
Proton NMR-Based Metabolite Analyses of Archived
Serial Paired Serum and Urine Samples from Myeloma
Patients at Different Stages of Disease Activity Identifies
Acetylcarnitine as a Novel Marker of Active Disease
Alessia Lodi1,2*., Stefano Tiziani1,2,3., Farhat L. Khanim4, Ulrich L. Günther1, Mark R. Viant4,

Gareth J. Morgan5, Christopher M. Bunce4, Mark T. Drayson6*

1 School of Cancer Sciences, The University of Birmingham, Birmingham, United Kingdom, 2Department of Nutritional Sciences, The University of Texas at Austin, Austin,

Texas, United States of America, 3Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas, United States of America, 4 School of Biosciences, The

University of Birmingham, Birmingham, United Kingdom, 5 Institute of Cancer Research, Royal Marsden NHS Foundation Trust, London, United Kingdom, 6 School of

Immunity and Infection, The University of Birmingham, Birmingham, United Kingdom

Abstract

Background: Biomarker identification is becoming increasingly important for the development of personalized or stratified
therapies. Metabolomics yields biomarkers indicative of phenotype that can be used to characterize transitions between
health and disease, disease progression and therapeutic responses. The desire to reproducibly detect ever greater numbers
of metabolites at ever diminishing levels has naturally nurtured advances in best practice for sample procurement, storage
and analysis. Reciprocally, since many of the available extensive clinical archives were established prior to the metabolomics
era and were not processed in such an ‘ideal’ fashion, considerable scepticism has arisen as to their value for metabolomic
analysis. Here we have challenged that paradigm.

Methods: We performed proton nuclear magnetic resonance spectroscopy-based metabolomics on blood serum and urine
samples from 32 patients representative of a total cohort of 1970 multiple myeloma patients entered into the United
Kingdom Medical Research Council Myeloma IX trial.

Findings: Using serial paired blood and urine samples we detected metabolite profiles that associated with diagnosis, post-
treatment remission and disease progression. These studies identified carnitine and acetylcarnitine as novel potential
biomarkers of active disease both at diagnosis and relapse and as a mediator of disease associated pathologies.

Conclusions: These findings show that samples conventionally processed and archived can provide useful metabolomic
information that has important implications for understanding the biology of myeloma, discovering new therapies and
identifying biomarkers potentially useful in deciding the choice and application of therapy.
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Introduction

Multiple myeloma (MM) is a malignancy of differentiated B

cells (plasma cells) which form and accumulate in the bone

marrow environment [1,2]. These cells manufacture and secrete

large quantities of monoclonal whole immunoglobulin (Ig) and free

Ig light chain (flc) into blood [3]. The flc are filtered into urine and

often cause renal impairment (RI) at some point during disease

with 30% of patients presenting with RI at diagnosis [4]. MM also

dysregulates bone turnover causing lytic bone lesions and

fractures, and impairs haemopoiesis usually resulting in anaemia

[5,6]. MM induces suppression of normal antibody production

which with other less clear mechanisms leads to severe reduction

in immunocompetence and serious infection.

The levels of monoclonal Ig and flc in the blood and urine

increase as disease progresses and decrease as disease responds to

treatment. Survival for IgG patients is better than patients with

IgA monoclonal Ig. The presence and level of flc greatly increases

the risk of RI and RI is associated with worse survival during

periods of active disease. RI results in elevated beta2 micro-
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globulin levels as well as elevated serum creatinine levels. Beta2

microglobulin also reflects disease load and is the strongest

prognostic blood biomarker for overall survival for myeloma

patients. However, to date, prognostic markers in myeloma do not

reliably predict outcome for individual patients, rather they are

used to ensure that randomisation into treatment arms of large

trials is balanced for patient prognosis [7].

In 2008 a total of 4,400 new cases and 2,660 deaths from MM

were reported in the UK. From the 1960s treatment with

melphalan and prednisolone achieved a median survival of 2–2.5

years. By the 1990s widespread use of high dose melphalan and

autologus stem cell rescue in younger fitter patients improved

median survival to 3–4 years [8]. New therapies incorporating

combinations of corticosteroids and conventional chemotherapy

agents with immunomodulatory drugs (IMiDs; thalidomide and

lenalidomide), and proteasome inhibitors (PIs, bortezomib) have

increased median survival to 4–5 years [9]. Current treatment

strategies utilise induction regimens combining a mixture of

conventional drugs plus IMiDs or proteasome inhibitors and in

younger fitter patients high dose melphalan [10,11]. The aim is to

achieve stable remission with a maximal reduction in tumour load

and delayed relapse from remission.

Recent evidence indicates over 90% of newly diagnosed

myeloma clones are derived from a premalignant clonal expansion

of plasma cells called Monoclonal Gammopathy of Undetermined

Significance (MGUS) [12,13]. Progression from MGUS to active

myeloma is characterized by proliferation of the malignant plasma

cells but is poorly understood. The genetic translocations

associated with myeloma are commonly found in MGUS [14]

and there is a need to identify biomarkers that indicate the

mechanisms and risk of disease progression. Myeloma itself

remains very heterogeneous and unpredictable in individual

patient outcome with an urgent need for biomarkers by which

treatment can be stratified. A substantial proportion of patients do

not reach a stable remission and die early from their disease. In

less than half of patients reaching remission is a complete tumour

response achieved and yet many partial responders enjoy stable

asymptomatic remissions without further therapy for periods as

long as those patients who achieve complete remissions. These

partial responders appear to have returned to a state similar to

MGUS.

