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Abstract

In microbial ecology, a fundamental question relates to how community diversity and composition change in response to
perturbation. Most studies have had limited ability to deeply sample community structure (e.g. Sanger-sequenced 16S rRNA
libraries), or have had limited taxonomic resolution (e.g. studies based on 16S rRNA hypervariable region sequencing). Here,
we combine the higher taxonomic resolution of near-full-length 16S rRNA gene amplicons with the economics and
sensitivity of short-read sequencing to assay the abundance and identity of organisms that represent as little as 0.01% of
sediment bacterial communities. We used a new version of EMIRGE optimized for large data size to reconstruct near-full-
length 16S rRNA genes from amplicons sheared and sequenced with Illumina technology. The approach allowed us to
differentiate the community composition among samples acquired before perturbation, after acetate amendment shifted
the predominant metabolism to iron reduction, and once sulfate reduction began. Results were highly reproducible across
technical replicates, and identified specific taxa that responded to the perturbation. All samples contain very high alpha
diversity and abundant organisms from phyla without cultivated representatives. Surprisingly, at the time points measured,
there was no strong loss of evenness, despite the selective pressure of acetate amendment and change in the terminal
electron accepting process. However, community membership was altered significantly. The method allows for sensitive,
accurate profiling of the ‘‘long tail’’ of low abundance organisms that exist in many microbial communities, and can resolve
population dynamics in response to environmental change.
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Introduction

Microbial communities respond to, and effect change on,

surrounding geochemical conditions. Advances in community

proteogenomics and transcriptomics have allowed for understand-

ing the molecular basis of this interplay for some communities of

interest [1–5]. However, most inferences of microbe-environment

interactions are still made with molecular surveys of community-

wide taxonomic affiliation. For many years, the phylogenetic

marker gene of choice for such surveys has been the small subunit

(SSU) ribosomal rRNA gene, due to its high conservation across

the domains of life and the ability to PCR-amplify the sequences

from complex communities with so-called ‘‘universal’’ conserved

primers [6,7]. Currently, both the SILVA and Greengenes SSU

databases contain nearly half a million high-quality sequences that

can be used to place genes from newly characterized communities

in context [8,9].

While tens to thousands of full-length rRNA gene sequences are

collected via Sanger sequencing of cloned PCR products,

hundreds of thousands to millions of short hypervariable fragments

from this gene can be analyzed using 454 sequencing. Early studies

inferred community composition with reads of approximately

100 bp [10]. Subsequent studies used longer reads, and sometimes

targeted alternative hypervariable regions [11–13]. With 454

pyrosequencing of hypervariable regions for community charac-

terization, care has to be taken to distinguish novel sequences from

sequence variants introduced due to the high error rate [14–16].

In recent years, many groups have exploited the scale and

economics afforded by hundreds of millions of Illumina reads to

survey microbial community composition [17–24]. Typically, the

strategy has been one borrowed directly from the initial 454-based

surveys: PCR amplify one or more hypervariable regions of the

SSU gene and use the short sequenced tags to infer phylogeny.

Because of the short read lengths (typically 100–150 bp) and error

rate, a read quality-filtering step is usually employed prior to

identification of operational taxonomic units (OTUs). Caporaso et

al. observed that, in a mock community, diversity was over-

estimated unless confident sequences were observed at least 10,000

times in an experiment, a level that represented $0.01% of reads.

[18]. Although many groups have been able to distinguish

communities using single-end reads [18,19,22], others have

attempted to correct errors by choosing sequencing primers so

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e56018



that paired end reads overlap, increasing overall length and quality

in the overlapped region [17,20,21,24]. However, as many as 40%

to 50% of the reads cannot be unambiguously merged and are

discarded [17,20], though this depends on both the quality of the

sequencing run and the stringency of filtering. Non-overlapping

paired-end fragments can also provide a higher number of

informative bases, at the expense of lower-quality read ends and a

potentially more complicated downstream pipeline [23].

Although the use of hypervariable regions has been a necessary

compromise for the use of ‘‘next-generation’’ sequencing in SSU-

based surveys of microbial diversity, using shorter fragments

introduces several analysis challenges. Placing these shorter

fragments within the context of a phylogeny constructed from

full-length sequences is non-trivial. Composition-based approaches

such as the RDP classifier have been adapted for use with short

fragments [25,26], as have alignment-based approaches utilizing

multiple sequence alignment to top BLAST hits [27] or hidden

Markov models [28] in combination with a reference tree. The

choice of a specific hypervariable region can affect both the

accuracy and specificity of phylogenetic assignment [29] as well as

estimates of overall diversity [30]. Comparing community

composition across studies performed by sequencing different

hypervariable regions warrants extra caution.

Here, we adapted a recently reported algorithm developed to

reconstruct near full-length 16S rRNA genes from Illumina

metagenomic sequences, EMIRGE [31], so that it now can be

used to analyze large datasets generated when the entire

sequencing allocation is applied to long amplicons. The approach

provided depth and resolution of the community composition of

three samples collected before and after an aquifer was

biostimulated by acetate addition [32]. We find that the method

is reproducible, produces accurate abundance estimates, and

uncovers persistently high alpha diversity and phylogenetic novelty

across all biological samples, despite acetate-induced perturbation

of community membership.

Materials and Methods

PCR amplification and sequencing
DNA extracted from each of the three biological sediment

samples was used as template for amplification of the 16S rRNA

gene with the primers 27F (59-AGAGTTTGATCCTGGCT-

CAG-39) and 1492R (59-GGTTACCTTGTTACGACTT-39)

[33]. For each sample, amplicons from a gradient PCR reaction

were pooled and used as input to standard Illumina library

preparation. After shearing amplicons to an expected average

fragment size of 300 bp (actual range of mean insert size: 251 bp–

299 bp), twelve libraries were prepared (4 for each biological

sample). Each of 12 unique barcodes (referred to below as indices

01–12) consisting of 7 nucleotides were incorporated downstream

of the read 1 and read 2 sequencing primers (Table S1).

