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Abstract

Genes involved in sex determination and differentiation have been identified in mice, humans, chickens, reptiles,
amphibians and teleost fishes. However, little is known of their functional conservation, and it is unclear whether there is a
common set of genes shared by all vertebrates. Coelacanths, basal Sarcopterygians and unique ‘‘living fossils’’, could help
establish an inventory of the ancestral genes involved in these important developmental processes and provide insights
into their components. In this study 33 genes from the genome of Latimeria chalumnae and from the liver and testis
transcriptomes of Latimeria menadoensis, implicated in sex determination and differentiation, were identified and
characterized and their expression levels measured. Interesting findings were obtained for GSDF, previously identified only
in teleosts and now characterized for the first time in the sarcopterygian lineage; FGF9, which is not found in teleosts; and
DMRT1, whose expression in adult gonads has recently been related to maintenance of sexual identity. The gene repertoire
and testis-specific gene expression documented in coelacanths demonstrate a greater similarity to modern fishes and point
to unexpected changes in the gene regulatory network governing sexual development.
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Introduction

Two major processes take place in sexual development: sex

determination and sex differentiation. The former process

determines whether the bipotential primordium will develop into

a testis or an ovary; the latter takes place after sex determination

and involves the actual development of testes or ovaries from the

undifferentiated gonad [1]. Sex determination is considered as a

default pathway or as suppression thereof and initiation of the

opposite pathway; in contrast, sex differentiation seems to result

from the antagonistic relationship among the genes influencing

testis or ovary development [2,3]. Recently it has emerged that

sex-specific mechanisms, which are critical to maintaining the

male or female identity of the testis and ovary, also operate in

adult mammalian gonads [4–6]. Other organs besides the gonads

may also acquire elaborate male- and female-specific differences.

In vertebrates—with the possible exception of birds [7]—such

secondary sexual traits are generally believed to be instructed

exclusively by the developing testis or ovary through sex steroids,

whereas in invertebrates each somatic cell seems to have an

inherent sexual identity [8]. Compared with eutherian mammals,

sex steroids and the proteins involved in their metabolism and

binding play an earlier role in the sex differentiation process of

fish, amphibians, reptiles, birds, and marsupials [9–20].

In vertebrates sexual development is determined by two main

factors: either the genetic makeup of the individual or the

environment, through the influence of temperature during

development, nutrients, pH, etc [21–23]. It has been demonstrated

that in mammals the consecutive processes of sex determination,

gonad differentiation and identity maintenance are brought about

by a complex network of transcription factor interactions and

signalling molecules; a master regulator upstream then directs the

network towards male or female [24]. The male-determining gene

in most mammals is the Y chromosome SRY gene, which however

has only been detected in placental mammals [25]. In chickens

(and possibly all birds) the master regulator of sexual development

is Dmrt1; its homologues are dmrt1bY (or DMY) in the Japanese

ricefish (medaka, Oryzias latipes) [26,27]; and DM-W in the frog

Xenopus laevis [28]. In several fish species this function is served by

gonadal soma-derived factor (GSDF) [29], anti-Müllerian hormone (AMH)

[30], anti-Müllerian hormone receptor (AMHR2) [31], or other genes.

In contrast to the variety of upstream sex determinants,

genome-wide studies and homology cloning in teleost fishes,

amphibians, reptiles and birds have suggested that the downstream

components of the network have a conserved function. This has
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inspired the paradigm that in sex determination during evolution

‘‘masters change, slaves remain’’ [32–34]. However, it is unclear

how far back in the evolutionary history this applies and in

particular when and how the vertebrate sex regulation network

evolved and whether the relevant genes represent an ancient,

conserved mechanism or else they were repeatedly and indepen-

dently recruited to the process.

The unique opportunity to examine high-quality RNA from the

Indonesian coelacanth Latimeria menadoensis for transcriptome

analysis of testis and liver tissue, and the availability of the whole

genome sequence of the African coelacanth Latimeria chalumnae,

enabled us to gain insights into a ‘‘living fossil’’ that is held to be

among the nearest living relatives of tetrapods.

The genes involved in the regulatory network of sexual

development described so far come mainly from mammalian

studies and can be divided into functional groups as follows: 1)

genes required for bipotential gonad development [Wilm’s tumour

suppressor-1 (WT1), steroidogenic factor-1 (SF-1), and GATA-binding

protein 4 (GATA-4)]; 2) genes involved in male sex determination

[double sex and mab-3 related transcription factor 1 (DMRT1), SRY-related

box 9 (SOX9), dosage-sensitive sex-reversal-adrenal hypoplasia congenital-

critical region of X chromosome, gene 1 (DAX1), fibroblast growth factor 9

(FGF9), and desert hedgehog (DHH)]; 3) genes involved in male sex

differentiation [AMH, AMHR2, and androgen receptor (AR)]; 4) genes

involved in female sex determination [Wingless-type MMTV

integration site family member 4 (WNT4), R-spondin-1 (RSPO-1), catenin

b-1 (CTNNB1), forkhead box transcription factor L2 (FOXL2), and

follistatin (FST)]; 5) genes involved in female sex differentiation

[aromatase (also known as Cyp19A1 or P450arom), oestrogen receptor a
(ERa), and oestrogen receptor b (ERb)] (Figure 1).

These 22 genes and 11 other genes [DMRT3, DMRT6, GSDF,

platelet-derived growth factors (PDGF) a and b and their receptors

(PDGFRa, PDGFRb), 11b-hydroxylase (CYP11B), and 5a-reductase 1,

2, and 3 (SRD5A1, SRD5A2, SRD5A3)], whose involvement in sex

development has been documented [35–47], were sought in the L.

chalumnae genome and in the transcriptome of L. menadoensis;

subsequently their expression levels were measured in the liver and

testis of an adult specimen of L. menadoensis.

The coelacanth gene repertoire and expression profiles were

much more similar to those of modern fish than to those of

tetrapods, although they may also represent an intermediate

condition; these data unexpectedly suggest that the major

evolutionary changes accompanying the transition to terrestrial

life were also involved in gonad development.