New biomarkers are urgently required to identify risk of

progression from MGUS to myeloma, to stratify patients for

induction therapies, identify risk of progression from remission,

and to stratify patients for maintenance and subsequent therapies.

Proton nuclear magnetic resonance (NMR) spectroscopy-based

metabolomics can be used to determine complex small molecule

mixtures in both blood serum and urine and has emerged as

a valuable approach to dissecting disease processes [15–23].

Alongside the development of advanced NMR technologies to

measure the complex metabolite mixtures in patient material and

the development of software to analyze the derived data, there

have also been major advances in ‘best practice’ protocols for the

collection, storage and preparation of samples for analysis [24,25].

The improved reproducibility achieved by these protocols has

naturally cast doubt upon the value of extant tissue and biofluid

archives collected prior to their development. However, existing

archives and especially those associated with large randomised

clinical trials, are allied to large and detailed amounts of patient

data. In addition, further data from genomic and/or cytogenetic

analyses are commonly available. Given typical patient accrual

rates and the need to wait seven or more years to assess overall

survival rates it will take ten years to replace many currently

available archives with equally rich replacements in which sample

procurement, storage and processing has been optimised.

Furthermore, pragmatic issues of time and fiscal restraints render

it unlikely that current ‘best practice’ practice for sample

procurement and storage will ever be achieved in the settings of

large scale phase III trials or routine clinical practice. It is

important therefore that the community adopts a more empirical

and scientific approach to determining the value of archived

material for the timely discovery of new biomarkers for better

disease management and understanding of disease biology.

To address these issues, we have applied proton NMR-based

metabolomics to investigate the metabolic profiles of archived

blood serum and urine from 32 patients as they entered into the

United Kingdom Medical Research Council Myeloma IX trial

with newly diagnosed myeloma requiring therapy, when they had

achieved asymptomatic remission, and when some had sub-

sequently relapsed and some remained asymptomatic. These 32

patients represent a small subset of 1,970 Myeloma IX patients for

whom there are multiple longitudinal samples associated with

parallel clinical data and also time of entry gene expression array

data.

Despite the challenging history and small number of samples

analyzed we were able to detect metabolic signatures predictive of

disease state. In particular we have identified a previously

unknown association of elevated carnitine and acetylcarnitine as

a signature of active myeloma. Our findings have important

implications both for the future study of myeloma but also for the

broader application of metabolomics to other patient material

archives in other diseases.

Materials and Methods

Blood Serum and Urine Samples
Archived samples from 32 myeloma patients that participated in

the United Kingdom Medical Research Council Myeloma IX trial

were analyzed. This trial was a multicenter, phase 3, trial

registered at www.isrctn.org as ISRCTN68454111, recruiting

patients from 2003 to 2007 from 120 centres. The trial was

approved by the North West Multi-centre Research Ethics

Committee, and by local review committees at all participating

centres. All patients provided written informed consent for

additional blood and urine samples to be sent for central

laboratory analysis and storage for future research on myeloma.

Permission for this specific research was granted by the Life and

Health Sciences Ethical Review Committee of the University of

Birmingham, UK. The samples were collected at different times in

the day according to outpatient attendance time and not fasted.

Urine was collected into 25 ml universal containers with sodium

azide and blood into standard red topped glass vacutainers for

clotted blood that did not contain gel. They were sent via the

Royal Mail postal service and thus spent 1–3 days at ambient

temperature before arriving at the Trial Immunodiagnostic

Central Laboratory. On arrival samples were centrifuged, serum

and urine aliquoted and refrigerated at 4uC for 2–3 weeks before

storage frozen at 220uC in screw topped, o-ringed, polypropylene

tubes.

Patient Characteristics
Patients’ characteristics are included in Table 1. Patients were

selected to be the first 32 patients for whom Affymetrix gene array

data on purified myeloma cells at diagnosis were available and for

whom there were paired serum and urine samples available at

diagnosis before treatment, in first remission, and a subsequent

sample either when still in remission or at first relapse. Eighteen

patients received intensive therapy [26] and 14 patients received

Metabolic Profiling of Myeloma Patients Biofluids
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non intensive therapy [27]. Patients were assigned to one of these

two treatment groups according to their general health and fitness

to tolerate intensive chemotherapy. The course of myeloma

disease is very heterogenous between patients, although overall

survival is better in fitter patients receiving intensive therapy. Time

from diagnosis to remission was between 5–12.5 (median 8)

months for intensive patients and between 4–13 (median 8)

months for non intensive patients. Time from remission to relapse,

for those who did relapse, was between 3–34 (median 26) months

for intensive patients and between 3–34 (median 5.5) months for

non intensive patients. We would expect to need to analyse

samples from at least 600 patients to properly assess the prognostic

value of our metabolomic findings for the outcomes overall

survival and progression free survival. However, this aspect was

disregarded in the classification of the patients for statistical

analysis as we aimed at determining general metabolic signatures

of active disease versus remission. Renal function usually improves

as patients enter into remission and may deteriorate at relapse with

associated changes in beta2 microglobulin and creatinine levels.

