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Abstract

An ability to forecast the prevalence of specific subtypes of avian influenza viruses (AIV) in live-bird markets would facilitate
greatly the implementation of preventative measures designed to minimize poultry losses and human exposure. The
minimum requirement for developing predictive quantitative tools is surveillance data of AIV prevalence sampled
frequently over several years. Recently, a 4-year time series of monthly sampling of hemagglutinin subtypes 1–13 in ducks,
chickens and quail in live-bird markets in southern China has become available. We used these data to investigate whether
a simple statistical model, based solely on historical data (variables such as the number of positive samples in host X of
subtype Y time t months ago), could accurately predict prevalence of H5 and H9 subtypes in chickens. We also examined
the role of ducks and quail in predicting prevalence in chickens within the market setting because between-species
transmission is thought to occur within markets but has not been measured. Our best statistical models performed
remarkably well at predicting future prevalence (pseudo-R2 = 0.57 for H9 and 0.49 for H5), especially considering the multi-
host, multi-subtype nature of AIVs. We did not find prevalence of H5/H9 in ducks or quail to be predictors of prevalence in
chickens within the Chinese markets. Our results suggest surveillance protocols that could enable more accurate and timely
predictive statistical models. We also discuss which data should be collected to allow the development of mechanistic
models.

Citation: Pepin KM, Wang J, Webb CT, Hoeting JA, Poss M, et al. (2013) Anticipating the Prevalence of Avian Influenza Subtypes H9 and H5 in Live-Bird
Markets. PLoS ONE 8(2): e56157. doi:10.1371/journal.pone.0056157

Editor: Maciej F. Boni, University of Oxford, Viet Nam

Received August 10, 2012; Accepted January 7, 2013; Published February 7, 2013

Copyright: � 2013 Pepin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the RAPIDD program of the Science and Technology Directorate, U.S. Department of Homeland Security, and the Fogarty
International Center, NIH. SR was also funded by: the NIH Fogarty Center (R01 TW008246-01), the Wellcome Trust (University Award 093488/Z/10/Z), The Medical
Research Council (UK, Project Grant MR/J008761/1) and European Union Seventh Framework Programme (FP7/2007–2013, Grant Agreement nu278433-
PREDEMICS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: s.riley@imperial.ac.uk (SR); yguan@hkucc.hku.hk (YG)

Introduction

H5 and H9 subtypes of avian influenza viruses (AIV) are two of

the three avian subtypes (H7 is the third) known to cause infection

in humans [1,2]. H5 and H9 continue to be isolated from live-bird

markets in multiple countries [3,4,5] and thus pose an ongoing

public health threat as potential pandemic strains. Quantitative

tools for anticipating prevalence patterns of these subtypes in

markets are needed to improve prevention and response plans in

a cost-effective manner. Forecasting the future is challenging in

any complex biological system, but is particularly difficult for AIVs

in live-bird markets because of: the intricate host population

ecology, the rarity of some subtypes that can cause infection in

humans (i.e., H5 and H7), and the lack of comprehensive

longitudinal prevalence data for multiple subtypes. Recently, we

reported 6 years of monthly prevalence data for Hemagglutinin

(H) subtypes 1–13 [4] in multiple host species in live-bird markets

in Shantou, China. To our knowledge, this is the most

comprehensive longitudinal time series of AIV prevalence in

a domestic poultry setting. The study found striking patterns of

host specificity and co-infection bias between subtypes, highlight-

ing that host species composition and the prevalence of multiple

subtypes are key in determining subtype-specific prevalence

patterns in southern Chinese markets.

The three subtypes of avian influenza that have occurred

naturally in humans thus far are H5, H7 and H9

[6,7,8,9,10,11,12,13,14]. Highly pathogenic avian influenza

H5N1 causes acute disease in most human cases, with death in

.60%, whereas H7 tends to cause conjunctivitis and H9 tends to

cause mild influenza-like-illness [1]. However, although cases of

H5N1 are reported most frequently, growing evidence shows that

H9 may occur more often in humans in China than H5 or H7

[15,16,17]. Moreover, the host range of H9 overlaps with H5 [4],

which presents an opportunity for H9 to acquire genetic material

from strains that are virulent in humans. In live-bird markets in

southern China, H9 is the most prevalent subtype while H5 is

relatively rare and H7 is very rare [4]. Thus, in southern China,

H9 and H5 present the largest risk of spill-over infections to
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humans. While many influenza A subtypes have a strong host

preference for ducks, H9 is well-adapted to chicken and quail, and

H5 is adapted to all three of these dominant host species [4].