Methods

The genome of the African coelacanth L. chalumnae has recently

been sequenced (project accession PRJNA56111) [48] and is

available in the framework of the whole genome shotgun (WGS)

sequencing project at http://www.ncbi.nlm.nih.gov and http://

www.ensembl.org. The transcriptome of its Indonesian congener,

L. menadoensis, has been described by Pallavicini and colleagues

[49] and Canapa and co-workers [50]. Briefly, an adult male

specimen of L. menadoensis weighing 27 kg was caught in a shark

net near Talise island, Indonesia [51]. Liver and testis were

collected immediately after death and preserved in RNAlater

(Applied Biosystems, Warrington, UK). A good quality RNA

samples, extracted using Trizol Reagent (Ambion/Life Technol-

ogies, Carlsbad, CA) following the manufacturer’s instructions

(RNA integrity number was 7.0 for testis and 6.6 for liver), were

used to generate cDNA libraries for transcriptome sequencing on

the Illumina Genome Analyzer II platform (Illumina, San Diego,

CA, USA). After filtering high-quality reads, removing reads

containing primer/adaptor sequences, and trimming read length,

the Illumina 100-bp paired-end reads were assembled on a 4-core

server (72GB RAM). CLC Genomic Workbench 4.5.1 (CLC Bio,

Katrinebjerg, Denmark) and Trinity [52] were used for de novo

assembly of short reads. Contigs confirmed and improved by both

methods were pooled in a high-quality set.

To identify the coelacanth homologues of the genes involved in

sexual development, the corresponding Xenopus tropicalis, Gallus

gallus, Danio rerio and Homo sapiens sequences were BLASTed on the

L. menadoensis transcript dataset. The identity of each retrieved

putative transcript was confirmed through NCBI BLAST by

homology. BLASTx analyses allowed transcript completeness to

be established (coding sequences, CDSs).

The L. menadoensis sequences were then BLASTed against the

WGS dataset of L. chalumnae, to identify the genomic scaffolds of

the African coelacanth containing them. Species divergence was

calculated with PAUP on the matching sequences as p-distance

percentage; the Ka/Ks ratio was calculated with KaKs_calculator

[53] using the Nei and Gojobori method [54]. The synonymous

distance was calculated using MEGA5 [55] by applying the

uncorrected modified Nei and Gojobori method [56] to the

concatenated CDSs, aligned with ClustalW2 (http://www.ebi.ac.

uk/Tools/msa/clustalw2/; [57]).

The predicted transcripts of L. chalumnae were collected from

ENSEMBL (http://www.ensembl.org/Latimeria_chalumnae/

Info/Index). The GSDF CDS was obtained manually by aligning

L. menadoensis transcripts to the L. chalumnae genome; FGF9, not

found in the transcriptome and not annotated in ENSEMBL, was

obtained manually by BLASTing annotated amino acid sequences

of other species to the L. chalumnae WGS. GSDF and FGF9 putative

transcripts were confirmed by homology through NCBI BLAST.

L. chalumnae and L. menadoensis transcripts were compared by

ClustalW2 alignment; a graphical representation of each sequence

pair is reported in Figures S1A and S1B.

Gene ontology (GO) terms involved in sex determination and

sex differentiation (GO0007530 and GO0007548, respectively)
Figure 1. Genes involved in sexual development.
doi:10.1371/journal.pone.0056006.g001

Sex Development Genes in Coelacanths
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were selected and L. menadoensis orthologues to D. rerio, X. tropicalis,

G. gallus, Canis familiaris, Bos taurus, Sus scrofa, Mus musculus, Rattus

norvegicus and H. sapiens counterparts counted.

L. menadoensis liver and testis gene expression levels were

calculated using the CLC Genomic Workbench 4.5.1 by mapping

paired reads from the transcriptome on the assembled transcripts,

and given as Fragments Per Kilobase of exon per Million

sequenced fragments (FPKM). The lack of some transcripts in

the assembled transcriptome may depend on poor gene expres-

sion, hence on the limited number of reads, which prevented

assembly of a contig. In such cases ENSEMBL gene predictions

were used to determine absence or low expression taking into

account the predicted transcripts. The FPKM value is therefore

still a function of transcript length rather than gene length. The

FPKM value was calculated for DMRT3, FOXL2, aromatase,

WNT4, and CYP11B on ENSEMBL transcript predictions as well

as on the inferred sequence of L. chalumnae FGF9.

Besides genes expected to be involved in sexual development,

the expression levels of some house-keeping genes, i.e. phosphoglyc-

erate kinase (PGK), heat shock protein class B (HSPCB), and the

ribosomal proteins RPS27, RPL19, RPL11, RPL32, chosen

according to Eisenberg and Levanon [58], were also evaluated.

Correct assignment to evolutionarily related gene groups was

established by phylogenetic analysis. Sequences of SOXE, FGF9/

16/20, and TGF-b groups of other vertebrates were retrieved

from the NCBI protein database and ENSEMBL. Multiple

alignments were performed with ClustalW2 using default param-

eters. Phylogenetic trees were obtained using Bayesian Inference

(BI) and Maximum Parsimony (MP) methods. BI analysis was

performed with MrBayes 3.1.2 [59] by applying the amino acid

model of Dayhoff et al. [60] to the SOXE and TGF-b groups and

the one by Jones et al. [61] to the FGF9/16/20 group. Parameters

were set to 1,000,000 generations, sampling every 100; burn-in

was set at 2,500 and stationarity was defined when the average

standard deviation of split frequencies reached a value,0.009.

MP analyses were performed with PAUP [62] by applying

heuristic search with tree bisection-reconnection (TBR) branch

swapping and random stepwise additions with 100 replications;

1,000 bootstrap replicates were calculated. Only minimal trees

were retained. The outgroup, accession numbers, and constant,

Table 1. Male sex-determining/differentiation gene inventory.