However, changes in renal function do not occur in a third of

patients and changes in renal function also occur independently of

changes in disease activity. For patients in group A, mean (6

standard deviation) serum creatinine and beta2 microglobulin

levels were 104646 mmol/l and 4.963.4 mg/l, respectively. For

group B, mean serum creatinine and beta2 microglobulin levels

were 96633 mmol/l and 2.961.0 mg/l. For group C1, mean

serum creatinine and beta2 microglobulin levels were

87621 mmol/l and 2.361.0 mg/l. For group C2, mean serum

creatinine and beta2 microglobulin levels were 114632 mmol/l

and 3.962.2 mg/l.

NMR Sample Preparation
Frozen blood serum and urine samples were allowed to defrost

completely on ice. The preparation of blood serum samples was

performed as previously described [24]. Briefly, approximately

0.5 ml of human serum was filtered (Nanosep 3K OMEGA, Pall

Corporation, MI) at 4uC at 10,000 rpm to remove the protein and

lipid fractions. 420 ml of filtered serum (volume adjusted with

water, when needed) were mixed with 120 ml of phosphate buffer

0.5 M (pH 7.060.1) containing 0.75% w/v sodium azide and

60 ml of 5 mM TMSP in D2O (99.9% pure; GOSS Scientific

Instruments Ltd, Essex UK) and transferred to an NMR tube.

Urine samples were prepared as previously described [28]. Briefly,

540 ml of urine (at room temperature) was mixed with 180 ml of
0.4 M phosphate buffer (pH 7; containing 0.75% w/v sodium

azide). Samples were allowed to stand for 20 minutes and

centrifuged at 13,000 rpm for 3 min. The supernatant was

transferred to a clean tube and the pH measured and adjusted

to 7. Samples were allowed to stand for 20 minutes and

centrifuged again. These steps were repeated until precipitation

was no longer observed following centrifugation and the superna-

tant pH=7–7.1. 540 ml of the resulting sample were mixed with

60 ml of 5 mM TMSP in D2O.

NMR Data Acquisition and Processing
A 500 MHz Bruker (Bruker Biospin, Rheinstetten, Germany)

spectrometer equipped with a cryogenically cooled probe was used

for one dimensional (1D) proton (1H) NMR data acquisition of

both serum and urine samples. 1D spectra were acquired using

excitation sculpting (‘‘zgesgp’’) for suppression of water resonance

[29]. 1D spectra were acquired with a long relaxation delay of 15 s

and a 30u flip angle to guarantee near complete longitudinal

relaxation, and with a spectral width of 5 kHz and 256 transients.

Exponential multiplication (lb = 0.5) and zero filling (to double the

number of points and improve the subsequent spectral alignment)

were performed prior to Fourier transformation. Spectra were

phased and aligned. Signals arising from water and TMSP were

excluded. Spectra were normalized according to the probabilistic

quotient normalization method [30] and segmented into ‘bins’ of

width 0.0015 ppm. A generalized-log transformation was applied

prior to conducting the multivariate statistical analysis [28]. The

NMR datasets were processed using NMRLab [31] in the

MATLAB programming environment (The MathWorks, Inc.,

Natick, MA). NMR resonances of metabolites were assigned using

the Chenomx NMR Suite (version 5.0; Chenomx Inc., Edmonton,

Canada). Selected signals were quantified (for 1D fully relaxed

spectra) using peak deconvolution (Topspin 2.1, Bruker Biospin).

The concentrations of metabolites evaluated against the TMSP

peak (added to the samples at 0.5 mM final concentration). The

dilution steps entailed by NMR sample preparation (in particular,

addition of water, phosphate buffer and deuterium oxide) were

taken into account and the metabolite concentrations included

herein are representative of the concentration in the original

serum samples. Concentrations are reported as mean values 6

SEM and the reported statistical significance is based on the

Kruskal-Wallis one-way ANOVA (MATLAB). Receiver operating

characteristic (ROC) curve was calculated using MATLAB.

Multivariate Statistical Analysis
Unsupervised (principal components analysis; PCA) and super-

vised (partial least squares discriminant analysis; PLS-DA)

multivariate analyses were performed using PLS-Toolbox (Version

4.1; Eigenvector Research, Manson, WA). All the models were

built using the indicated number of classes (according to the

classification outlined below) and the optimal number of latent

variables (LV) determined by the minimum classification error.

Data pre-processing was always performed using mean centering

and orthogonal signal correction (OSC [32]). All the models built

using OSC-PLS-DA were validated using permutation tests to

assess the statistical significance of the model’s predictive power.

Briefly, 1000 internally cross validated (using Venetian blind, with

number of splits equal to the square root of the sample size),

‘‘permuted’’ models were built using random permutation of the

sample labels [33]. The classification errors of the 1000

‘‘permuted’’ models were compared to the average of 1000

calculations of the model for the real (without scrambling of the

sample labels) dataset. The predictivity of the model (as an average

across all the classes) was considered significant when less than 50

out of the 1000 ‘‘permuted’’ models had classification error values

lower that the average one obtained for the ‘‘real’’ dataset (5%

significance level).