The main goal of the analyses described here was to investigate

whether a regression model, with biologically interpretable

parameters, could be developed from surveillance data as an

easy-to-use tool for anticipating the prevalence of H9 or H5 in

Chinese live-bird markets. As a case study, we focused on

prevalence in chickens because this poultry species is a major

staple with relatively high AIV prevalence. In addition, we used

the statistical framework to investigate whether AIV prevalence in

other host species was associated with prevalence levels in

chickens. Lastly, we conducted model selection to identify which

surveillance data were most crucial for predicting prevalence of

H9 and H5. We discuss which missing data would likely improve

model accuracy.

Materials and Methods

Data Collection
Routine sampling of Anas platyrhynchos (duck, domestic and wild),

Coturnix japonica (Japanese quail) and Gallus gallus (domestic chicken

and silkie chicken) in nine live bird markets was conducted at 2–4

week intervals in the city of Shantou, China from November 2002

through October 2006. The data were part of a larger surveillance

effort that included samples from other host species and over

a longer period (2000–2006) [4], but here we restrict the data to

the most intensely sampled species during the time frame that

sampling methods were consistent.

Cloacal and tracheal swabs were collected from each bird. Birds

were counted as positive if virus was isolated from at least one of

the two samples. Virus was isolated using embryonated chicken

eggs and AIV subtypes H1-13 and Avian Paramyxovirus-type-1

(APMV-1) were identified using monospecific antisera in hemag-

glutination inhibition (HI) tests [4]. For more details of the data

collection methods see [4].

Data Organization
Positive counts were aggregated at a monthly scale and

transformed to counts per 100 birds ([count/sample size] x

100), which is close to the mean sample sizes (see below). Data

from H2, H7, H8, H10, H12 and H13 were discarded since

these subtypes were very rare. Our previous work identified

strong host preferences between subtypes, and different sample

sizes for each host species were collected, thus it was important

to model prevalence within individual host species [4]. We

focused on modeling the prevalence of H5 and H9 since they

are the two subtypes that infect chickens most frequently and

are of public health concern. Potential covariates for each

model included prevalence of: H1, H3, H4, H5, H6, H9, and

H11 (with the exclusion of the focal subtype) in each of the 3

hosts. Since environmental transmission through water sources is

an important mode of AIV transmission [18,19] and weather

can affect virus stability in water [20,21] and has been

associated with broad patterns of virus prevalence [22], we

also included 12 local weather variables: mean temperature,

maximum temperature, minimum temperature, humidity, pre-

cipitation, visibility, wind speed, and maximum wind speed

(http://www.tutiempo.net). We considered temperature because

it is known to affect virus stability and thus could affect rates of

environmental transmission [20,23]. We considered precipitation

and humidity because they have measurable effects on both

direct and indirect transmission of influenza A [24,25].

Although there are no data describing effects of visibility and

wind speed on transmission, we considered these variables

because we hypothesized that they could affect either behavior

of merchants or airborne transmission (as in [26]).

Covariates were considered within the same time step and at

a lag of one month because, by observation, peaks of incidence are

of that approximate duration. Hence, if weather variables

contribute to prevalence peaks, we might expect high prevalence

to occur ,one month after a rise or dip in weather values.