Transcript in L. menadoensis Gene location in L. chalumnae Transcript prediction in L. chalumnae

Gene Accession Length CDS Scaffold N6 exons3 Divergence4 Ka/Ks ENSEMBL accession Length CDS

AMH HF562302 13121 13122 JH126742 .5 0.046 0.000 ENSLACT00000009808 1689 16892

HF562303 10391 670

AMHR2 HF562304 693 6932 JH126659 .9 0.289 0.343 ENSLACT00000020587 921 9212

AR HF562305 2590 21332 JH126641 .8 0.165 0.000 ENSLACT00000017177 2235 12392

CYP11B - - - JH127279 - - - ENSLACT00000015536 1422 4742

DAX1 HF562306 966 786 JH128268 2 0.207 0.309 ENSLACT00000007979 786 786

DHH HF562307 926 9262 JH126563 2 0.540 0.649 ENSLACT00000021749 1275 1275

DMRT1 HF562308 2244 9982 JH127237 5 0.134 0.000 ENSLACT00000015034 798 7982

DMRT3 - - - JH127237 - - - ENSLACT00000013757 1455 1455

DMRT6 HF562309 3121 957 JH130928 4 0.129 NA ENSLACT00000003773 798 7982

FGF9 - - - JH128123 - - - Manually identified

FGF20 HF562310 370 3702 JH127134 3 0.270 NA ENSLACT00000014939 627 627

GATA-4 HF562311 1655 1200 JH128461 .6 0.064 NA ENSLACT00000007000 1209 1209

GSDF HF562312 1258 693 JH1276325 .3 0.826 0.470 - - -

PDGFa HF562313 968 594 JH126909 6 0.000 NA ENSLACT00000025036 1892 594

PDGFb HF562314 664 4832 JH128946 .4 0.000 NA ENSLACT00000002931 630 630

PDGFRa HF562315 823 8232 JH128279 .7 0.243 NA ENSLACT00000010417 3285 32852

PDGFRb HF562316 9951 9952 JH126585 .17 0.195 0.954 ENSLACT00000016664 3312 3312

HF562317 10551 10552

SF-1 HF562318 1686 1401 JH1265726 7 0.000 NA ENSLACT00000021404 591 5912

SOX8 HF562319 735 7352 JH126713 .3 0.000 NA ENSLACT00000019016 1434 1410

SOX9 HF562320 3306 1428 JH126581 3 0.185 0.000 ENSLACT00000021484 1908 1428

SOX10 HF562321 1403 13532 JH127309 3 0.359 0.199 ENSLACT00000005034 4571 1356

SRD5A1 HF562322 3664 786 JH129903 5 0.164 NA ENSLACT00000002047 6104 684

SRD5A2 HF562323 2711 765 JH126700 5 0.112 NA ENSLACT00000025936 2918 765

SRD5A3 HF562324 1244 945 JH127256 5 0.000 NA ENSLACT00000014423 2733 945

WT1 HF562325 2260 1257 JH126652 9 0.134 0.000 ENSLACT00000018732 1260 1257

1Fragmented contig. 2Partial CDS. 3Number of exons from the alignment of L. menadoensis transcripts to the L. chalumnae genome. Where the transcript carries only a
partial CDS, the number of exon is partial. 4Divergence between the two coelacanth sequences calculated as p-distance x100. 5The L. chalumnae GSDF gene is split
between scaffold JH127632 and contig AFYH01270444. 6 The L. chalumnae SF-1 gene is split between scaffold JH126572 and contig AFYH01271535.
doi:10.1371/journal.pone.0056006.t001
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parsimony informative, and parsimony non-informative sites are

reported in the legend to each phylogenetic tree.

Conserved syntenic blocks were inferred from ENSEMBL

annotation of putative CYP11B (Figure S2), DMRT1, FGF9,

FGF16, and FGF20 flanking regions from some sequenced

vertebrate genomes. Gene sizes and distances were calculated on

the basis of the annotated coordinates of each element. Scaffolds

containing FGF9 and flanking genes (EFHA1 and ZDHHC20)

conserved in tetrapods were identified by homology through

tBLASTn on L. chalumnae WGS data.

Results

GO analyses of ‘sex determination’ and ‘sex differentiation’

term annotations of the L. menadoensis transcriptome were

conducted and the results compared to selected vertebrate

genomes (Tables S1 and S2); 25 contigs were identified as

orthologues of a GO0007530 (sex determination) annotation, and

297 contigs were orthologues of the GO0007544 (sex differenti-

ation) annotation.

In this study we examined 33 genes with substantial evidence of

involvement in sex determination and differentiation (Supplemen-

tary notes). CDSs were retrieved from the L. chalumnae genome and

the L. menadoensis testis and liver transcriptomes (Tables 1 and 2)

and their expression levels assessed. The putative orthology status

of closely related genes was confirmed by tree topologies obtained

by phylogenetic analysis. Furthermore the instances of micro-

synteny conservation described in other vertebrates for DMRT1

[36] and FGF9/16/20 [63,64] were analysed in the two

coelacanths.

To establish whether the sequence information from L.

menadoensis and L. chalumnae could be combined, their genetic

distance was determined by comparing the transcripts of the

former to the genomic sequences of the latter. The distance,

calculated over all matching sequences, ranges between 0% and

0.826%, divergences being due mainly to mutations, insertions or

deletions in untranslated regions (UTRs). Point mutations affecting

the transcript coding region are predominantly synonymous

(Tables 1 and 2). The synonymous distance calculated over the

whole gene set was 0.0019 (standard error 0.0005). These findings

showed that the data of the two species can be pooled and

investigated together.

Genes in male sexual development
Twenty-five genes involved in male sexual development were

analysed in Latimeria: 3 genes containing a double sex and mab-3

(DM) domain (DMRT1, DMRT3, and DMRT6); 3 genes belonging

to the SOXE subfamily (SOX8, SOX9, and SOX10) of SRY-related

HMG box transcription factors; other transcription factors

including WT1, DAX1, GATA-4, DHH, SF-1; the signalling

molecules PDGFa and b, GSDF, AMH, FGF9, and FGF20; 4

receptors comprising AR, AMHR2, and PDGFRa and b; and the

steroidogenic enzymes SRD5A1, SRD5A2, SRD5A3 and

CYP11B (Table 1).