Sequencing on one lane of Illumina HiSeq 2000 followed standard

protocols. Raw reads are available in the NCBI Sequence Read

Archive (SRA054986). Further details are provided in Methods

S1.

Subsample dataset creation and EMIRGE assembly of full-
length 16S amplicons

For each barcoded library, raw reads were sampled at random

without replacement into four separate 1 million read subsamples

(see Methods S1). For each subsample, reads that passed minimum

length thresholds after quality trimming were input into an

amplicon-optimized version of EMIRGE [31] for assembly into

full-length genes. This code is freely available at https://github.

com/csmiller/EMIRGE. Briefly, EMIRGE relies on a database of

candidate 16S sequences for template-guided assembly. In each

iteration of a modified expectation-maximization algorithm, reads

are first aligned and probabilistically attributed to candidate 16S

genes. Subsequently, candidate gene abundances and consensus

sequences are adjusted based on this probabilistic read attribution.

Reconstructed gene abundances are estimated at termination by

utilizing the final probabilistic accounting of reads. EMIRGE was

run for each subsample for 120 iterations with default parameters

(–join_threshold = 0.97) designed to merge reconstructed 16S

rRNA genes if candidate consensus sequences share $97%

sequence identity in any given iteration. The starting candidate

rRNA database was derived from version 102 of the SILVA SSU

database [9], which was filtered to exclude sequences shorter than

1200 bp and longer than 1900 bp, and clustered with USEARCH

[34] at 97% identity to remove similar sequences. Characters with

ambiguous IUPAC codes were replaced with an allowed character

in the set ACTG at random. Insert size and standard deviation for

each library (given above) were estimated by an initial mapping of

reads to this database. EMIRGE-reconstructed 16S rRNA

sequences with an estimated abundance of 0.01% or greater were

kept for further analysis.

Community analysis of EMIRGE sequences
EMIRGE-reconstructed 16S rRNA consensus sequences were

used as input into standard QIIME version 1.4.0 workflows [35]

for community analyses. All sequences from all 48 subsample runs

were collected in order of decreasing estimated abundance, and

representative OTUs were picked by clustering these sequences at

97% identity with USEARCH. Because in each subsample

EMIRGE created consensus sequences potentially grouping reads

from related ($97% identical) sequences, it is theoretically possible

that some across-sample clusters represented lower-abundance

sequences that were ,97% identical. An adjusted OTU table,

containing the expected number of reads per OTU per sample,

was constructed based on the number of mapping reads per

sample and the EMIRGE-estimated relative abundance of each

OTU per sample. OTUs were aligned with PyNAST [36] using a

Greengenes [8] reference alignment (gg_97_otus_4feb2011.fasta).

The PyNAST alignment was filtered and a phylogenetic tree was

built using FastTree v.2.1.3 [37] with default parameters.

Taxonomy to the family level was assigned to each OTU with

the RDP classifier trained with the same Greengenes database and

using a confidence threshold of 0.8. For Figure S2, phylum-level

assignments were made by using the phylum from the best BLAST

hit to the SILVA SSU NR database, version 108. Complete

linkage clustering of Euclidian distances of phylum abundance

vectors was performed in R (www.r-project.org).

Diversity measures were calculated within QIIME. For

rarefaction analyses, 1000 to 500 000 reads were sampled from

the original OTU table (step size = 9980; 10 replicates per sample),

and rarefied OTU tables were clipped to set all counts #20 to 0.

Principal coordinates plots were made using pairwise Unifrac

distance matrices after normalizing for sequencing effort by

randomly sampling 500000 reads from the OTU tables. Analyses

of the V3 region of EMIRGE sequences were performed in an

analogous manner to that of full-length sequences, except that V3

regions of each EMIRGE sequence were first excised in silico using

PrimerProspector [38] with the primers 341F (59-CCTACGG-

GAGGCAGCAG-39) and 518R (59-AT-

TACCGCGGCTGCTGG-39) [17]. Any number of mismatches

in the primer sequences were allowed, even though regions with

multiple primer mismatches might not amplify in an actual

experiment, so that every EMIRGE sequence had a candidate V3

Short-Read Assembly of Full-Length 16S Amplicons
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region extracted. Regions less than 100 bp or more than 225 bp

were discarded as possible errors, leaving 56,755 extracted V3

regions for analysis (99.5% of all EMIRGE subsample sequences).

Spike-in control experiment
For the spike-in experiment, DNA from the iron-reducing

sample was re-extracted and re-amplified under the same PCR

conditions with the same 27F and 1492R primers. For this sample,

an Illumina sequencing library was prepared with the barcode

internal to the sequencing adapter using standard Illumina

protocols. Prior to shearing and library preparation, the amplifi-

cation products were amended with 0.5% DNA by mass of

amplified PCR product from a clone containing the 16S rRNA

gene from Leptospirillum ferrodiazotrophum [39]. The amplicon

sequence (GenBank accession: JX235335) was verified by Sanger

sequencing from primers 27F and 1492R.

Analysis of amplicon end bias
The bias of library fragment start sites for amplicon ends was

analyzed for a representative subsample of EMIRGE-reconstruct-

ed 16S rRNA genes (index 2, subsample 3) by mapping reads

using bowtie version 0.12.7 [40] with permissive parameters (2n 3

2l 15 2e 400). For each read pair, the starting position closest to

an amplicon end was recorded, as was total per-base coverage.

Calculations of expected coverage are given in Methods S1.

Results

Reconstruction of near-full-length 16S rRNA genes from
aquifer communities

We collected sediment from a previously un-amended portion

of the Rifle aquifer (Department of Energy Integrated Field

Research Challenge Site, Colorado) and used this to seed columns

incubated in drilled wells. The aquifer was amended with acetate,

and columns were recovered at different time points. The first

‘‘background’’ sample was recovered prior to acetate amendment.