Furthermore, since the infectious period and transition times

through the market are very short (, 5–10 days and 2–3 days,

respectively), we did not expect prevalence of other subtypes to

affect prevalence of H5 or H9 at more than one time step in the

past (i.e., one month). All covariates were normalized by taking the

difference from each point to the mean of all points and then

dividing the result by the standard deviation. Because the

infectious period is relatively short (usually ,1 week [27,28]),

covariates from within the same monthly time step should be most

relevant. The first 36 months of data were used for model selection

while the last 12 months were reserved for assessing forecasts from

the model with the best set of covariates. Bird species sample sizes

(mean 62 standard errors) for these two time periods were:

154.8614.2 and 117.9614.4 for ducks, 89.3611.2 and 84.0616.4

for chicken, and 40.665.0 and 40.164.9 for quail. Thus, fewer

duck samples were collected during the last 12 months relative to

the first 36 months but this should not affect results because both

mean sample sizes are quite high and data were expressed as

a function of host species sample size.

Model Structure
We used generalized linear modeling. H9 data were modeled

with a negative binomial (NB) error structure (log link; ‘glm.nb’

function in the ‘MASS’ package in R 2.15.1 [29]) and H5 data

with a zero-inflated negative binomial model (ZINB; log link for

the negative binomial component and logit link for the zero-

inflated component; ‘zeroinfl’ function in the ‘pscl’ package in R

2.15.1 [30]). We chose a log link for the negative binomial

component since the covariates showed no clear relationship to the

response (neither linear nor multiplicative) and the models would

not converge using the identity link. Residual analyses showed that

these model structures were the most appropriate when compared

to Poisson, quasi-Poisson, zero-inflated Poisson and Poisson

autoregressive models. Residuals for the chosen models showed

no significant autocorrelation over time.

Model Selection
First, we tested whether the prevalence of H9 and H5 in

chickens in retail markets is associated with the prevalence of these

subtypes in the other host species (this model is referred to as

‘‘DK+QA’’ since it includes parameters for subtype prevalence in

ducks and quail), by constructing models with only these data (H9

or H5 in ducks and quail, separately) as covariates. Second, in

order to examine forecast ability and to identify which variables

were important for predicting the prevalence of H9 and H5, we

conducted model selection using prevalence data from the other

subtypes in each of the 3 hosts and weather data. We included

data from the same time step as well as data from 1 month in the

past. Due to the large number of possible models, we performed

a preliminary step and fit all single variable models and selected

variables which improved model AIC by at least 2 points over the

intercept-only model. From this subset of variables, we fit all

possible combinations and selected the top model (referred to as

‘‘Best’’) by AIC.

Anticipating the Prevalence of AI in Poultry
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Model Evaluation
We assessed the appropriateness of models by probability plots

and autocorrelation function plots of residuals, and Vuong tests

[31]. We evaluated fits by Cragg and Uhler’s pseudo-Rsquared

[32], which is a measure of how much better the full model

performs relative to the intercept-only model on a scale of 0 to 1,

where 1 means the model fits the data perfectly, and 0 means the

model does no better than the intercept-only regression model. We

compared accuracy of in-sample model predictions to model

forecasts by mean squared prediction errors (MSPE) and by

normalized mean squared prediction errors (NMSPE) [33]. The

former method emphasizes deviations from large peaks in the data

[33] while the latter is an overall empirical-to-model variability

rate [34]. We forecasted data using 3 different methods: 1)

forecasting 1-year of monthly data from a model fit to the first 3

years (‘‘Full’’), 2) forecasting one step at a time by iterative fitting to

all prior months and prediction of one month in the future (Step-

by-step A), and 3) forecasting one step at a time using a sliding

window for fitting - fitting to the previous 36 months and

predicting the next month in the future (Step-by-step B).

Results

First, we fit models of H9 in chickens using H9 prevalence in

ducks and quail as covariates to evaluate whether these other host

species of H9 are associated with H9 prevalence in chickens. H9 in

ducks and quail were not correlated with H9 in chickens when

considered on their own (Table 1, Figure 1). A model with these

covariates at a one-month lag performed even more poorly than

when they were considered in the same month (data not shown).

This suggests that transmission of H9 from these other hosts to

chickens is not significant within the retail market context. The

best model included H4 and H6 in all 3 host species during the

same month, H5 in all host species during the previous month, and

H6 and H9 in quail during the same month. For all covariates

except for H6 (in all 3 host species), H9 prevalence increased with

increasing values of the covariates (Table 2). H6 in quail and H5 in

all hosts in the previous month were highly significant (Table 2),

while the other covariates were marginally not significant.