ENSEMBL prediction recovered 23 out of 25 genes in the L.

chalumnae genome annotation. The two missing sequences were

inferred manually from the genome assembly: one, FGF9, was

identified by comparison with orthologous sequences of other

species, and the other, GSDF, by aligning an L. menadoensis

transcript to WGS contigs of L. chalumnae. Fifteen of the 23

predicted transcripts of L. chalumnae carried complete CDS

whereas 8 were partial. The manually inferred L. chalumnae

FGF9 covers the complete CDS, whereas the L. chalumnae GSDF

homologue is incomplete (about 75% of the CDS).

The testis and liver transcriptomes of L. menadoensis contain 22

transcripts. Half of the contigs carried a complete CDS, the other

half were partial or fragmented. Transcripts of 3 genes, FGF9,

CYP11B, and DMRT3, were not found in liver and testis (Table 1).

The male sex development sequences of L. menadoensis and L.

chalumnae are compared in Figure S1A.

Since the expression of 13 male sex development transcripts in

testis was,1 FPKM unit, they were considered as not being

expressed above background. With the exception of AR, 11 genes

(DMRT6, DMRT1, SOX9, SOX10, WT1, GSDF, AMH, SRD5A1,

SRD5A3, DHH, and SF-1) were more expressed in testis than in

liver, but only 3 (DMRT1, DMRT6, and SOX9) exhibited a

differential expression with an FPKM difference.10. In liver 7

genes were expressed above background: SOX9, SRD5A1, AR,

DAX1, PDGFa, GATA-4, and SRD5A2 (Figures 2A and 2B).

DMRT6 was the most highly expressed transcript among the 25

male sex development genes analysed (37.79 FPKM in testis, no

expression in liver) and one of the 2,000 most abundant transcripts

among the 61,000 plus contigs measured in testis.

DMRT1, a major gene in male development, plays a key

function in fish [65,66], chickens [67,68], and reptiles [69].

Table 2. Female sex-determining/differentiation gene inventory.

L. menadoensis transcript Gene location in L. chalumnae Transcript prediction in L. chalumnae

Gene Accession Length CDS Scaffold N6 exons3 Divergence4 Ka/Ks ENSEMBL accession Length CDS

Aromatase - - - JH127307 - - - ENSLACT00000010703 1329 13292

CTNNB1 HF562326 3325 2346 JH127054 15 0.702 0.000 ENSLACT00000017335 3458 2346

ERa HF562327 2002 15412 JH1292275 .8 0.352 NA ENSLACT00000005056 396 3962

ERb HF562328 3184 1689 JH126564 9 0.159 0.000 ENSLACT00000019235 2465 1689

FOXL2 - - - JH127245 - - - ENSLACT00000012991 915 915

FST HF562329 2381 1044 JH127291 6 0.221 0.000 ENSLACT00000014112 2027 10322

RSPO-1 HF562330 4741 4252 JH126592 .5 0.626 NA ENSLACT00000019383 747 7472

HF562331 4851 2692

WNT4 - - - JH126950 - - - ENSLACT00000017139 1068 1068

1Fragmented contig. 2Partial CDS. 3Number of exons from the alignment of L. menadoensis transcripts to the L. chalumnae genome. Where the transcript carries only a
partial CDS, the exon number is partial. 4Divergence between the two coelacanth sequences calculated as p-distance x100. 5The ERa gene in the L. chalumnae genome
is split among scaffolds JH129227, JH129408, JH129637, and JH133026.
doi:10.1371/journal.pone.0056006.t002

Sex Development Genes in Coelacanths
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Alignment of L. menadoensis transcripts to the L. chalumnae genome

(Figure 3A) identified 5 exons which exceeded the ENSEMBL

predicted transcript by 1,572 bp at the 39 end (Figure 3B). The

DM domain is encoded in the first annotated exon. The long

39UTR harbours a 320-bp region containing a low-copy

interspersed repeat.

The size of the DMRT1 gene in the L. chalumnae genome

is.152 kb (Figure 3A), close to the 127 kb gene of H. sapiens

(ENSEMBL annotation) but spanning a much longer range than

the 3 kb gene of Crocodylus palustris [70], the 45 kb gene of D. rerio

[71], and 53–58 kb gene of G. gallus ([72], ENSEMBL). Moreover

the lack of a 59 UTR (Figure 3B), which in other fish is transcribed

in the so-called exon 0 [73], both in sequences from the

transcriptome and the ENSEMBL prediction, suggests the

existence of another exon (which would further extend the

genomic locus).

Brunner and colleagues [36] previously reported that the gene

order around the DMRT1 gene, involving two other DM domain

genes, DMRT2 and DMRT3, and the gene KANK1 (KIAA0172),

was strictly conserved. A similar micro-synteny conservation was

also noted in the L. chalumnae genome when the genomic scaffold

JH127237 (1,057,921 bp), from position 608,000 to 941,000, was

compared to other vertebrate chromosomes (Figure 3C). Interest-

ingly, this region is linked to the Z gonosome in G. gallus (where

DMRT1 is pivotal in male development) and to the X5 gonosome

in Ornithorhynchus anatinus, whereas in other species of the

actinopterygian and sarcopterygian lineages it is located on an

autosome. To date it has been impossible to identify sex

chromosomes in the Latimeria karyotype [74] or to relate the

scaffold containing DMRT1 to a definite chromosome.

DMRT1 is the second most abundantly expressed gene in testis

(11.84 FPKM units) and among the 10% most abundantly

expressed transcripts (Figure 2A) of those analysed.

SOX9 is a transcription factor activating AMH; together with

DMRT1 it inhibits WNT4 and FOXL2. In mammals it is activated

by another SOX family protein, SRY, whereas in other

vertebrates it is mainly regulated by SF-1 and DMRT1; together

with SOX8 and SOX10 it belongs to SOX protein subgroup E.

