostic
Methodology in Melanoma

In order to ascertain the reliability of the procedure used to

construct our composite prognostic algorithm, we randomly split

our sample of melanoma patients into a training subsample of 800

and a validation subsample of the remaining patients. Patients in

the two subsamples were divided into three separate risk

subgroups, using exactly the same criteria used to stratify patients

in the total sample.

Next, we constructed a composite algorithm from the training

subsample, using the same procedure applied to the entire cohort.

Figure 1. Panel A. Kaplan-Meier analysis of DSS by prognostic
subgroup in the melanoma cohort. Panel B. Kaplan-Meier analysis
of DSS by prognostic subgroup in the breast cancer cohort.
doi:10.1371/journal.pone.0056435.g001
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Figure 2. Panel A. ROC plots of 5-year melanoma-specific death probabilities estimated by different logistic regression analyses.
Panel B. ROC plots of 5-year breast cancer-specific death probabilities estimated by different logistic regression analyses. In each panel, curve 1
represents the ROC plot using initial AJCC stage (unstratified), curve 2 the ROC plot stratified by AJCC stage, and curve 3 the ROC plot determined by
the composite weighted index.
doi:10.1371/journal.pone.0056435.g002
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This algorithm was quite similar to the algorithm produced for the

total sample. The composite index generated by the composite

prognostic algorithm constructed from the training subsample was

found to be superior to the corresponding probabilistic indices

derived from the six routinely available prognostic factors and

from initial AJCC stage in both the training and validation

subsamples by ROC analysis (data not shown).

Finally, we compared the prognostic efficacies achieved by the

composite algorithm, when applied to the training and validation

subsamples. When applied to the 800 patients in the training

subsample, it achieved an AUC of 0.853. When applied to the

remaining patients in the validation subsample, the same

composite algorithm achieved an AUC of 0.789. Thus, the

algorithm developed from the training subsample preserved 92.5%

of its prognostic efficacy, as measured by AUC, when applied to

the validation subsample.

Utility of Tailored Prognostic Methodology for Identifying
Patients Subsets for Adjuvant Therapy

We then aimed to assess whether the tailored methodology

could be utilized to identify specific prognostic patient subsets for

systemic adjuvant therapy. High-dose interferon alpha (IFN) has

been the standard adjuvant therapy for melanoma for over a

decade. The traditional eligibility criteria for IFN [15–17] include

patients with thick primary melanoma (greater than 4.0 mm thick)

or node-positive disease. Using these criteria, we identified 492

patients in our melanoma cohort eligible for IFN treatment. We

then identified an identical number of patients using our

methodology with the highest individual probabilities of 5-year

disease-specific death (excluding stage IV patients). These two

subsamples were combined, and subsequently partitioned into

three mutually exclusive subsets: 129 patients identified only by

standard IFN eligibility criteria (group 1); 363 patients identified

by both criteria (group 2); and 129 patients identified only by our

methodology (group 3). Their survival was analyzed using Kaplan-

Meier analysis. Whereas the DSS of groups 2 and 3 was not

significantly different, the DSS of group 1 was significantly longer

compared with either group 2 or 3 by (Fig. 3, log-rank test,

P,0.001).

Discussion

In this manuscript, we describe a patient-centered methodology

to determine the prognosis associated with two common and

potentially fatal cancers. We demonstrate that use of this approach

results in significant improvements over the use of standard

prognostic methodologies, when predictive efficacy is measured

using AUC, probabilistic prediction errors, and misclassification

rates in the prediction of 5-year death due to melanoma or breast

cancer.

Use of our tailored prognostic approach resulted in AUC

increases in predicting both 5-year cancer-specific deaths. We also

demonstrate that use of this methodology results in the improved

identification of high-risk candidates for adjuvant therapy in

melanoma.

We achieved these improvements: (i) by first stratifying patients

into separate risk groups according to initial stage and by then

executing analyses, separately, for each group; (ii) by pre-

converting all prognostic factors into comparably calibrated

indices (UIRIs); (iii) by handling missing observations in a manner

that does not require eliminating patients with sparse data from

the analysis; and (iv) by incorporating additional prognostic factors

not routinely captured in staging schemes, using these same three

methodological devices.