The best model of H9 prevalence fit the data quite well both

quantitatively (pseudo-R2= 0.57; large reduction in MSPE relative

to the intercept-only model; Table 1) and qualitatively (captured

the timing of major peaks and periods of low prevalence, Figure 1)

considering the multi-host, multi-subtype nature of AIV ecology.

The model also performed well at predicting future data (Figure 2),

especially when an iterative fit and out-of-sample prediction (step-

by-step B) approach was used (Table 3 and Figure 2). On average,

Figure 1. Model fits for H9. Data at the prevalence of H9 per 100 chickens sampled. Data were modeled by negative binomial regression with a log
link. ‘‘Best’’ is the set of covariates that were selected by AIC: allH4, allH6, QAH6, QAH9, allH5t-1, where ‘‘all’’ is the prevalence of subtype HX in all 3
host species (CK+DK+QA), ‘‘QA’’ is for prevalence in only quail, ‘‘DK’’ is for prevalence in only duck, and t-1 is the prevalence in the previous month.
doi:10.1371/journal.pone.0056157.g001

Table 1. Models of H9 that include H9 data in other hosts
compared to the ‘‘best’’ model selected.

Model AIC 1pseudo-R2 2MSPE 3NMSPE

Intercept 211.9 0 52.0 NA

DKH9 213.4 0.01 52.2 30.8

QAH9 211.5 0.06 56.3 3.8

DKH9+QAH9 213.2 0.07 59.2 3.2

4Best 191.8 0.57 30.0 0.4

1Cragg & Uhler’s method: (1-(L0/Lm)
2/N )/1-L0

2/N; L = likelihood; 0 = intercept-only
model; m= full model; N = number of data points.
2Mean Squared Prediction Error: sum(y-m)2/N; smaller values indicate better fits;
y = observed data; m=mean of predicted data; N = number of points predicted.
3Normalized Mean Squared Prediction Error: sum((y-m)/s)2/N; smaller values
indicate better fits; y = observed data; m=mean of predicted data; s = standard
deviation of predicted data; N = number of points predicted.
4Best model covariates: H4 prevalence in all hosts, H6 prevalence in all hosts, H6
prevalence in quail, H9 prevalence in quail, H5 prevalence in all hosts one
month in the past.
Covariates in other models: DKH9 =H9 prevalence in ducks, QAH9 =H9
prevalence in quail, DKH9+QAH9= sum of DKH9 and QAH9.
doi:10.1371/journal.pone.0056157.t001

Table 2. Parameter estimates for the best model of H9 in
chickens.

Covariate Estimate SE P

Intercept 1.24 0.15 ,0.0001

H4 prevalence in all hosts 0.28 0.15 0.059

H6 prevalence in all hosts 20.56 0.29 0.058

H6 prevalence in quail 1.05 0.29 0.0003

H9 prevalence in quail 0.24 0.13 0.064

H5 prevalence in all hosts
1 month in the past

0.41 0.13 0.0021

Model covariates: allH4 =H4 prevalence in all hosts, allH6 =H6 prevalence in all
hosts, QAH6 =H6 prevalence in quail, QAH9=H9 prevalence in quail, allH5t-
1 = H5 prevalence in all hosts one month in the past.
doi:10.1371/journal.pone.0056157.t002
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the model produced smaller deviations from large peaks in the

predicted data relative to the fitted data (see MSPE in Table 3),

but this was because the predicted data had smaller peaks overall

(Figure 2). The NMSPE in Table 3 shows that the prediction

errors are not much larger than errors from the fitted model. Also,

the timing of the largest peak was captured and the model did not

predict large peaks where none occurred.