Phylogenetic analysis (Figure 4) of SOX E proteins from several

vertebrates yielded a tree topology with 3 major clades

corresponding to the 3 genes. In the SOX9 and SOX10 clades

Latimeria sequences comprise a sister group of tetrapods, while the

relationship of the Latimeria SOX8 was not clearly resolved given

its phylogenetic position. SOX9 and SOX10 were more strongly

expressed in testis than in liver (Figure 2A; FPKM: 11.60 and 1.38

for SOX9, FPKM: 2.25 and 0.04 for SOX10), whereas SOX8

expression was scanty in L. menadoensis liver (Figure 2B).

In mammals FGF9 has an important function in male

development, creating a positive feedback cycle with SOX9 and

inhibiting the WNT4 pathway in testis [75]. It has not yet been

Figure 2. Expression of male development genes. Expression levels of male sex-determining/differentiation genes in L. menadoensis liver and
testis transcriptomes. Values are expressed as FPKM (Fragments Per Kilobase of exon per Million sequenced fragments). A) genes highly expressed in
testis; B) genes poorly expressed in testis. The expression levels of some housekeeping genes (not represented) were also analysed: PGK 96.95 (liver),
342.41 (testis); RPS27a 152.59 (liver), 128.43 (testis); RPL19 744.01 (liver), 64.89 (testis); RPL11 457.35 (liver), 282.59 (testis); RPL32 629.83 (liver), 373.75
(testis); HSPCB 507.99 (liver), 1213.75 (testis). Threshold value = 1. * Expression level assessed on L. chalumnae orthologue.
doi:10.1371/journal.pone.0056006.g002

Sex Development Genes in Coelacanths
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detected in teleosts and seems to be replaced by FGF20b [63,64]

in sexual development. Interestingly, we found an FGF9-like

sequence in L. chalumnae. To confirm the orthology relationships of

the putative Latimeria FGF9, FGF16, and FGF20, sequence

comparisons were performed and the conserved synteny arrange-

ments of the flanking regions investigated (Figure 5). In tetrapods

the two blocks harbouring FGF9 or FGF20 are characterized by an

EFHA and a ZDHHC gene upstream the FGF genes. Extensive

gene-deserted regions are found downstream FGF9, 16 and 20. In

teleosts (where FGF9 is absent) the other genes forming the micro-

syntenic cluster are distributed on different chromosomes. In L.

chalumnae the FGF9 cluster is split between two scaffolds whose co-

localization on the same chromosome cannot as yet be confirmed.

However, the proximity of a putative EFHA1 coding fragment

upstream the 59 end of FGF9 suggests that the Latimeria FGF9

follows the tetrapod pattern.

Phylogenetic analysis of the FGF9/16/20 group (Figure 6)

uncovered three major clades corresponding to the 3 genes. The

exact position of L. chalumnae FGF20 sequence is unresolved; like

the X. laevis orthologue it is paraphyletic to teleosts and tetrapods.

As expected, the coelacanth FGF16 sequence is basal to the

tetrapods. However, the position of the Latimeria FGF9, albeit

firmly nested within the FGF9 tetrapod clade, does not reflect its

phylogenetic position in the taxonomic group.

Unexpectedly, neither FGF9 nor FGF20 expression was found in

L. menadoensis testis.

GSDF, a recently described gene that appears to be critically

involved in the development of male teleosts [29,39,40,45], has not

been found in tetrapods and no sarcopterygian homologue has yet

been described. However, BLAST analysis of teleost GSDF in the

L. menadoensis transcript database suggested a putative GSDF gene,

whose identity was confirmed by BLASTx analysis. Despite low

similarity values (29% identity, 49% positive matching with

Oncorhynchus mykiss GSDF NP_001118051.1, and 28% identity

and 50% positive matching with O. latipes GSDF

NP_001171213.1), BI and MP analyses reliably assigned the

Figure 3. Conserved micro-synteny and structure of the DMRT1 genomic locus and transcripts. A) Genomic representation of DMRT1 on
scaffold JH127237 of L. chalumnae. Grey box corresponds to gene. Small boxes and V signs represent the intron/exon map. B) Transcript
representation of DMRT1 in L. menadoensis and L. chalumnae. Boxes: exons; V signs: introns; white box: DM domain; light grey box: 39UTR; dashed
box: putative transposable element contained in the 39UTR. Dotted boxes represent missing exons in the ENSEMBL transcript prediction. C) Micro-
syntenic conservation of genomic blocks containing the DMRT1 gene. White pentagons represent DMRT1 genes. The pentagon tip points to the
relative gene orientation. Numbers near the pentagons stand for gene size expressed as kb, numbers on lines represent intergene distance expressed
as kb. ENSEMBL data: H. sa (Homo sapiens), M. mu (Mus musculus), O. an (Ornithorhynchus anatinus), G. ga (Gallus gallus), A. ca (Anolis carolinensis), L. ch
(Latimeria chalumnae), D. re (Danio rerio), T. ru (Takifugu rubripes). L. chalumnae DMRT1 position was clarified using the L. menadoensis transcript, by
integrating the L. chalumnae ENSLACT00000015034 coordinates. *In O. anatinus DMRT1 gene size was defined by comparison with other species.
**Values obtained in G. gallus from the annotation of NC_006127.3 accession.
doi:10.1371/journal.pone.0056006.g003
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sequence to the teleost GSDF clade (Figure 7). Besides GSDF the

phylogenetic analysis included two other proteins of the TGF-b
family, AMH and inhibin-a, selected for their close relationships to

GSDF [39]. A multiple amino acid alignment of the conserved

TGF-b domain of the 3 genes disclosed that the L. menadoensis

GSDF is a sister group of teleost GSDFs, with a posterior

probability of 100 in BI analysis and a bootstrap value of 97 in the

MP tree (Figure 8). The lack of a glycine, a diagnostic amino acid

not found in the GSDF protein [45], in a cysteine knot further

confirms the inclusion of the L. menadoensis sequence in the GSDF

group, the first homologue to be described in the sarcopterygian

lineage.