Patient Classification for Multivariate Statistical Analysis
of NMR Data
For all the multivariate statistical analyses patients were

classified as follows. All the samples obtained at diagnosis were

included in one group (A). All the samples obtained after the end

of chemotherapy from patients in remission were included in

group B (samples obtained at least 1 month after the end of

chemotherapy for the non-intensive group and at least 3 months

after the end of chemotherapy for the intensive group). Finally,

samples collected several months (at least 3) after the end of

chemotherapy were included in group C. Samples obtained at this

time point were both from patients that were still in remission and

from patients that had relapsed. Therefore group C was further

stratified into group C1, including patients in remission, and group

C2, including patients with relapsed disease.

Metabolic Profiling of Myeloma Patients Biofluids

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e56422



Results

Preliminary Screening of NMR Spectra of Blood Serum
and Urine Samples
One-dimensional proton NMR spectra were acquired on a total

of 71 blood serum and 73 urine samples from 32 myeloma

patients. Representative sections of NMR spectra for one patient

are shown in Figures 1A–B. A preliminary analysis of the

acquired NMR spectra revealed that 6 urine samples (1 from

group A, 1 from B, and 4 from C1–C2) were outliers, the cause of

which was determined to be considerable amounts of glucose.

These were subsequently excluded from the multivariate analyses.

Therefore, all the models were built using 71 blood serum samples

(19, 27, 10 and 15 samples for groups A, B, C1 and C2,

respectively) and 67 urine samples (21, 24, 10 and 12 samples for

groups A, B, C1 and C2, respectively). PCA was performed on

both the blood serum and urine samples and indicated a partial

classification of samples in the different groups but no clear

separation (Figure S1). The initial supervised multivariate

statistical analysis (PLS-DA) indicated that the NMR resonances

arising from the drug acetaminophen and its metabolic products

(acetaminophen glucuronide (AG), acetaminophen sulphate (AS)

and N-acetyl-L-cysteine acetaminophen (NAC)) were found in

variable amounts in both urine (considerable amounts leading to

rather high intensity signals) and blood serum (very low NMR

signal intensities) of several patients [34]. As we sought to analyse

Table 1. Patients characteristics.

Treatment Response in C Age (yrs) Sex Paraprotein type

Serum beta2 microglobulin
(mg/l) Serum creatinine (mmol/l)

A B C A B C

Intensive Remission 62 M GLO 3.1 2.4 2.1 117 107 92

Intensive Remission 66 M GKU 3.8 2.1 2.2 92 95 102

Intensive Remission 52 F GK0 3.5 2.1 1.8 78 75 75

Intensive Remission 54 F NS 1.0 2.4 2.3 43 63 84

Intensive Remission 58 F KU0 1.3 1.9 1.1 45 51 63

Intensive Remission 52 M AK0 2.7 1.9 1.6 106 84 103

Intensive Remission 51 F DLU 7.9 1.7 1.5 112 54 47

Intensive Remission 57 F ALU 2.7 1.8 1.9 84 76 85

Intensive Remission 54 M GLU 17.9 2.8 1.9 237 77 74

Intensive Relapse 57 F KUS 7.9 4.4 2.4 115 59 106

Intensive Relapse 53 M GLU 8.8 2.6 3.5 122 114 124

Intensive Relapse 58 M GKU 3.7 3.0 2.6 95 75 111

Intensive Relapse 53 M GK0 3.3 2.8 2.3 79 83 119

Intensive Relapse 58 M GKU 3.1 2.4 2.1 86 87 88

Intensive Relapse 46 M AKU 1.4 2.9 4.1 65 109 120

Intensive Relapse 61 M AKU 3.2 3.3 2.9 98 102 111

Intensive Relapse 52 M AKU 1.8 2.4 2.1 62 82 81

Intensive Relapse 52 F ALO 3.3 3.0 1.8 75 113 77

Non Int. Remission 80 F GLO 3.8 4.0 4.0 57 69 75

Non Int. Remission 71 M KUS 3.7 3.7 4.7 103 164 120

Non Int. Remission 74 M ALU 7.2 2.3 2.1 116 77 88

Non Int. Remission 76 M GKU 7.3 3.0 2.9 133 94 119

Non Int. Relapse 69 M DLU 5.2 5.0 7.2 154 153 187

Non Int. Relapse 74 M GKU 6.7 3.0 4.3 135 133 137

Non Int. Relapse 67 M GLU 3.6 2.0 2.4 122 114 97

Non Int. Relapse 73 F KUS 4.4 3.1 3.8 118 61 89

Non Int. Relapse 78 F ALO 5.9 4.6 4.4 83 86 76

Non Int. Relapse 74 F AKU 11.2 3.3 10.7 165 102 141

Non Int. Relapse 75 F GLU 3.6 5.5 4.3 68 184 156

Non Int. Relapse 71 M GKU 3.1 3.8 3.2 78 75 85

Non Int. Relapse 70 F GKO 4.8 2.0 5.6 57 61 82

Non Int. Relapse 68 M ALU 5.7 2.8 3.7 232 145 154

Footnotes table 1. Serum reference ranges:- beta2 microglobulin 0.5–4.0 mg/l; serum creatinine 45–110 mmol/l (0.5 to 1.2 mg/dl). Paraprotein types detected by
immunofixation of serum and urine: GLO IgG lambda, no flc in urine; GKU IgG kappa, flc in urine; NS non secretory, no Ig detected in blood or urine; KUO kappa flc only
detected in urine but not serum; AKU IgA kappa, kappa flc in urine; ALO IgA lambda, no flc in urine; KUS kappa flc only detected in serum and urine; ALU IgA lambda, flc
in urine; DLU IgD lambda, flc in urine.
doi:10.1371/journal.pone.0056422.t001
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Figure 1. Proton NMR spectra and Partial Least Squares Discriminant Analysis of blood serum samples. Representative sections of
proton NMR spectra at the diagnosis (red), remission (green) and prolonged remission (blue) of one multiple myeloma patient. (A) up-field region
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only the endogenous metabolome of the disease process these