Modeling H5 data was more challenging because H5 is rare

relative to H9 and its rarity increased in the last year of the time

series, the section used for out-of-sample prediction. Similar to H9,

H5 in ducks and quail were not correlated with H5 in chickens

(Table 4, Figure 3). The best model included only two covariates:

H9 in ducks in the previous month and maximum wind speed. In

fact, very few single-variable models fit the data even moderately

well and these only included H9 prevalence and weather variables

(data not shown). The best model fit the data well both

quantitatively (pseudo-R2= 0.49, Table 4) and qualitatively (the

timing of major peaks is captured). The parameters for the

negative binomial component of the zero-inflated negative bi-

nomial model indicated that as maximum windspeed and

prevalence of H9 in ducks increased, prevalence of H5 in chickens

also increased (P,0.017 and P,0.022, respectively; Table 5). The

role of these parameters in causing excess zeros was less clear

because the standard errors on these estimates were very large

(Table 5, the binomial component). The first two methods of out-

of-sample prediction (Full and Step-by-step A) performed poorly in

anticipating future H5 prevalence (i.e., they predicted large

outbreaks that did not occur) while the step-by-step method B

did quite well considering the data challenges (i.e., it predicted no

peaks and none occurred; Figure 4, Table 6). The large values for

NMSPE (which indicate lack of fit) are due to the low absolute

values in the last year of observed data as well as the small

standard deviation in the predicted time series. For Method step-

by-step B, the MSPE is the better statistic for evaluating the out-of-

sample predictions.

Discussion

Anticipating the prevalence of specific subtypes of AIV in

domestic poultry settings is critical for planning and implementing

cost-effective public health preventions. To date, it has not been

possible to forecast the prevalence of any AIV subtype in poultry

because the appropriate data have not been available and the

ecology and population dynamics of AIV are complex. Here, we

evaluated the possibility that surveillance data that were collected

for purposes other than our analyses could be used both to gain

information on factors that may influence the dynamics of AIV

within live-bird markets in southern China and to create a tool for

predicting prevalence. Our two most important findings were that:

prevalence of H9 and H5 in chickens was uncorrelated with

prevalence of these subtypes in ducks or quail within the market

environment, and models that produce reasonably good predictions

could be made so long as data from other subtypes and host

species were included.

One striking difference between the best models of H9 and H5

was that H5 dynamics were mainly associated with environmental

variables (except for the influence of H9) whereas H9 was

unaffected by weather and mainly associated with the dynamics of

other subtypes. Our previous study [4] found that H5 was the only

subtype that did not show host specificity of co-infection patterns.

These two observations together suggest that the dynamics of this

subtype are inherently different from other AIVs. Interestingly,

Figure 2. Forecasts with the best model for H9. The model was fit (red) on the first 3 years of data (black). Forecasts are shown for the fourth
year of data using 3 methods: 1) Forecasting the full 12 months of data (blue), 2) Iterative fitting and forecasting where additional data were included
at each step (SxS A, purple), and 3) Iterative fitting and forecasting using a sliding window where model parameters were always estimated from 36
months of data (SxS B, green). B-D show an alternative way of viewing the fits. B shows the fit of the model and C and D show the fit of the forecasted
points using the two best methods (SxS A (C) and SxS B (D)).
doi:10.1371/journal.pone.0056157.g002
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there appeared to be some positive association between these two

subtypes - that is H9 increased when H5 increased in all host

species in the previous month, and H5 increased when H9

increased in ducks in the previous month, suggesting that when an

outbreak of one of these subtypes is anticipated, preparation for

the other should be considered.

A second difference between H9 and H5 was in the relative

performance of the alternate methods of out-of-sample prediction.

The step-by-step method was best for both H5 and H9, but it was

crucial to use the step-by-step sliding window approach for H5.

This was because the time series shows an obvious change in

prevalence patterns - from distinct peaks in the first two years to

sporadic cases in the later years. Thus, in the case of H5 in

chickens, inclusion of more data for model fitting decreased

prediction accuracy due to a shift in the dynamics of the system.

Excluding the very early data (the sliding window approach of

step-by-step B) improved out-of-sample prediction accuracy

because the earlier dynamics have less weight in the prediction.