A second sample was taken after amendment once the community

had transitioned to iron-reduction as the dominant terminal

electron accepting process (TEAP), and a third once sulfate

reduction was the dominant TEAP. 16S rRNA gene amplicons

from a total of 48 subsamples, representing the three biological

samples and two levels of technical replication (see methods) were

processed through the analysis pipeline (16 subsamples per

biological sample; Table S1).

Near-full-length 16S rRNA gene sequences (median 1474 bp)

were reconstructed with EMIRGE. Sequencing errors were

handled by letting EMIRGE choose a most-probable consensus

for each SSU sequence based on the coverage acquired from

multiple reads per consensus base. Reads were trimmed and

filtered for quality, resulting in a minimum of 686,114 and a

maximum of 843,139 pairs input into EMIRGE per subsample

(Table S1). Abundance estimates for each assembled 16S rRNA

gene were derived by the probabilistic accounting in EMIRGE of

how reads map to each assembled rRNA sequence [31].

Reads were not distributed evenly across the length of

reconstructed full-length gene sequences (Figure 1), an effect

previously seen with Illumina sequencing of amplicons [41,42].

Instead, on average, read pairs were approximately 100 times

more likely to have one read begin at an amplicon end than at a

position in the middle of an amplicon (Figure 1a). However, reads

were unlikely to start near, but not at, the ends of amplicons, and

thus the per-base coverage bias was not as pronounced (Figure 1b).

With this positional bias, a sequence covered by 100 reads in a

library of one million 93 base-pair reads (0.01% relative

abundance) should have a base coverage of ,11 X in non-end

regions of the sequence, and .98.5% of reconstructed bases

should have at least 5 X coverage.

Community structure as revealed by EMIRGE
We focused our analyses on reconstructed sequences with a

relative abundance of 0.01% or greater. Below a value in this

range the expected sequence coverage drops to an unacceptably

low level (see above). For the background samples, a mean of 1217

OTUs were reconstructed, while for the iron-reduction and

sulfate-reduction samples, a mean of 1195 and 1154 were

reconstructed, respectively (Table S1). Compared to other

background samples, index 01 did not behave as anticipated

(discussed below), and under-represented richness in four of the

Figure 1. Sequencing bias for amplicon ends. Shown are data
determined by mapping reads for a representative library (index 2
subsample 3) against EMIRGE-reconstructed16S rRNA sequences. A
Proportion of mapped library fragments (y-axis) that begin a given
number of bp away from the nearest reconstructed amplicon end (x-
axis), averaged across all reconstructed 16S rRNA amplicons. There is a
strong preference for fragments to begin at position 0 or 1. B Total
library base coverage plotted in terms of relative position within an
amplicon. Average reconstructed amplicon length was 1464 bp.
doi:10.1371/journal.pone.0056018.g001
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background subsamples. If these four subsamples are removed, the

remaining 12 background samples had a mean of 1252 OTUs.

We used standard QIIME [35] workflows to further process the

full-length sequences, assign taxonomy, and measure community

diversity. EMIRGE consensus sequences from all subsamples with

estimated abundance . = 0.01% were first clustered at 97%

identity into OTUs, resulting in 46,223 OTUs that appeared in at

least one subsample (where each OTU in each subsample was

assembled from multiple reads). We classified as high-specificity

those OTUs identified in $12 of the 16 subsamples for one or

more biological sample. Using this definition, we identified 187

such ‘‘high-specificity’’ OTUs, which represented on average

40%, 42%, and 47% of the cumulative estimated relative

abundance in the background, iron-reducing, and sulfate-reducing

communities. More abundant OTUs tended to also be higher

confidence, appearing in more replicate samples (Spearman rank

correlation = 0.49; p-value 2.9e-56).

Beta (between sample) diversity measurements calculated with

pairwise weighted and unweighted Unifrac [43] distances indicat-

ed high similarity within the 16 samples from each biological

replicate (Figure 2). With unweighted Unifrac, which is more

sensitive to total richness, principal coordinates analysis revealed

that principal coordinate 3 clearly separated subsamples with

index 01 from other background samples (Figure S1). This bias

was not apparent when considering weighted Unifrac distances,

and was not observed for other indices. Thus, EMIRGE-

reconstructed full-length 16S rRNA sequences are sufficient to

distinguish among distinct biological communities, and this ability

is largely independent of any variability introduced by library

preparation or potential sampling artifacts introduced by the

algorithm.

As an alternative to Unifrac, which uses an explicitly built

phylogenetic tree, we also used the RDP classifier to taxonomically

classify EMIRGE-generated 16S rRNA sequences based on

shared short words with a reference training taxonomy [25].

When phylum-level abundance vectors are hierarchically clus-

tered, subsamples group clearly by biological sample, and there is

again little evidence to suggest that subsamples instead cluster by

barcode index (Figure 3). Technical replicates are highly similar to

each other. The Pearson correlation between phylum-level

abundances from the same biological sample was 0.9998+/

20.0003 (mean +/2 standard deviation). For comparison,

between-biological-sample correlation at the phylum level was

0.7686+20.1590. High correlation was also observed for within-

biological-sample replicates when considering family-level abun-

dances, the most specific taxonomic level assigned by the standard

QIIME pipeline (Pearson r = 0.9920+20.0071;

r = 0.4936+20.0976 for between-biological-sample replicates).

We also performed the same analysis by assigning taxonomy via

the best blast hit to the SILVA nonredundant rRNA database [9].

Although some phyla only were assigned with one taxonomic

method, due to differences in the underlying reference databases,

overall abundance patterns and reproducibility were similar

(Figure S2).

To assess alpha diversity, we recorded both the total number of

OTUs (.0.01% abundance) and the total phylogenetic distance

(PD), or branch length, in the phylogenetic tree per subsample. We

performed a modified form of rarefaction to infer at what level of

sequencing we could have observed the same number of OTUs or

PD per sample. The number of observed species and PD plateaus

quickly with increasing sampling of expected reads (Figure 4 a,c).