peaks were considered as confounding factors in the classification

and were therefore excluded from the analyses.

Multivariate Statistical Analysis of NMR Spectra of Blood
Serum Samples
Figure 1C shows the scores plot obtained from the OSC-

PLS-DA of the 71 blood serum samples. The OSC-PLS-DA

model was built using 4 classes (A, B, C1 and C2) and 2 LVs.

The validation using permutation testing identified that the

predictivity of the model was significant (p,0.027), thereby

justifying the need for a more detailed analysis of the data.

Sensitivity and specificity values calculated for cross-validated

OSC-PLS-DA using Receiver Operating Characteristic (ROC)

curves were as follows: 47.4% and 90.4% for group A, 74.1%

and 65.9% for group B, 60.0% and 77.7% for group C1, and

46.7% and 76.9% for group C2, respectively. To better

investigate the metabolites with the strongest discriminating

power between the different disease time-points, PLS analyses

were repeated for blood serum samples considering only 2

groups per analysis as indicated.

OSC-PLS-DA Comparing Patient Blood Serum at
Diagnosis Versus Post-treatment Remission
We first compared blood serum samples from patients at

diagnosis (group A) and when in remission (group B). The scores

and weights plots from this 2-LV (optimised) model are included in

Figure 2 (A and B, respectively). Sensitivity and specificity values

on cross-validated analysis were 63.2% and 66.7% for group A,

and 66.7% and 63.1% for group B. The predictivity of the model

was highly significant (p,0.004) and the analysis of the weights

indicated that the main blood serum metabolic differences

between patients at diagnosis and in post treatment remission

are higher levels of glucose, creatinine and 2-hydroxybutyrate in

patients at diagnosis (group A) and elevated concentrations of

succinate, 2-hydroxyisobutyrate, 3-hydroxybutyrate, alanine and

choline in patients that are in remission (group B) after receiving

treatment.

OSC-PLS-DA for Comparing Patient Blood Serum at
Diagnosis Versus Long After Treatment (Either in
Remission or Relapsed)
OSC-PLS-DA for the discrimination of groups A and C (3

classes, due to the distinction between classes C1, patients in

remission, and C2, in relapse) was performed optimally using 3

LVs. Once again the model’s predictivity was demonstrated to

be significant (p,0.019) based upon permutation testing.

Sensitivity and specificity values were 63.2% and 72.0% for

group A, 30.0% and 79.4% for group C1, and 46.7% and

75.9% for group C2. The scores and weights plots are included

in Figure 3. The LV1 weights (Figure 3B) indicate that

glucose, creatinine and 2-hydroxybutyrate are present in higher

concentration in the blood serum of patients at diagnosis (group

A) while pyruvate, 2-hydroxyisobutyrate, choline, alanine, and

lactate are decreased. Moreover, Figure 3A shows the layering

of the subclasses along LV2, with C1 distributing mostly with

negative LV2 scores and groups A and C2 (the active disease

groups) towards positive LV2 scores. The LV2 weights

(Figure 3C) indicated that lactate, glutamine and hypoxanthine

were among the most important discriminant metabolites

(higher in C1) while acetate, glutamate, 2-hydroxyisobutyrate

and choline were more abundant in samples with positive LV2

scores.

The comparisons between patients at diagnosis (group A) and

either C1 or C2 groups were also performed (Figure S2).
Permutation testing of model predictivity yielded a significant

result for the comparison of groups A-C1 (p,0.027), and

approached significance for A-C2 (p,0.053). Sensitivity and

specificity values for comparison of groups A versus C1 were

78.9% and 60.0% for group A, and 60.0% and 78.9% for group

C1, while for comparison of groups A versus C2 were 78.9% and

66.7% for group A, and 80.0% and 73.7% for group C2.

This result might indicate an important underlying similarity

between the blood serum metabolome of patients with active

disease before and after treatment (in relapse). However,

admittedly, the very limited number of samples from patients

who relapsed after treatment (C2, 15 samples) might play a role in

the inability to build a model with significant predictivity. Among

the most important metabolites discriminating A and C1 (but not

A and C2) were acetate, glutamate, succinate, creatinine and

betaine (higher in A), and glutamine, lactate and hypoxanthine

(higher in C1).

OSC-PLS-DA for Comparing Patient Blood Serum during
Initial Remission Versus After Sustained Remission or
Relapsed
OSC-PLS-DA for the discrimination of post-treatment re-

mission samples (B) and those of patients in prolonged remission

(C1) or relapse (C2) was optimised using 4 LVs. The predictivity

of this model was significant (permutation testing, p,0.038).