In the case of H9, where there was no apparent shift in prevalence

regime, the penalty for including earlier data was much less severe,

although it did exist. This suggests that in dynamical systems with

complex ecology such as AIV in poultry, it can be a good strategy

to update model parameters with the most recent data (and

exclude earlier data) if the primary objective is to forecast

prevalence. However, this would only be the case in systems that

continually shift to different behaviors rather than those that cycle

between similar behaviors.

The apparent regime shift for H5 may partly have been due to

the low isolation rates in chickens relative to other hosts species

(especially geese) and was not observed when data from the same

time period in other Chinese provinces were summed with the

Shantou data [4]. The combination of low prevalence measured

over a short sampling period could create the appearance of

a regime shift if sample sizes are near the threshold of detection

and there were only a few instances where underlying prevalence

was high enough for detection. In general, prediction with such

data is challenging due to the increased influence of stochasticity

from sampling effects, which could also partly explain the lack of

dependence by H5 on the dynamics of other subtypes. The most

reliable predictive models of AIV will be based on surveillance

data that has been collected using a sampling design that considers

detection thresholds of multiple subtypes in multiple host species.

The best model of H9 included prevalence data from H4, H6

and H5. Previous analyses of the data showed that H6 and H9

tend to co-infect with each other more often than with other

subtypes and H6 and H5 were the only subtypes besides H9 that

Figure 3. Model fits for H5. Data are the prevalence of H5 per 100 chickens sampled. Data were modeled by zero-inflated negative binomial
regression with a log link on the abundance component. ‘‘Best’’ is the set of covariates that were selected by AIC: maximum wind speed and DKH9t-1,
where ‘‘DK’’ is for prevalence in ducks, and t-1 is the prevalence in the previous month.
doi:10.1371/journal.pone.0056157.g003

Table 3. Evaluation of best model of H9 in chickens.

Method MSPE NMSPE

In-sample data 30.0 0.4

12-month forecast 24.5 1.9

Step-by-step A 23.1 1.8

Step-by-step B 24.1 1.6

In-sample data are for the fitted model. Other methods are described in
Figure 2. Note that MSPE emphasizes deviations from larger peaks. The in-
sample data show poorer performance relative to the forecasts since the first 3
years of data contained several much larger peaks than the last year of data.
Mean Squared Prediction Error (MSPE): sum(y-m)2/N; smaller values indicate
better fits; y = observed data; m=mean of predicted data; N = number of points
predicted.
Normalized Mean Squared Prediction Error (NMSPE): sum((y-m)/s)2/N; smaller
values indicate better fits; y = observed data; m=mean of predicted data;
s = standard deviation of predicted data; N =number of points predicted.
doi:10.1371/journal.pone.0056157.t003

Table 4. Models of H5 that include H5 data in other hosts
compared to the ‘‘best’’ model selected.

Model AIC 1pseudo-R 2MSPE 3NMSPE

Intercept 71.8 0 1.7 NA

DKH5 71.4 0.14 1.7 111.1

QAH5 74.1 0.06 1.7 64.1

DKH5+QAH5 73.1 0.20 1.7 39.5

4Best 60.9 0.49 0.8 0.8

Column statistics are by the same methods as described in Table 1.
1Cragg & Uhler’s method: (1-(L0/Lm)

2/N )/1-L0
2/N; L = likelihood; 0 = intercept-only

model; m= full model; N = number of data points.
2Mean Squared Prediction Error: sum(y-m)2/N; smaller values indicate better fits;
y = observed data; m=mean of predicted data; N = number of points predicted.
3Normalized Mean Squared Prediction Error: sum((y-m)/s)2/N; smaller values
indicate better fits; y = observed data; m=mean of predicted data; s = standard
deviation of predicted data; N = number of points predicted.
4Best model covariates: Maximum windspeed, H9 prevalence in ducks one
month in the past.
Covariates in other models: DKH5 =H5 prevalence in ducks, QAH5 =H5
prevalence in quail, DKH5+QAH5= sum of DKH5 and QAH5.
doi:10.1371/journal.pone.0056157.t004
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tended to infect quail [4]. Thus, our finding that H6 and H5 are

correlated with H9 prevalence is consistent with host adaptation

and co-infection patterns. Similarly, the only subtype that was

correlated with H5 prevalence was H9. The association of H4 with

H9 prevalence was less clear. H4 infects ducks almost exclusively

and tends to co-infect with H3 and H6 when co-infections occur.