BLAST analysis of L. menadoensis GSDF on the L. chalumnae

genome allowed identification of a genomic counterpart that was

found partly on contig AFYH01270444 and partly on scaffold

JH127632, with an intervening gap of 171 bp. The L. menadoensis

GSDF is strongly expressed in testis but is not expressed in liver

(Figure 2A).

Figure 4. Phylogenetic tree of SOX8, SOX9, and SOX10. Phylogenetic analyses of vertebrate SOXE amino acid sequences. Midpoint rooting.
Total characters: 592, constant: 164, parsimony non-informative: 77, parsimony informative: 351. Numbers close to nodes represent posterior
probability in Bayesian Inference/bootstrap percentage in Maximum Parsimony. Danio rerio (SOX8: AAX73357.1; SOX9a: NP_571718.1; SOX9b:
NP_571719.1; SOX10: AAK84872.1); Dicentrarchus labrax (SOX8: CBN81184.1; SOX9: CBN81190.1); Gallus gallus (SOX8: AAF73917.1; SOX9: BAA25296.1;
SOX10: AAD38050.2); Homo sapiens (SOX8: AAH31797.1; SOX9: CAA86598.1; SOX10: CAG30470.1); Latimeria chalumnae (SOX8: ENSLACP00000018883;
SOX9: ENSLACP00000021343; SOX10: ENSLACP00000004990); Latimeria menadoensis (SOX9, SOX10: this study); Mus musculus (SOX8: AAF35837.1;
SOX9: AAH23953.1; SOX10: NP_035567.1); Oryzias latipes (SOX8: NP_001158342.1; SOX9a: AAX62152.1; SOX9b: AAX62151.1); Salmo salar (SOX8:
ABC24688.1; SOX9: ACN10975.1); Scyliorhinus canicula (SOX9: ABY71239.1); Trachemys scripta (SOX8: AAP59791.1; SOX9: ACG70782.1; SOX10:
ENSLACP00000004990); Xenopus laevis (SOX8: AAI69525.1; SOX9: NP_001084276; SOX10: NP_001082358.1). *Only a partial SOX8 sequence, perfectly
matching the ENSEMBL prediction of the L. chalumnae SOX8 gene, was retrieved in the transcriptome assembly of L. menadoensis.
doi:10.1371/journal.pone.0056006.g004
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Genes in female sexual development
Eight female determining/differentiation genes were examined

in the two coelacanths (Table 2): 3 genes belonging to the WNT

signalling pathway (WNT4, RSPO-1, and CTNNB1), a transcrip-

tion factor (FOXL2), two oestrogen receptors (ERa and ERb), a

steroidogenic enzyme (aromatase), and an activin-binding protein

(FST).

ENSEMBL prediction recovered all 8 gene sequences in the L.

chalumnae genome. Four transcripts (ERb, CTNNB1, WNT4, and

FOXL2) have a complete CDS; only two codons are missing at the

59 end of FST; RSPO-1 and aromatase are partial, whereas ERa,

subdivided into 4 different scaffolds in the WGS, could be only

partially identified.

Figure 5. Analysis of micro-syntenic conservation in FGF9, FGF16 and FGF20 blocks. Micro-syntenic conservation of genomic regions
containing the FGF9, FGF20 and FGF16 genes. White pentagons represent FGF genes. The pentagon tip points to the relative gene orientation. The
grey mark on the top third of the figure indicates a EFHA1 putative sequence of Latimeria chalumnae. Numbers near pentagons stand for gene size
expressed as kb, numbers on lines represent intergene distance expressed as kb. ENSEMBL data: H. sa (Homo sapiens), G. ga (Gallus gallus), A. ca
(Anolis carolinensis), X. tr (Xenopus tropicalis), L. ch (Latimeria chalumnae), D. re (Danio rerio), T. ru (Takifugu rubripes). Syntenic blocks for FGF20 in L.
chalumnae and X. tropicalis, and FGF16 in A. carolinensis are split between two different scaffolds. The ZDHHC15 genes belonging to the syntenic
block of FGF16 in H. sapiens and X. tropicalis lie on the same chromosome or scaffold, but are far removed from the genomic locus of FGF16 and ATRX.
*Genes missing in the ENSEMBL prediction.
doi:10.1371/journal.pone.0056006.g005
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Analysis of the L. menadoensis transcriptome yielded 3 complete

CDS sequences (CTNNB1, ERb, and FST) and 2 fragmented

CDSs (RSPO-1 and ERa), whereas 3 transcripts were missing

(FOXL2, WNT4, and aromatase).

The female sex development sequences of L. menadoensis and L.

chalumnae are compared in Figure S1B. Their values in L.

menadoensis testis and liver are shown in Figure 9. As expected,

WNT4, FOXL2 and aromatase — held to be responsible for female

development and pathway maintenance — were not expressed in

testis. CTNNB1, FST, and ERb were a strongly expressed in liver

(56.08, 27.33, 12.93 FPKM, respectively); the expression of FST

and CTNNB1 was expected, because their expression is ubiquitous

[76]. Finally, ERb liver expression in the L. menadoensis specimen, a

male individual, was unexpected.

Discussion

In this study a set of 33 genes held to be critically involved in

sexual development were isolated and characterized for the first

time in coelacanths. Comparison of the gene sequences of the two

Latimeria species confirmed the very slow rate of gene evolution

that has recently been documented in HOX genes [77], although

the latter genes are known to evolve particularly slowly. The 33

genes examined belong to a range of different families, thus

providing valuable information.

Interpretation of our data is of course limited by the fact that

they come from a single adult individual. However, given the

importance of this living fossil in understanding tetrapod and fish

evolution, and the exceptional opportunity provided by the

availability of high-quality RNA from a specimen of an

endangered species, we nonetheless cautiously draw some

conclusions.