The scores plot (Figure 4A), shows patients in remission (C1)

clustering closer to group B. Sensitivity and specificity values of

the model were 65.4% and 59.3 for group B, 27.3% and 76.2%

for group C1, and 43.8% and 70.3% for group C2, respectively.

The weights plot (Figure 4B) obtained from this analysis

indicates that acetate, glycine, succinate and choline are present

in higher concentration in the blood serum of patients in earlier

post-treatment remission (B) while pyruvate and 2-hydroxyiso-

butyrate, were decreased.

In addition, we also compared group B samples separately with

either C1 or C2 samples, and again permutation testing of these

models indicated significant predictivity p,0.031 and p,0.023,

respectively (scores plots in Figures 5A and B). Sensitivity and

specificity values for comparison of groups B versus C2 were

81.5% and 60.0% for group B, and 60.0% and 81.5% for group

C1, while for groups B versus C2 were 70.4% and 46.7% for

group B, and 46.7% and 70.4% for group C2. Among the most

important metabolites discriminating initial remission (B) and

sustained remission (C1) were acetate, choline and succinate

(higher in B), and 2-hydroxyisobutyrate and pyruvate (higher in

C1). Moreover, to a lesser extent, 2-hydroxybutyrate, 3-hydro-

xybutyrate, alanine, formate, glucose, glutamate and lactate were

higher in B and glutamine and hypoxanthine were higher in C1

(Figure 5C). These results overlapped only in part with the

weights obtained by comparing B and C2 (Figure 5D). In fact,

(0.75–4.25 ppm), (B) down-field region (5.1–8.9 ppm), 20 times increased intensity compared to (A). (C) Scores plot obtained from OSC-PLS-DA
performed on the NMR spectra of 71 blood serum samples. Group A (solid red, 19 samples): patients at diagnosis; group B (solid green, 27 samples):
patients after chemotherapy; group C1 (solid blue, 10 samples): sustained remission and group C2 (empty blue, 15 samples): in relapse after
chemotherapy.
doi:10.1371/journal.pone.0056422.g001
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the most relevant metabolites discriminating the B and C2 were

glucose and succinate (accumulating in B), and pyruvate, 2-

hydroxyisobutyrate, carnitine and acetylcarnitine (higher in C2).

Similarly to the comparison between B and C1, 2-hydroxybuty-

rate, 3-hydroxybutyrate, and formate were somewhat higher in B

compared to C2 while lysine was depleted. Moreover, alanine and

hypoxanthine showed opposite trends to that observed above. The

model built for the comparison of C1 and C2 led to results

qualitatively similar in terms of discriminating metabolites.

However, permutation tests lead to non-significant results and

this can probably be partly attributed to the limited number of

samples available for this comparison.

Figure 2. Partial Least Squares Discriminant Analysis of NMR spectra acquired on blood serum samples. Scores (A) and weights (on
LV1; B) plots obtained from OSC-PLS-DA performed on the NMR spectra of 46 blood serum samples. Group A (solid red, 19 samples): patients at
diagnosis; Group B (solid green, 27 samples): patients after chemotherapy. Lac: lactate; Cho: choline; Cre: creatinine; Suc: succinate; Ace: acetate; Ala:
alanine; 3HB: 3-hydroxybutyrate; 2HB: 2-hydroxybutyrate.
doi:10.1371/journal.pone.0056422.g002
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Multivariate Statistical Analysis of NMR Spectra of Urine
Samples
In marked contrast to the blood serum sample analyses, OSC-

PLS-DA analysis of the urine samples determined that only the

model built for the comparison of groups A and B (built using 2

classes and 2 LVs) had statistically significant predictivity

(p,0.039). The scores plots, weights plots and discriminatory

metabolites for this model are provided in Figure S3.

Carnitine and Acetylcarnitine in Active MM
OSC-PLS-DA of blood serum comparing patients in post

treatment remission versus relapse (groups B and C2) identified

carnitine and acetylcarnitine as discriminatory metabolites that

increase on relapse. Interestingly, these metabolites were not

powerful discriminators of the other serum sample classes. To

further investigate the role of these candidate metabolites in

differentiating patients with active disease from those in remission

we quantified these two metabolites in all the serum samples

(Figure 6). Receiver operating characteristic (ROC) curve for

acetylcarnitine is reported in Figure S4. The statistical analysis

revealed that carnitine and/or acetylcarnitine were indeed in-

creased in samples from patients with active disease both before

(group A) and after treatment (i.e. relapsed, group C2). Together

these findings identify carnitine and acetylcarnitine as novel

candidate blood serum biomarkers associated with active MM

disease.

Discussion

Recent studies have highlighted the potential of NMR-based

metabolomics as a diagnostic and prognostic tool in disease, based

on the analysis of human biofluids [15–23]. We have investigated

the potential of a 1H NMR-based metabolomics analysis of human

biofluids (blood serum and urine) to identify novel metabolic

biomarkers indicative of the presence of active disease in MM

patients. Owing to the availability of matched blood serum and

urine samples collected in the context of the Myeloma IX trial, we

were able to compare the effects induced on the metabolic profiles

in blood serum and urine of MM patients carrying active disease at

first diagnosis (prior to receiving chemotherapy), in disease

remission after chemotherapy, and after the relapse to the active

disease. Besides a 31P MRS study on phospholipids from sera of

patients with MM [35], to the best of our knowledge, this paper

represents the first study of global blood serum and urine-derived

metabolites in the context of MM.