Thus, H4 could act indirectly, through H6. The association of

wind speed with H5 prevalence is consistent with a recent study on

equine influenza (EIV) which found that high wind speeds

increased the risk of EIV infection through increased airborne

spread through faster and further viral dissemination in the air [4].

A similar wind-based mechanism could increase transmission of

AIV since it is known to be transmitted indirectly through air

[35,36], and a data-based model of between-farm spread suggests

that wind can explain 24% of transmission over short distances (up

to 25 km; [26]). Wind speed could also impact transmission

through its effects on relative humidity [24], although we did not

find any effects of relative humidity.

It is difficult to predict the future of biological systems using past

events, even when data collection is designed for predictive

modeling and the data are collected with high accuracy. The fact

that our models, which are based on data collected primarily to

obtain viral isolates, captured future AIV prevalence as well as

they did shows that a simple statistical framework could serve as

a tool for AIV control policy decisions. Moreover, from

a management perspective, it is relevant to consider the qualitative

fit which is remarkably good: the models captured the timing of

major peaks, and did not predict outbreaks that did not occur,

which is a key aspect for prevention. For example, although the

model of H9 predicts a double peak at months 23 and 26, with

relatively high prevalence in between, our model predicts a rise

beginning at month 21 with a single peak at month 24. From

a management perspective, capturing the second peak in the

double-peak sequence is not important since high surveillance and

interventions could be initiated at the outset of the predicted rise,

which would allow preparedness for the second peak that was not

captured. Similarly, the model of H5 captured the timing of major

peaks and although it did predict single cases when none occurred

(i.e., Figure 4, months 17 and 31), it did not predict large numbers

of positive birds when they did not occur. Accuracy of the models

would likely be even better if future surveillance data were

collected specifically for the task of forecasting AIV prevalence.

Although the surveillance data we used is the longest, most

comprehensive data set of AIV in poultry, these data were

collected with the goal of isolating AIVs for sequence analysis.

Because sampling was non-random and biased towards locations/

individuals with higher suspected risk of infection, prevalence in

these data may be overestimated. This spatially non-random

sampling of host species could partly explain the lack of influence

of alternate host species in the prevalence patterns of H5 and H9.

In our data, the most frequent, consistent sampling interval was

one month. Very few covariates showed any significant signal when

lagged by one month, which is not completely surprising since the

infectious period is much shorter (, 1 week). We would expect that

potential effects from other subtypes or weather would occur on the

time scale of the infectious period since this is also the maximum

length of time that individuals remain in the market. We could not

model lagged effects at these biologically relevant time scales (i.e., 1

week) because the sampling frequencywas not high enough. Instead,

we considered covariates from the same time step as the response

variable since any potential lagged effects would be subsumed into

the same time step. Thus, themodels we presented could not be used

for forecasting, per se, since they include covariates from the same

time step as the data to be predicted.

Nevertheless, we showed that covariates selected using past data

can predict future data, highlighting that a simple statistical

framework could be used for predicting prevalence patterns of

specific subtypes despite the complex ecological context. In order

to develop statistical forecasting tools that can be applied towards

anticipating the timing of outbreaks, the time interval should

approximate the infectious period of the virus (weekly at most) and

Table 5. Parameter estimates for the best model of H5 in chickens.

Component Covariate Estimate SE P

Negative Binomial

Intercept 20.96 0.58 0.099

Max Windspeed 1.04 0.43 0.017

Prevalence of H9 in ducks on month in the past 0.47 0.20 0.022

Binomial

Intercept 22.81 8.63 0.74

Max Windspeed 20.60 0.94 0.53

Prevalence of H9 in ducks on month in the past 28.81 17.08 0.61

1The zero-inflated negative binomial model is a mixture of two separate data generation processes (i.e., model ‘‘components’’): one to describe zeros (binomial) and the
other to describe counts from a negative binomial model.
DKH9t-1 =H9 prevalence in ducks one month in the past.
doi:10.1371/journal.pone.0056157.t005

Table 6. Evaluation of best model of H5 in chickens.