Figure 6. Phylogenetic tree of FGF9, FGF16, and FGF20. Phylogenetic analysis of amino acid sequences of the vertebrate FGF9/16/20.
Midpoint rooting. Total characters: 237, constant: 91, parsimony non-informative: 35, parsimony informative: 111. Numbers close to nodes represent
posterior probability in Bayesian Inference/bootstrap percentage in Maximum Parsimony. Danio rerio (FGF16: ENSDART00000061928; FGF20a:
NP_001032180.1; FGF20b: NP_001034261.1); Gallus gallus (FGF9: NP_989730.1; FGF16; NP_001038115.1; FGF20: XP_426335.2); Homo sapiens (FGF9:
NP_002001.1; FGF16: NP_003859.1; FGF20: NP_062825.1); Latimeria chalumnae (FGF9: manually inferred from JH128123; FGF16: EN-
SLACT00000011509; FGF20: ENSLACT00000014939); Mus musculus (FGF9: ADL60500.1; FGF16: BAB16405.1; FGF20: NP_085113.2); Oryzias latipes
(FGF16: ENSORLT00000007651; FGF20a: ENSORLT00000012578; FGF20b: ENSORLT00000025767); Takifugu rubripes (FGF16: ENSTRUT00000021181;
FGF20(1): ENSTRUT00000008788; FGF20(2): ENSTRUT00000039390); Xenopus tropicalis (FGF9: XP_002938621.1; FGF16: ENSXETT00000009790; FGF20:
NP_001137399.1). Latimeria menadoensis is missing in this analysis because FGF9 and FGF20 are poorly or not expressed in the transcriptomes.
doi:10.1371/journal.pone.0056006.g006
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Ka/Ks analysis indicated that no gene in the set studied here is

under positive selection in coelacanths. A totally unexpected

finding was the very high DMRT6 expression in testis, which was

actually the most abundant male-specific transcript. To date the

gene had only been found in amniotes and is not annotated in

Xenopus and all fish genomes. This phylogenetic pattern could be

explained by its being a newly arisen paralogue of the DMRT

family at the base of amniote vertebrates. Detection of a bona fide

DMRT6 homologue in Latimeria points to a much earlier origin of

the gene and supports a possible origin from the 1R/2R whole

genome duplication events that occurred in ancestral vertebrates

[78] and a subsequent, repeated loss in the teleost fish and

amphibian lineages and even in basal chordates. Since information

on DMRT6 expression is quite scanty the interpretation of some of

these data is merely speculative. In mouse embryo it is expressed in

the developing brain but not in the gonads [43]. In the human

microarray database (https://www.genevestigator.com) it is highly

expressed exclusively in ovary and testis, whereas studies of mouse

organs have disclosed that only erythroblasts and oocytes show

elevated expression. Whatever its original function, it is reasonable

to assume that DMRT6 was taken over by other members of the

gene family, and that it has ceased to be required in those lineages

where it is no longer extant. Its persistence in Latimeria may

indicate an important function in male (and possibly female)

development which, according to current knowledge, was then at

least partially conserved in amniotes. Our findings suggest its being

a putative novel gene in the gonad regulatory network.

The high DMRT1 expression found in Latimeria testis and its

lack of expression in liver is in line with its expression pattern and

important role in testis development and in maintenance of the

Figure 7. Phylogenetic tree of GSDF, AMH, and inhibin-a. Phylogenetic analysis of amino acid sequences of vertebrate GSDF, inhibin-a and
AMH. Total characters: 849, constant: 84, parsimony non-informative: 225, parsimony informative: 540. Outgroup: human glial-derived nerve growth
factor (GDNF). Numbers close to nodes represent posterior probabilities in Bayesian Inference/bootstrap percentage in Maximum Parsimony. Anolis
carolinensis (inhibin-a: ENSACAT00000014331); Danio rerio (GSDFa: AEL99890.1; GSDFb: AEL99889.1; AMH: NP_001007780.1; inhibin-a:
ENSDART00000057348); Gallus gallus (AMH: NP_990361.1; inhibin-a: NP_001026428.1); Gasterosteus aculeatus (GSDF: ENSGACT00000021595;
inhibin-a: ENSGACT00000018909); Homo sapiens (AMH AAC25614.1; GDNF: NP_000505.1); Latimeria chalumnae (inhibin-a: ENSLACT00000017535);
Latimeria menadoensis (GSDF, AMH this study); Mus musculus (AMH: AAI50478.1; inhibin-a: AAH56627.1); Oreochromis niloticus (GSDF: BAJ78985.1);
Oryzias latipes (GSDF: NP_001171213.1); Oncorhynchus mykiss (GSDF: ABF48201.1); Takifugu rubripes (GSDF: ENSTRUT00000036269; AMH:
ENSTRUT00000045919); Xenopus laevis (inhibin-a: NP_001106349.1). The reliability of L. menadoensis CDSs is supported by the same sequence
resulting from application of two different assembly procedures.
doi:10.1371/journal.pone.0056006.g007
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male gonad identity documented in vertebrates, from fish to

mammals [65,66]. In teleost fish adult testis DMRT1 is found in

germ cells, in somatic cell types or both [65]. Unfortunately, RNA-

Seq transcriptome data provide no information on the cell type

expressing DMRT1 in coelacanth testis. In medaka a duplicated

version of DMRT1 on the Y chromosome, designated dmrt1bY, is

the master male sex determining gene [26,27]. Its major function

appears to suppress germ cell proliferation at the critical sex-

determining stage in males [79]. In adult testes it is dramatically

downregulated [80], and its high expression suggests that only the

autosomal DMRT1 (dmrt1a in medaka) may function in mature

testis. As in all the teleosts studied so far, a single DMRT1 copy was

found in L. menadoensis, suggesting that in coelacanths it may not

serve a major role in primary sex determination, but may do so in

testis differentiation and adult testis function.

Unlike all the other vertebrates studied [38,43,81–83], DMRT3

is not expressed in L. menadoensis male gonad.