An untargeted metabolomics approach was used to assess

changes across multiple metabolic pathways in active disease

compared to disease remission after chemotherapy or after relapse

to the active disease state. The results of our study indicate that the

blood serum samples were the most beneficial to providing

information on general metabolic changes that could be associated

with active MM. Multivariate statistics was used to build models

with significant predictive power among all the time-points of

sample collection. On the contrary, for the urine samples, only

modelling the comparison between patients at diagnosis and after

treatment resulted in significant results. We can only speculate on

the underlying cause and putatively attribute this result to the

variable degree of renal failure affecting MM patients. This

variability could in turn contribute to masking more subtle

metabolic differences induced by the disease in patients with active

disease compared to subjects that have achieved remission

following chemotherapy.

The multivariate statistical analysis performed on the NMR

spectra acquired on the blood serum samples of all the patients in

Figure 3. Partial Least Squares Discriminant Analysis of NMR
spectra acquired on blood serum samples. Scores (A) and weights
(on LV1, B, and LV2, C) plots obtained from OSC-PLS-DA performed on
the NMR spectra of 44 blood serum samples. Group A (solid red, 19
samples): patients at diagnosis; group C1 (solid blue, 10 samples):
sustained remission and group C2 (empty blue, 15 samples): in relapse
after chemotherapy. Cho: choline; Cre: creatinine; Pyr: pyruvate; Ala:
alanine; 2HiB: 2-hydroxyisobutyrate; Lac: lactate; 2HB: 2-hydroxybuty-
rate. H-xan: hypoxantine; Glu: glutamate; Gln: glutamine; Ace: acetate.
doi:10.1371/journal.pone.0056422.g003
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this study seem to indicate that the overall metabolic changes

induced by the disease on the blood serum profiles of these patients

at first diagnosis and at the later time of disease relapse overlap

only partially, as indicated in the OSC-PLS-DA scores plot in

Figure 1. However, this is probably not so surprising due to the

poor health status of these generally elderly and very sick patients

at the time of their first diagnosis. For instance some of the most

relevant metabolic changes in blood serum of patients at diagnosis

and after the end of chemotherapy included the accumulation of

blood serum creatinine and glucose in patients with active disease

which are likely associated with the mild renal dysfunction suffered

by MM patients. Also likely related to renal dysfunction is the mild

Figure 4. Partial Least Squares Discriminant Analysis of NMR spectra acquired on blood serum samples. Scores (A) and weights (on
LV1; B) plots obtained from OSC-PLS-DA performed on the NMR spectra of 52 blood serum samples. Group B (solid green, 27 samples): patients after
chemotherapy; group C1 (solid blue, 10 samples): sustained remission; group C2 (empty blue, 15 samples): in relapse after chemotherapy. Lac: lactate;
Gly: glycine; Tau: taurine; Cho: choline; Suc: succinate; Pyr: pyruvate; Ace: acetate; 2HiB: 2-hydroxyisobutyrate.
doi:10.1371/journal.pone.0056422.g004
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accumulation of myo-inositol in the blood serum of patients at

diagnosis compared to treated patients [36]. The complications

induced by multiple myeloma on renal function and bone loss are

likely to be less pronounced in patients with active disease after

relapse due to faster medical intervention. The comparisons of the

blood serum profiles of patients in remission and after disease

relapse highlighted few candidate metabolites that could discrim-

inate between patients still in remission and subjects with emerging

relapsed disease. For instance 2-hydroxybutyrate gradually de-

creased in blood serum of patients after chemotherapy and

reached the lowest levels in relapsed patients. Recently 2-

hydroxybutyrate has been observed to accumulate in blood

plasma of individuals at the early stages of diabetes [37] and in

a non-diabetic population affected by insulin resistance and

impaired glucose regulation [38].

Of particular interest was the observed accumulation of

carnitine and/or acetylcarnitine in blood serum of MM patients

both at diagnosis and after relapse, suggesting these metabolites as

candidate blood serum biomarkers associated with active MM

disease. Although there is no existing reported link between

carnitine or acetylcarnitine with the pathobiology of MM, there

have been reports that indicate that carnitine may promote

antibody mediated immune responses either by enhancing plasma

cell differentiation and/or by enhancing immunoglobulin (Ig)

synthesis and secretion by plasma cells [39,40]. Carnitine can be

both absorbed from food intake and synthesized in the liver,

kidney and brain [41,42]. This metabolite has a key role in fatty

acid metabolism and it is responsible for catalyzing the transport of

acyl groups through the inner mitochondrial membrane for b-
oxidation of long chain fatty acids. Carnitine palmitoyltransferase