In addition, our patient-centered approach is different from

traditional prognostic analyses in a number of other ways.

Traditional analyses typically focus on the relative prognostic

Table 1. Comparison of predictive accuracy achieved in melanoma through differing prognostic methodologies (N = 1,222).

Prognostic Methodology AUC Mean Reduction T value P value

Six traditional prognostic factors (unstratified logistic regression) 0.762 N/A N/A N/A

AJCC stage (dummy variable logistic regression) 0.787 0.015 3.67 ,0.001

Six traditional prognostic factors (logistic regression stratified by
AJCC stage)

0.823 0.016 4.35 ,0.001

Composite index (logistic regression, stratified by AJCC stage,
incorporating 18 additional factors)

0.867 0.033 9.62 ,0.001

Note: T values and accompanying 2-tail P values refer to reductions in mean absolute probabilistic error achieved relative to the prognostic methodology tabled in the
line immediately above, where each matched-pair T test is applied to the indicated 1,222 matched pairs of individual probabilistic prediction errors.
doi:10.1371/journal.pone.0056435.t001

Table 2. Comparison of predictive accuracy achieved in breast cancer through differing prognostic methodologies (N = 1,225).

Prognostic Methodology AUC Mean Reduction T value P value

Five prognostic factors (unstratified logistic regression) 0.743 N/A N/A N/A

AJCC stage (dummy variable logistic regression) 0.802 0.052 7.08 ,0.001

Five prognostic factors (logistic regression stratified by AJCC
stage)

0.880 0.064 11.69 ,0.001

Composite index (logistic regression, stratified by AJCC stage,
incorporating 14 additional factors)

0.907 0.037 9.77 ,0.001

Note: T values and accompanying 2-tail P values refer to reductions in mean absolute probabilistic error achieved relative to the prognostic methodology tabled in the
line immediately above, where each matched-pair T test is applied to the indicated 1,225 matched pairs of individual probabilistic prediction errors.
doi:10.1371/journal.pone.0056435.t002
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potency of various factors using multivariate Cox or logistic

regression. Yet possessing independent statistical significance does

not guarantee that a factor will be prognostically useful for an

individual patient [18]. In addition, staging schemes typically

provide a survival estimate over a defined time period (e.g., 5- or

10-year survival) for all patients in a distinct substage of the cancer.

By contrast, our approach converts prognostic output into tailored

individual probabilities of some salient event, such as 5-year

disease-specific death. This is the essence of the patient-centered

approach. It focuses on individual patient outcomes rather than on

the comparative potency of specific prognostic factors. Further-

more, it generates a separate probability of 5-year disease-specific

death for each individual patient. It represents a shift in focus from

the specific prognostic factors present in certain subgroups of

patients to individual patient outcomes. While the role played by

prognostic factors remains crucial, the factors now serve as the

basis on which individually tailored patient probabilities are

calculated. Prognostic factors are no longer the focus of the

analysis in terms of which final conclusions are stated.

Since prognostic research usually focuses on identifying factors

that provide statistically independent impact with a significant P

value, whether or not alternative analytical procedures can

improve prognostic efficacy at the level of individual patient

outcomes is infrequently discussed and rarely demonstrated. Here

we demonstrate the improvement in AUC achieved by our

patient-centered prognostic approach, when compared with the

use of AJCC stage in two different malignancies.

Developing tailored prognostic models is an important goal that

has been examined by other groups. Cochran et al. [19] identified

factors that emerged from logistic regression in a dataset of 1,042

melanoma patients, and developed individualized probabilistic risk

estimates. Recently, the AJCC Melanoma Task Force developed

an electronic tool to predict survival of localized melanoma using

multivariate Cox regression analyses of five routinely available

prognostic factors [20]. The survival estimates developed in a

dataset of 14,760 patients were validated in an independent cohort

of 10,974 patients. Significant procedural differences preclude

comparisons with the patient-centered methodology described

here. Importantly, no details were provided regarding the

prognostic efficacy of their approach. However, in our cohort,

the patient-centered approach was superior in prognostic accuracy

when compared with the use of routinely available prognostic

factors, alone.