This rarefaction analysis indicates that the diverse communities

observed here could be recovered from roughly 200,000 paired-

end reads. While additional sampling beyond this limit may be

theoretically redundant, such rarefaction analyses assume that

reads can properly be assigned to OTUs. In the case of EMIRGE,

additional reads strengthen the confidence of the reconstructed

sequences and abundance estimates.

Another way of inferring how close EMIRGE is to reconstruct-

ing all rare variants in a sample is to determine the fraction of

reads successfully mapped to EMIRGE-generated sequences. If

EMIRGE has faithfully reproduced the SSU sequences present,

then all high-quality reads should map to one of the reconstructed

SSU genes. For the 48 technical replicates, after the final

Figure 2. Principal coordinates analysis clusters the 48 subsample communities by biological sample. EMIRGE-reconstructed rRNA
genes were used to construct a phylogenetic tree. From this tree, pairwise distances were calculated between each of the 48 subsample communities
using either abundance-weighted (A) or unweighted (B) Unifrac, and principal coordinates analysis was used to reduce the dimensionality of the
resulting distance matrices for visualization. Percentage variation explained by each principal coordinate is shown for each axis. Subsample
communities clearly separate by biological sample. Weighted Unifrac accounts for a larger fraction of the variance in the first two principle
coordinates than unweighted unifrac, indicating that changes in abundances are particularly informative.
doi:10.1371/journal.pone.0056018.g002
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algorithm iteration, 81.4% to 86.1% of reads mapped to at least

one reconstructed SSU sequence (Table S1), indicating that most

of the community diversity is likely captured with the depth of

sequencing used here.

We queried how effective EMIRGE was at recovering a known

sequence from a complex community. DNA from the iron-

reduction sample was re-extracted and re-sequenced after spiking

with a known amount of 16S amplicon from a species

(Leptospirillum ferrodiazotrophum) not previously detected in the

Figure 3. Phylum-level abundances of the 48 EMIRGE-reconstructed communities. Taxonomic assignments were made with the RDP
classifier for each OTU with a confidence cutoff of 0.8, and abundances were summed to the phylum level and are shown as a log-scaled heatmap.
The barcoding index for each sample is listed along the bottom. Hierarchical clustering of the abundance vectors separates each community by
biological sample.
doi:10.1371/journal.pone.0056018.g003

Short-Read Assembly of Full-Length 16S Amplicons
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sample. We verified that the community profile from this

EMIRGE run with spike-in control was similar to that of the

original iron-reducing sample. Phylum level abundances correlat-

ed well (Pearson correlation 0.999), with one of the more notable

discrepancies due to the spike-in control (Figure S3). A single

sequence was reconstructed for the spike-in control species, as

expected. This sequence was estimated to have a relative

abundance of 0.21%, slightly less than the 0.50% by DNA mass

spiked in to the library preparation. Except for two 1 bp indels

(EMIRGE does not handle indels), the reconstructed sequence was

identical to the expected amplicon sequence.

Comparison of full-length SSU sequences to short
hypervariable regions

Several groups have attempted to overcome the short read

lengths and increased-39-end error rates of Illumina hypervariable

region sequencing by choosing primers so that paired-end reads

overlap [17,20,21,24]. We used the same primers as Bartram et al

[17] to extract in silico the ,150 bp V3 regions contained in the

Figure 4. Alpha diversity of communities inferred by full-length rRNA and hypervariable-regions. Alpha diversity metrics are shown for
EMIRGE-reconstructed full-length OTUs (A, C) and OTUs based on in silico-extracted V3 regions from the EMIRGE-reconstructed sequences (B, D). A
and B show the total number of OTUs identified with increasing sequencing effort. C and D show the total tree phylogenetic distance (PD) observed
with increasing sequencing effort. Plots show the mean and standard deviation of 10 samples per simulated sequencing effort. Blue: background;
red: iron reduction; orange: sulfate reduction.
doi:10.1371/journal.pone.0056018.g004

Short-Read Assembly of Full-Length 16S Amplicons
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EMIRGE-generated full-length sequences, and asked how these

shorter regions described community diversity. This analysis did

not consider the substantial errors associated with raw paired

sequencing reads [20], but instead assumed that perfect overlap

and recovery of V3 regions was possible.

Utilizing the V3 region for community characterization

increased the number of unclassified OTUs, and underestimated

the alpha diversity of the three microbial communities. Across all

samples, using just the V3 region as opposed to the full length

sequences increased the percentage of unclassified OTUs at the

phylum level from 8.6% to 34.6%. Even when allowing more

error-prone assignments with a relaxed RDP classifier confidence

threshold (0.5 instead of 0.8), the percentage of V3 OTUs with

unclassified phyla is still high (16.6%). The replicate samples still

clustered by sample type when weighted or unweighted Unifrac

was used to measure between-sample differences (Figure S4).

However, measured alpha diversity was decreased when using just

the V3 region, with the number of observed OTUs roughly 60%

of that observed with full-length sequences (Figure 4b), and PD

approximately 1/3 the level measured with full-length sequences

(Figure 4d).

Community shifts accompanying changes in terminal
electron accepting processes

At all levels of taxonomic resolution, there were important

differences in community composition among the background,

iron-reducing and sulfate-reducing sediments (Figure 5). At the

phylum level, the change from unstimulated to iron-reducing

community was subtle. However, certain families become mark-

edly more or less abundant upon stimulation, despite overall

similar alpha diversity. For example, there is a clear increase in

Geobacteraceae, which are barely present in the background (0.65%)

but make up roughly 21% of the iron-reducing community. This is

consistent with previous studies showing dominance of this family

in the planktonic phase of the aquifer under acetate-stimulated

iron reduction. [32,44–47]. When we examined specific EMIRGE

sequences within the Geobacteraceae, we found evidence for a strong

response for specific species. For example, EMIRGE OTU 37084

increased from 0.2% of background sequences to 6.6% of iron-

reduction sequences. This OTU shares 97% sequence identity

with Geobacter bemidjiensis Bem, an organism emblematic for

subsurface iron reduction [48].