I (CPT-I) converts acyl-CoA and carnitine to acylcarnitine which

is then transported to the inner mitochondrial matrix. CPT-II

releases carnitine and the acyl group and the latter is further

conjugated with CoA for b-oxidation [41,43]. The increased levels

of blood serum carnitine and, to a larger extent, acetylcarnitine in

MM patients could therefore entail an increased lipid oxidation in

highly metabolically active myeloma cells. The increased demand

of lipid oxidation in tumour cells has been previously reported as

Figure 5. Partial Least Squares Discriminant Analysis of NMR spectra acquired on blood serum samples. Scores (A and B) and weights
(on LV1; C andD) plots obtained from OSC-PLS-DA performed on the NMR spectra of 37 and 42 blood serum samples for the comparison of groups B
versus C1 (A and C) and B versus C2 (B and D). Group B (solid green, 27 samples): patients after chemotherapy; group C1 (solid blue, 10 samples):
sustained remission; group C2 (empty blue, 15 samples): in relapse after chemotherapy. Cho: choline; Suc: succinate; Pyr: pyruvate; Ace: acetate; 2HiB:
2-hydroxyisobutyrate; Car: carnitine; AcCar: acetylcarnitine.
doi:10.1371/journal.pone.0056422.g005
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a reason to avoid carnitine supplementation during anticancer

therapy [44,45]. The notion that the malignant plasma cells in

MM are the direct source of elevated carnitine (and by extension

its acetylcarnitine) is further supported by a second NMR based

metabolomics study that identified increased carnitine release by

mouse myeloma cells associated with culture in conditions that

promoted enhanced antibody secretion [40].

It is interesting therefore to consider whether our studies have

identified a potential new avenue of clinical intervention in MM.

In this regard it is noteworthy that several agents have been

proposed for use in combination therapy for the treatment of

a wide range of tumours that either directly (e.g. through

administration of etomoxir) or indirectly (e.g. via the administra-

tion of fatty acid synthase inhibitors) inhibit CPT-I [46,47].

Indeed, the inhibition of CPT-I-regulated fatty acid b-oxidation
promotes an up-regulation of ceramide levels which have been

associated with a ceramide-mediated apoptotic pathway via the

peroxisome proliferator-activated receptor (PPAR) gamma, in-

duction of proapoptotic genes BNIP3, tumour necrosis factor

(TNF)-related apoptosis-inducing ligand (TNSF10) and death-

associated protein kinase 2 (DAPK2) [48,49]. However, the

biology of carnitine in MM may be still more complex because of

several reports that the metabolite also positively regulates

osteoblast activity and therefore in some patients may have

beneficial retardation effects in MM associated osteolytic disease

[50–52]. Our study therefore justifies an extended analysis of

existing MM blood serum archives to further dissect and define the

association of carnitine with MM and its clinical course and in

particular its relative association with kidney and bone disease. An

important aim of such a study would be to determine whether

a signature can be derived for patients most likely to benefit from

interventionist clinical trials.

Finally we reiterate that these discoveries of informative

molecular differences between patient groups were derived from

blood serum samples that were neither collected nor stored

optimally. This provides evidence that existing patient material

archives can be accessible to metabolomics analyses and that

samples of this type should not simply be overlooked based upon

community misconceptions on sample quality.

Supporting Information

Figure S1 Principal Component Analysis of NMR spec-
tra acquired on blood serum and urine samples. Scores
plots obtained from PCA performed on the NMR spectra of 71

(19, 27, 10 and 15 samples for groups A, B, C1 and C2) blood

serum (A) and 67 (21, 24, 10 and 12 samples for groups A, B, C1

and C2) urine samples (B). Group A (solid red, 21 samples):

patients at diagnosis; group B (solid green, 24 samples): patients

after chemotherapy; group C1 (solid blue, 10 samples): sustained

remission; group C2 (empty blue, 15 samples): in relapse after

chemotherapy.

(TIF)

Figure S2 Partial Least Squares Discriminant Analysis
of NMR spectra acquired on blood serum samples.
Scores (A and B) and weights (on LV1; C and D) plots obtained

from OSC-PLS-DA performed on the NMR spectra of 29 and 34

blood serum samples for the comparison of A versus C1 (A and C)

and A versus C2 (B and D). Group A (solid red, 19 samples):

patients at diagnosis; group C1 (solid blue, 10 samples): sustained

remission; group C2 (empty blue, 15 samples): in relapse after

chemotherapy. H-xan: hypoxantine; Lac: lactate; Cre: creatinine;

Suc: succinate; Pyr: pyruvate; Glu: glutamate; Gln: glutamine;

Ace: acetate; 2HiB: 2-hydroxyisobutyrate.

(TIF)

Figure S3 Partial Least Squares Discriminant Analysis
of NMR spectra acquired on urine samples. Scores (A) and
weights (on LV1; B) plots obtained from OSC-PLS-DA performed

on the NMR spectra of 45 urine samples. Group A (solid red, 21

samples): patients at diagnosis; group B (solid green, 24 samples):

patients after chemotherapy. Form: formate; Hip: hippurate; Phe:

phenylalanine; Bet: betaine; Gly: glycine; Tau: taurine; TMAO:

trimethylamine N-oxide; Ace: acetate; Ala: alanine.

(TIF)

Figure S4 Receiver operating characteristic curve for
acetylcarnitine. Area under the ROC curve is 0.81 (95%

confidence interval, 0.70–0.91). Cutoff level derived from the

ROC curve was 9.3 mM (sensitivity 82%, specificity 78%).

(TIF)
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