Method MSPE NMSPE

In-sample data 0.8 0.8

12-month forecast 2.9 1.1

Step-by-step A 2.9 1.1

Step-by-step B 0.1 8.0

In-sample data are for the fitted model. Other methods are described in
Figure 2. Column statistics are by the same methods as described in Table 3.
Mean Squared Prediction Error (MSPE): sum(y-m)2/N; smaller values indicate
better fits; y = observed data; m=mean of predicted data; N = number of points
predicted.
Normalized Mean Squared Prediction Error (NMSPE): sum((y-m)/s)2/N; smaller
values indicate better fits; y = observed data; m=mean of predicted data;
s = standard deviation of predicted data; N =number of points predicted.
doi:10.1371/journal.pone.0056157.t006
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turnover times of different poultry types. It may be that the same

number of samples with much better temporal coverage would

permit a statistical model similar to those presented here but with

much higher utility.

Another crucial data gap that existed in the AIV surveillance

program from which we obtained our data is concurrent

information on the population dynamics of each host species

(i.e., rates of influx and outflow from poultry holdings). These data

should be relatively easy to collect (although are subject to privacy

laws in some areas) and are crucial for extending our strictly

statistical method to incorporate mechanistic details such as

transmission between hosts. Semi-mechanistic time series models

(TSIR) have been very successful at forecasting the behavior of

disease systems accurately [37,38,39] and wholly mechanistic

models can serve as key tools for evaluating the efficacy of

interventions and improving our understanding of how such

perturbations may change prevalence patterns [40,41,42,43]. The

host species population data are especially important for un-

derstanding AIV dynamics in poultry holdings due to the rapid

host turnover. For example, if we consider a farm-to-market

system, the rate at which susceptible and infected hosts flow in and

out of markets strongly affects the likelihood of transmission within

markets because the flow rates are often faster than infectious

periods (which could partly explain why we did not find the H5/

H9 duck or quail prevalence data to be major drivers of H5/H9

prevalence in chickens). Thus, the prevalence of AIVs in poultry

holdings that supply retail markets is an equally important data

gap to fill. Other important data that should be incorporated into

predictive mechanistic models in order for them to be validated

prior to usage is information on vaccination programs in the

different poultry species and cleaning routines in the markets.

These are two factors that are likely to be strong drivers of

prevalence patterns. Mechanistic models will be most useful when

they are structured according to the movement patterns between

poultry holdings, incorporate changes in host species composition

over time and can be validated with appropriate intervention-

routine and prevalence data.

Our study has shown that reasonable forecasts can be made with

a statistical model based solely on historical patterns. The limitation

of this approach is that it is unclear if our models will maintain

reasonable accuracy in the long-term, especially if large perturba-

tions due to weather or human intervention cause a dramatic shift in

AIV dynamics. Thus, to use our approach in the long-term itmay be

important to periodically repeat the model selection routine in case

predictor variables change. It will also be useful to collect

surveillance data that would enable the development of mechanistic

models that could be used to evaluate how interventions may affect

prevalence and predictors of prevalence. A better mechanistic

understanding of AIV prevalence in source populations and

transmission within markets will help with developing models that

produce reliable forecasts year after year.
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Figure 4. Forecasts with the best model for H5. The model was fit (red) on the first 3 years of data (black). Forecasts are shown for the fourth
year of data using 3 methods: 1) Forecasting the full 12 months of data (blue), 2) Iterative fitting and forecasting where additional data were included
at each step (SxS A, purple), and 3) Iterative fitting and forecasting using a sliding window where model parameters were always estimated from 36
months of data (SxS B, green). B-D show an alternative way of viewing the fits. B shows the fit of the model and C and D show the fit of the forecasted
points using the two best methods (SxS A (C) and SxS B (D)).
doi:10.1371/journal.pone.0056157.g004
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