In the sulfate reducing community, phylum-level differences in

abundance were pronounced (Figures 3 and 5); most notable was a

sharp increase in the number of Firmicutes detected, often closely

related to known sulfate reducing taxa. The family Peptococcaceae,

present as 1.6% and 0.3% of the background and iron-reducing

communities, make up 23.8% of the sulfate-reducing community.

Some high-specificity, high-abundance EMIRGE sequences rep-

resented known sulfate-reducing bacteria (e.g. OTU 9461, 98%

identical to Desulfosporosinus species and 3.3% abundance).

However, we also recovered sequences representing potentially

novel and important sulfate reducing species. For example, OTU

2554 was not detectable in the background sample, but was

reconstructed in the sulfate-reducing community at a relative

abundance of 8.3%. This sequence shares only 95% sequence

identity to its closest BLAST hit, Desulfotomaculum acetoxidans, a

sulfate-reducer known to grow on acetate [49]. Thus, both in the

iron-reducing and sulfate-reducing communities, the method

captured known biological responses to environmental change at

the species level.

In addition to detecting organisms consistent with known

biological responses to a shift to iron or sulfate reduction, we also

observed many sequences from phyla with few or no cultured

representatives (Figure 3). For example, OTUs classified as

candidate division TM7 make up ,1% of the background

community and drop in relative abundance by an order of

magnitude by the time the community has transitioned to sulfate

reduction. Candidate division BD1-5 organisms (classified as

GN02 by the RDP classifier) also exist at low levels in the

background and iron-reducing samples (0.4% and 0.7%), and

relative abundances drop ten-fold in sulfate reduction (0.04%).

One of these BD1-5 sequences (OTU 39774) makes up 0.2% of

the background community and shares only 89% identity to the

nearest environmental clone (there are no isolates from this

phylum). Sequences related to candidate division OD1 (Figure S2)

consistently make up approximately 0.6% of each community.

Discussion

The ability to explore microbial community composition and

detect rare members provides the opportunity to develop a better

understanding of how microorganisms are distributed within and

across different ecosystem types. This may be important, for

example, when seeking to characterize the environmental repos-

itories of pathogens [50–52] or to infer functional capacity, such as

nutrient cycling [53,54]. Profiling of microbial diversity in a way

that extends detection far out on rank abundance curves (Figure

S5) in spatial or temporal samples makes it possible to understand

how different resources or physical/chemical conditions impact

ecosystem structure. Such methods can constrain organism sources

and may provide clues to the physiology of rare organisms. These

insights may be important, for example, in studies of infant gut

colonization [55,56] or bioremediation [45].

Here, we applied an updated version of the EMIRGE algorithm

to investigate microbial communities in sediment before and after

perturbation. Because EMIRGE reconstructs essentially full-

length sequences, we achieved sufficient taxonomic resolution to

detect how specific organisms responded to altered conditions. We

show proliferation of organisms that, through correlation of their

relative abundances with geochemical measurements, likely

contribute the biochemical functionality that accounts for

observed conditions. For example, iron- and sulfate-reduction

processes are likely linked to proliferation of Geobacteraceae and

Peptococcaceae, respectively. Although the role of these families in

iron- and sulfate-reduction is well documented, the ability to

resolve which specific species are responsible may have broader

implications. For example, such linkages can be incorporated into

reactive transport models that attempt to describe the overall

coupling of biological and geochemical processes [32,57]. We also

detect many rare members from uncultivated phyla. The roles

these bacteria play in subsurface geochemistry is only beginning to

be elucidated [58].

Our analyses document persistently very high biodiversity in

acetate-amended sediment. In the single timepoints sampled

during iron and sulfate reduction, we do not detect strong

proliferation of a few organisms in response to acetate stimulation,

contrary to results of prior clone-based studies of the Rifle aquifer

[44,46] but consistent with a deep community profiling by

PhyloChip microarray [45]. Beyond methodological differences

in sensitivity, aquifer geochemical heterogeneity has been docu-

mented and shown to affect acetate availability and community

composition during secondary stimulation [59]. The aquifer has a

wide grain size distribution, and a variety of carbon substrates are

likely in the sediment due to varying Colorado River riparian zone

inputs at the time of sediment deposition. Other factors, such as

increased resource complexity due to microbial processes (break-

down of refractory organic carbon, production of sulfide,
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hydrogen, etc.) may contribute the wide niche variety required to

maintain high microbial diversity. Alternatively, our time points

may have simply missed organism blooms.

EMIRGE has potential advantages over sequencing of short

hypervariable regions. The increased length provided by full-

length sequences has the potential to provide a more detailed

taxonomic description of microbial communities. Although some

studies show short rRNA hypervariable regions track full-length

gene taxonomies well, there are conflicting reports of which

hypervariable region is most suitable [29,60] and how reproduc-

ible the method is [61,62]. Short regions are also useful for the

simpler task of discriminating among biologically distinct commu-

nities [63]. However, we find that using just the V3 portion of the

full-length sequences reconstructed here significantly decreases the

number of sequences we can assign to specific taxa, and also

decreases the apparent phylogenetic diversity within a community

(Figure 4), a result consistent with previous simulation studies [30].

With an assembly-based strategy that utilizes multiple reads to

assign each base in a consensus sequence, EMIRGE also aims to

eliminate the ‘‘false’’ rare biosphere associated with increased

error of newer sequencing technologies [15,16]. Remarkably, even

with the highest stringency quality controls that discarded 97% of

the reads, one careful Illumina-based study that sequenced the V6

region of a single Escherichia coli culture with two 16S rRNA gene

copies recovered 775 different tag sequence OTUs, many with

abundances .0.01% [20]. In the current study, EMIRGE

reported exactly one correct sequence from a spike-in control

species, highlighting the utility of dealing with sequencing error via

an assembly-based strategy.