Based on the results presented here, our patient-centered

methodology may be of broad-based utility in making individually

tailored prognoses for other cancers, as well as for other chronic

diseases with significant morbidity. We utilized this methodology

to improve prognostic accuracy and risk assessment for adjuvant

therapy, but the same approach could also be used to identify

patients with differential response to therapy. This may be

especially relevant in the current debate to limit financial resources

for health care. Methodologies that improve prognostic accuracy

might also be useful in identifying patients who would benefit from

receiving expensive and/or toxic therapies for chronic medical

conditions.

Our prognostic approach enables the determination of individ-

ualized prognoses, even when values for many factors are missing.

While it is helpful to have information for all prognostic factors,

this is not practical for each individual patient. The patient-

centered approach enables the determination of an individual’s

prognosis, based on whatever data are available. This is in contrast

to a typical multivariate logistic or Cox regression, in which

complete information on all prognostic factors is typically required

for a given patient to be included in the analysis. In addition, our

methodology identifies factors of greatest prognostic significance to

distinct risk subgroups of patients and suggests which factors (that

may be missing) would be most useful to include in a patient’s

pathology report (and prognostic assessment).

Datasets for the two malignancies selected to illustrate our

patient-centered methodology were not population based. While

Figure 3. Kaplan-Meier analysis of DSS of high-risk patients identified by traditional eligibility for high-dose IFN only (curve 1),
those identified by both criteria (curve 2), and those identified by the tailored prognostic model only (curve 3).
doi:10.1371/journal.pone.0056435.g003
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population-based datasets are preferable in factor-centered anal-

yses, it is more important in the patient-centered approach to

identify patients who are prognostically ‘‘similar’’ to a particular

patient whose prognosis is being determined. This distinction is

another of the salient implications of moving from a strictly factor-

centered to a patient-centered approach. However, in order to

compile a comprehensive set of reference strata containing

‘‘similar’’ patients, it will be necessary to replicate this method-

ology in larger datasets that sample multiple strata of a general

population with a given malignancy.

An important limitation of our patient-centered methodology is

the possibility of statistical over-fitting. The same devices

incorporated in the methodology that contribute to its improved

prognostic accuracy also risk over-fitting the prognostic algorithm

to whatever empirical observations are used as training data. To

compensate for this, built-in protections against over-fitting

include the admissibility criteria applied before introducing a

candidate prognostic factor into the analysis and the minimum

partition sizes established by the algorithm-generating procedure.

It is important to note that much of the improvement in

predictive accuracy achieved by our methodology cannot reason-

ably be attributed to over-fitting. A substantial portion was

realized simply by analyzing the modest number of routinely

available prognostic and staging parameters in a different manner,

prior to incorporating additional factors within the analyses (rows

1 and 2 vs. row 3 in Tables 1 and 2, respectively).

We have departed from the traditional approach to validating

individual prognostic markers in which separate training and

validation cohorts are used. Rather, we have developed a novel

methodology, specifically designed to make prognostic predictions

at the individual patient level. This methodology was then shown

to improve prognostic accuracy (when compared with initial stage)

in two data sets drawn from distinct populations and involving

different cancers. In addition, a split-sample reliability analysis of

the melanoma cohort revealed that a significant proportion

(greater than 90%) of the prognostic accuracy achieved was

retained in the validation subsample. Ultimately, however, our

methodology would need to be applied to even larger data sets

(several thousands of patients) both to mitigate excessive over-

fitting and to produce a practically useful composite prognostic

algorithm that could be used to make individual patient

predictions.

Our study differs in its focus from important recent studies

aimed at measuring the improvements in prognostic efficacy

realizable from adding new biomarkers, especially when AUC is

inadequate in its ability to detect changes in absolute risk [21–24].

In the realm of cancer, these techniques have been used to assess

breast cancer risk [25]. In our analysis, both the use of ROC plots

and probabilistic prediction methods proved adequate to demon-

strate the improved efficacy of our tailored prognostic methodol-

ogy. More importantly, our methodology goes beyond measuring

predictive improvements. It offers procedures and devices by

which such improvements can be realized.

In conclusion, we have developed a methodology to assign

individualized probabilities to a specified focal event (e.g. five-year

disease-specific death). This approach resulted in significant

improvements in predictive accuracy in two different malignancies

when compared with the use of routine prognostic methodologies,

and can be used to tailor discussions regarding prognosis and

therapy for an individual patient.
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