There are also limitations to the approach described here. Like

all 16S-rRNA gene based surveys, EMIRGE measures relative

abundances of genes, not organisms. Organism-specific differences

in gene copy number can alter the apparent abundance of

community members and lead to false conclusions about

community structure [64]. There is evidence that, through

selection, average copy number in a community may fluctuate

Figure 5. Community structure at varying levels of taxonomic resolution. Reconstructed full-length OTUs were assigned taxonomy by the
RDP classifier, and relative abundances at 4 taxonomic levels are shown for each of the 48 subsample datasets. Indices from left to right in each panel
are as in Figure 2. Select taxa are identified: 1. Proteobacteria, 2. Firmicutes, 3. Bacteroidetes, 4. Unassigned, 5. TM7, 6. Tenericutes, 7.
Gammaproteobacteria, 8. Epsilonproteobacteria, 9. Deltaproteobacteria, 10. Betaproteobacteria, 11. Alphaproteobacteria, 12. Clostridia, 13. Bacilli, 14.
Bacteroidia, 15. Unclassified Firmicute, 16. Pseudomonadales, 17. Burkholderiales, 18. Clostridiales, 19. Bacillales, 20. Bacteroidales, 21.
Desulfuromonadales, 22. Rhodocyclales, 23. Methylophilales, 24. Desulfobacterales, 25. Unclassified Clostridia, 26. Pseudomonadaceae, 27.
Rhodocyclaceae, 28. Methylophilaceae, 29. Comamonadaceae, 30. Unclassified Betaproteobacteria, 31. Bacillaceae, 32. Unclassified Bacteroidales, 33.
Geobacteraceae, 34. Peptococcaceae, 35. Unclassified Clostridiales.
doi:10.1371/journal.pone.0056018.g005
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in response to environmental change or during succession, further

obfuscating measures of relative abundance [65]. PCR bias

associated with different primers or sequence composition can

result in underrepresentation or overrepresentation of certain

clades [66]. Relative abundances can also be misleading if total cell

numbers change dramatically via growth or death of certain

lineages. A modification to experimental protocols that quantified

absolute cell or DNA abundance could assist with distinguishing

relative vs. absolute changes. In contrast to techniques that

incorporate barcodes directly in PCR primers, the current

EMIRGE protocol requires that each sample is prepared and

sheared as a separate library. Thus, library preparation cost, while

continuing to decrease, can be a limiting factor, and EMIRGE

may be most beneficial for studies utilizing Illumina’s lower-

throughput MiSeq instrument. Finally, because of the shearing

step, overrepresentation of amplicon ends consumes sequencing

unnecessarily (Figure 1), a problem that may be mitigated with

changes to library preparation protocols [41].

The sediment biosphere is largely unknown, despite its massive

volume, high importance as a reservoir of cells and nutrients [67]

and, as shown here, high phylogenetic diversity. Organisms in the

subsurface, such as in aquifer sediments, play important ecosystem

roles. Impacts may range from local control of contaminant,

carbon, and other compound cycling to health effects due to

influence on water quality (e.g., as a reservoir of pathogens of

humans, animals, agricultural pests) to global carbon cycle

consequences through transformations of buried refractory

organic carbon compounds and methane. Analyses presented

here provide a first illustration of how a high throughput

sequencing method with low systematic errors combined with

full-length reconstruction of the widely sampled and phylogenet-

ically informative 16S rRNA gene can aid in our understanding of

these topics.

Supporting Information

Figure S1 Principal coordinates analysis highlighting
community differences by sequencing library barcoding
index. EMIRGE-reconstructed rRNA genes were used to

construct a phylogenetic tree using v.2.1.3 with default parame-

ters. From this tree, pairwise distances were calculated between

each of the 48 subsample communities using unweighted Unifrac

as in Figure 2. Principal coordinates analysis was used to reduce

the dimensionality of the resulting distance matrix for visualiza-

tion. With unweighted Unifrac as the distance metric, Principal

coordinate 3 clearly separates Index 1 away from the other

background samples, although this only explains 2.2 percent of the

variation.

(EPS)

Figure S2 Phylum-level abundances of the 48 EMIRGE-
reconstructed communities as assigned by SILVA
BLAST. Taxonomic assignments were made by adopting the

phylum of the single best blast hit to the SILVA SSURef 108

rRNA database for each OTU, and abundances were summed to

the phylum level and are shown as a log-scaled heatmap.

Barcoding index for each sample is listed along the bottom.

Hierarchical clustering of the abundance vectors separates each

community by biological sample.

(EPS)

Figure S3 Phylum-level abundance concordance be-
tween iron-reducing samples and re-extracted spike-in
control. Phylum-level relative abundances were calculated for the

spike-in control iron-reducing sample and a representative

subsample (index 3 subsample 3), and are plotted on a log scale.

Each square is an individual phylum, and Nitrospira, the phylum

of the spike in control (added at 0.005 relative abundance), is

indicated with an open circle. Pearson correlation = 0.999.

(EPS)

Figure S4 Principal coordinates analysis using V3
regions of the 48 subsample community reconstruc-
tions. V3 regions were extracted from EMIRGE-reconstructed

rRNA genes, and these regions were used to construct a

phylogenetic tree. From this tree, pairwise distances were

calculated between each of the 48 subsample communities using

either abundance-weighted (a) or unweighted (b) Unifrac, and

principal coordinates analysis was used to reduce the dimension-

ality of the resulting distance matrices for visualization. Percentage

variation explained by each principal coordinate is shown for each

axis. Subsample communities clearly separate by biological

sample.

(EPS)

Figure S5 Rank abundance curves for the 48 technical
replicates. All OTUs are plotted on a log scale, and the relative

abundance cutoff of 0.01% is shown with a horizontal line. Inset:

zoom of first 40 OTUs per sample, plotted on a linear scale to

highlight similarity in community structure among the most

abundant OTUs.

(TIF)

Table S1 Description of the 48 data sets analyzed with
EMIRGE.

(DOC)

Methods S1 Additional details of sample collection,
DNA extraction, amplification, sequencing, and analy-
sis.

(DOC)

Acknowledgments

We thank Itai Sharon (University of California, Berkeley) for helpful

discussions and Henriette O’Geen (DNA Technologies Core Facility,

Genome Center, University of California, Davis, CA, USA) for assistance

with sequencing.

Author Contributions

Conceived and designed the experiments: CSM KMH KCW JFB.

Performed the experiments: CSM KMH KCW KRF. Analyzed the data:

CSM KMH KCW KRF BCT JFB. Wrote the paper: CSM JFB.

References

1. Marchetti A, Schruth DM, Durkin CA, Parker MS, Kodner RB, et al. (2012)

Comparative metatranscriptomics identifies molecular bases for the physiolog-

ical responses of phytoplankton to varying iron availability. Proceedings of the

National Academy of Sciences of the United States of America 109: E317–25.

doi:10.1073/pnas.1118408109.

2. Mueller RS, Dill BD, Pan C, Belnap CP, Thomas BC, et al. (2011) Proteome

changes in the initial bacterial colonist during ecological succession in an acid

mine drainage biofilm community. Environmental microbiology 13: 2279–2292.

doi:10.1111/j.1462-2920.2011.02486.x.

3. Denef VJ, Kalnejais LH, Mueller RS, Wilmes P, Baker BJ, et al. (2010)

Proteogenomic basis for ecological divergence of closely related bacteria in

natural acidophilic microbial communities. Proceedings of the National

Academy of Sciences of the United States of America 107: 2383–2390.

doi:10.1073/pnas.0907041107.

Short-Read Assembly of Full-Length 16S Amplicons

PLOS ONE | www.plosone.org 9 February 2013 | Volume 8 | Issue 2 | e56018



4. Lo I, Denef VJ, Verberkmoes NC, Shah MB, Goltsman D, et al. (2007) Strain-

resolved community proteomics reveals recombining genomes of acidophilic

bacteria. Nature 446: 537–541. doi:10.1038/nature05624.

5. Stewart FJ, Ulloa O, DeLong EF (2012) Microbial metatranscriptomics in a

permanent marine oxygen minimum zone. Environmental microbiology 14: 23–

40. doi:10.1111/j.1462-2920.2010.02400.x.

6. Pace NR (1997) A molecular view of microbial diversity and the biosphere.

Science 276: 734–740. doi:10.1126/science.276.5313.734.

7. Tringe SG, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA

gene. Current opinion in microbiology 11: 442–446. doi:10.1016/

j.mib.2008.09.011.

8. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006)

Greengenes, a chimera-checked 16S rRNA gene database and workbench

compatible with ARB. Applied and environmental microbiology 72: 5069–5072.

doi:10.1128/AEM.03006-05.

9. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, et al. (2007) SILVA: a

comprehensive online resource for quality checked and aligned ribosomal RNA

sequence data compatible with ARB. Nucleic acids research 35: 7188–7196.

doi:10.1093/nar/gkm864.

10. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, et al. (2006)

Microbial diversity in the deep sea and the underexplored ‘‘rare biosphere’’.

Proceedings of the National Academy of Sciences 103: 12115–12120.

doi:10.1073/pnas.0605127103.

11. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an

antibiotic on the human gut microbiota, as revealed by deep 16S rRNA

sequencing. PLoS Biol 6: e280. doi:08-PLBI-RA-2095 [pii] 10.1371/journal.

pbio.0060280.

12. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, et al. (2009)

Bacterial community variation in human body habitats across space and time.

Science (New York, NY) 326: 1694–1697. doi:10.1126/science.1177486.

13. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al.

(2009) A core gut microbiome in obese and lean twins. Nature 457: 480–484.

doi:10.1038/nature07540.

14. Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles

in the rare biosphere through improved OTU clustering. Environ Microbiol 12:

1889–1898. doi:EMI2193 [pii] 10.1111/j.1462-2920.2010.02193.x.

15. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the

rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity

estimates. Environ Microbiol 12: 118–123. doi:EMI2051 [pii] 10.1111/j.1462-

2920.2009.02051.x.

16. Quince C, Lanzén A, Curtis TP, Davenport RJ, Hall N, et al. (2009) Accurate

determination of microbial diversity from 454 pyrosequencing data. Nature

methods 6: 639–641. doi:10.1038/nmeth.1361.

17. Bartram AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011)

Generation of multimillion-sequence 16S rRNA gene libraries from complex

microbial communities by assembling paired-end illumina reads. Applied and

environmental microbiology 77: 3846–3852. doi:10.1128/AEM.02772-10.

18. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, et al.

(2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences

per sample. Proceedings of the National Academy of Sciences of the United

States of America 108 Suppl : 4516–4522. doi:10.1073/pnas.1000080107.

19. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, et al. (2012)

Ultra-high-throughput microbial community analysis on the Illumina HiSeq and

MiSeq platforms. The ISME Journal. doi:10.1038/ismej.2012.8.

20. Degnan PH, Ochman H (2011) Illumina-based analysis of microbial community

diversity. ISME J. doi:10.1038/ismej.2011.74.

21. Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD, et al.

(2010) Microbiome profiling by illumina sequencing of combinatorial sequence-

tagged PCR products. PloS one 5: e15406. doi:10.1371/journal.pone.0015406.

22. Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, et al. (2009)

Metagenomic study of the oral microbiota by Illumina high-throughput

sequencing. Journal of microbiological methods 79: 266–271. doi:10.1016/

j.mimet.2009.09.012.

23. Werner JJ, Zhou D, Caporaso JG, Knight R, Angenent LT (2011) Comparison

of Illumina paired-end and single-direction sequencing for microbial 16S rRNA

gene amplicon surveys. The ISME journal: 1–4. doi:10.1038/ismej.2011.186.

24. Zhou H-W, Li D-F, Tam NF-Y, Jiang X-T, Zhang H, et al. (2011) BIPES, a

cost-effective high-throughput method for assessing microbial diversity. The

ISME journal 5: 741–749. doi:10.1038/ismej.2010.160.

25. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for

rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied

and environmental microbiology 73: 5261–5267. doi:10.1128/AEM.00062-07.

26. Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, et al. (2012)

Impact of training sets on classification of high-throughput bacterial 16s rRNA

gene surveys. The ISME journal 6: 94–103. doi:10.1038/ismej.2011.82.

27. Huse SM, Dethlefsen L, Huber JA, Mark Welch D, Welch DM, et al. (2008)

Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag

sequencing. PLoS genetics 4: e1000255. doi:10.1371/journal.pgen.1000255.

28. Sharpton TJ, Riesenfeld SJ, Kembel SW, Ladau J, O’Dwyer JP, et al. (2011)

PhylOTU: a high-throughput procedure quantifies microbial community

diversity and resolves novel taxa from metagenomic data. PLoS computational

biology 7: e1001061. doi:10.1371/journal.pcbi.1001061.

29. Liu Z, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy

assignments from 16S rRNA sequences produced by highly parallel pyrose-
quencers. Nucleic acids research 36: e120. doi:10.1093/nar/gkn491.

30. Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, et al. (2009)
Comparison of species richness estimates obtained using nearly complete

fragments and simulated pyrosequencing-generated fragments in 16S rRNA
gene-based environmental surveys. Applied and environmental microbiology 75:

5227–5236. doi:10.1128/AEM.00592-09.

31. Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF (2011) EMIRGE:

reconstruction of full-length ribosomal genes from microbial community short
read sequencing data. Genome biology 12: R44. doi:10.1186/gb-2011-12-5-r44.

32. Williams KH, Long PE, Davis JA, Wilkins MJ, N’Guessan AL, et al. (2011)
Acetate Availability and its Influence on Sustainable Bioremediation of

Uranium-Contaminated Groundwater. Geomicrobiology Journal 28: 519–539.
doi:10.1080/01490451.2010.520074.

33. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M,
editors. Nucleic acid techniques in bacterial systematics. New York: Wiley. pp.

115–175.

34. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST.

Bioinformatics (Oxford, England) 26: 2460–2461. doi:10.1093/bioinformatics/
btq461.

35. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010)
QIIME allows analysis of high-throughput community sequencing data. Nature

methods 7: 335–336. doi:10.1038/nmeth.f.303.

36. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, et al.

(2010) PyNAST: a flexible tool for aligning sequences to a template alignment.
Bioinformatics (Oxford, England) 26: 266–267. doi:10.1093/bioinformatics/

btp636.

37. Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-

likelihood trees for large alignments. PloS one 5: e9490. doi:10.1371/journal.

pone.0009490.

38. Walters WA, Caporaso JG, Lauber CL, Berg-Lyons D, Fierer N, et al. (2011)
PrimerProspector: de novo design and taxonomic analysis of barcoded

polymerase chain reaction primers. Bioinformatics (Oxford, England) 27:

1159–1161. doi:10.1093/bioinformatics/btr087.

39. Goltsman DSA, Denef VJ, Singer SW, VerBerkmoes NC, Lefsrud M, et al.
(2009) Community genomic and proteomic analyses of chemoautotrophic iron-

oxidizing ‘‘Leptospirillum rubarum’’ (Group II) and ‘‘Leptospirillum ferrodiazo-

trophum’’ (Group III) bacteria in acid mine drainage biofilms. Applied and
environmental microbiology 75: 4599–4615. doi:10.1128/AEM.02943-08.

40. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome

biology 10: R25. doi:10.1186/gb-2009-10-3-r25.

41. Harismendy O, Frazer K (2009) Method for improving sequence coverage

uniformity of targeted genomic intervals amplified by LR-PCR using Illumina
GA sequencing-by-synthesis technology. BioTechniques 46: 229–231.

doi:10.2144/000113082.

42. Harismendy O, Ng PC, Strausberg RL, Wang X, Stockwell TB, et al. (2009)

Evaluation of next generation sequencing platforms for population targeted
sequencing studies. Genome biology 10: R32. doi:10.1186/gb-2009-10-3-r32.

43. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for
comparing microbial communities. Appl Environ Microbiol 71: 8228–8235.

44. Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, et al. (2003)

Stimulating the in situ activity of Geobacter species to remove uranium from the

groundwater of a uranium-contaminated aquifer. Applied and environmental
microbiology 69: 5884–5891. doi:10.1128/AEM.69.10.5884-5891.2003.

45. Handley KM, Wrighton KC, Piceno YM, Andersen GL, Desantis TZ, et al.
(2012) High-Density PhyloChip profiling of stimulated aquifer microbial

communities reveals a complex response to acetate amendment. FEMS
microbiology ecology: 1–17. doi:10.1111/j.1574-6941.2012.01363.x.

46. Holmes DE, O’Neil RA, Vrionis HA, N’guessan LA, Ortiz-Bernad I, et al.
(2007) Subsurface clade of Geobacteraceae that predominates in a diversity of

Fe(III)-reducing subsurface environments. The ISME journal 1: 663–677.
doi:10.1038/ismej.2007.85.

47. Wilkins MJ, Verberkmoes NC, Williams KH, Callister SJ, Mouser PJ, et al.
(2009) Proteogenomic monitoring of Geobacter physiology during stimulated

uranium bioremediation. Applied and environmental microbiology 75: 6591–
6599. doi:10.1128/AEM.01064-09.

48. Aklujkar M, Young ND, Holmes D, Chavan M, Risso C, et al. (2010) The
genome of Geobacter bemidjiensis, exemplar for the subsurface clade of

Geobacter species that predominate in Fe(III)-reducing subsurface environ-

ments. BMC genomics 11: 490. doi:10.1186/1471-2164-11-490.
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