The TGF-b family member GSDF is an important gene in

teleost fish gonad development and displays much higher

expression in testis than in ovary [39,40]. A duplicate of GSDF

may actually have become the master male sex determination

gene in Oryzas luzonensis [29]; there is strong evidence that in O.

latipes the master male sex determining gene dmrt1bY upregulates

GSDF and that upregulation correlates with early testis differen-

tiation [45]. No GSDF homologue has yet been identified outside

teleosts. Identification in our study of a bona fide GSDF sequence

in Latimeria and its high expression in testis (which also points at its

functional conservation) suggests that the gene arose already at the

base of the fish lineage, but was later lost during tetrapod

evolution. GSDF thus appears to be an ancestral male sex-

determining gene. In the absence of functional data on GSDF

function in fish, it remains unclear whether during tetrapod testis

development another TGF-b family member may have taken over

the function it exerted in teleosts and coelacanths.

The high expression in the L. menadoensis testis transcriptome of

SOX9, SOX10, WT1, AMH, DHH, SF-1 and SDR5A1 and 3 (at

least compared to liver), the low expression of AMHR2, and the

absence of the female factors FST, RSPO-1, WNT4, FOXL2,

aromatase, and oestrogen receptor transcripts are in line with their

expression patterns documented in many vertebrate species and

with their proposed function in sexual development.

In particular, the AMH/AMH-receptor system is of interest for

Latimeria sexual development. In mammals and most likely in all

tetrapods AMH induces Müllerian duct regression. Teleosts do not

have Müllerian ducts, whereas lungfish and Latimeria possess

oviducts that are homologous to those of tetrapods [84]. Despite

the absence of Müllerian ducts, AMH/AMH-receptor system has

an important function in the manifestation of gonadal sex in

teleosts, because in medaka AMH signalling is crucial in regulating

germ cell proliferation in early gonad differentiation [85]. Given

that AMH and AMH-receptor are expressed in L. menadoensis adult

testis, the AMH signalling system is present and probably active

Figure 8. Multiple alignment of the TGF-b domain in GSDF, AMH, and inhibin-a. Conserved amino acids of the cysteine knot are boxed.
Anolis carolinensis (inhibin-a: ENSACAT00000014331); Danio rerio (GSDFa: AEL99890.1, GSDFb: AEL99889.1; AMH: NP_001007780.1; inhibin-a:
ENSDART00000057348); Gallus gallus (AMH: NP_990361.1; inhibin-a: NP_001026428.1); Gasterosteus aculeatus (GSDF: ENSGACT00000021595; inhibin-
a: ENSGACT00000018909); Homo sapiens (AMH: AAC25614.1; GDNF: NP_000505.1); Latimeria chalumnae (inhibin-a: ENSLACT00000017535); Latimeria
menadoensis (this study); Mus musculus (AMH: AAI50478.1; inhibin-a: AAH56627.1); Oreochromis niloticus (GSDF: BAJ78985.1); Oryzias latipes (GSDF:
NP_001171213.1); Oncorhynchus mykiss (GSDF: ABF48201.1); Takifugu rubripes (GSDF: ENSTRUT00000036269; AMH: ENSTRUT00000045919); Xenopus
laevis (inhibin-a: NP_001106349.1). The reliability of L. menadoensis CDSs is supported by the same sequence resulting from application of two
different assembly procedures.
doi:10.1371/journal.pone.0056006.g008

Figure 9. Expression of female development genes. Expression
of female-determining/differentiation genes in L. menadoensis liver and
testis transcriptomes. Expression levels are reported as FPKM (Frag-
ments Per Kilobase of exon per Million sequenced fragments). The
expression levels of some housekeeping genes were also analysed: PGK
96.95 (liver), 342.41 (testis); RPS27a 152.59 (liver), 128.43 (testis); RPL19
744.01 (liver) 64.89 (testis); RPL11 457.35 (liver), 282.59 (testis); RPL32
629.83 (liver), 373.75 (testis); HSPCB 507.99 (liver), 1213.75 (testis).
Threshold value = 1. * Expression level assessed on L. chalumnae
orthologue.
doi:10.1371/journal.pone.0056006.g009
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there, as in adult teleosts [86,87,88], whereas in mouse testis the

system is downregulated before sexual maturity [89].

Several of the 33 genes tested, all of which are involved in sex

determination and differentiation in other organisms, were found

to be abundantly expressed in the liver transcriptome. The high

CTNNB1 levels were expected, due to the ubiquitous function of

this signal transducer of the WNT pathway. High FST expression

agrees with its expression in all vertebrates and with the finding

that it is required for liver cell growth homeostasis in mice [90].

This non-gonadal function of the gene may be conserved in

coelacanths. Similarly the transcription factor GATA-4, besides a

role in gene regulation in testis development [91], is also involved

in the control of a number of liver genes, explaining why

transcripts of the coelacanth homologue were found in both

tissues. In contrast to coelacanths, where 5a-reductase 2 is highly

expressed in liver, the 5a-reductase 1 isoform is differentially

regulated by androgens and glucocorticoids in rat liver, resulting in

high expression in this tissue, while 5a-reductase 2 is preferentially

expressed in gonads [92]. This may indicate lineage-specific sub-

functionalization of the isozymes during evolution.

The absence of SOX8 expression in Latimeria testis was

unexpected. In other vertebrates, including teleost fish, it is readily

detected in this organ, and in mammals it has been assigned an

important function in the FGF9/SOX9 interaction loop to

maintain Sertoli cell identity by acting redundantly to SOX9

[6,93]. Such back-up function does not seem to be required in

Latimeria testis maintenance, or may have been lost in the extant

coelacanth lineage. In medaka SOX9 is required for germ cell

proliferation and survival, but not for testis determination [94].

Together with the other L. menadoensis findings this may indicate

that the sex-determining function was acquired later in tetrapod

lineage, after the split of teleost and coelacanth lineages.

Intriguing data were found for FGF9 and 20, which together

with FGF16 constitute a gene subfamily of paracrine FGFs. The

critical role of FGF9 in mammalian testis development is well

established and appears to be conserved in all tetrapods. On the

other hand, the gene is not found in any teleost genome ([63,64],

ENSEMBL), unlike FGF16 and 20 (the latter being duplicated due

to the teleost genome duplication). In the amphioxus an FGF gene

is basal to the three FGFs in tetrapods [95]. FGF9 could thus be a

later duplicate of either FGF16 or 20, and its role in testis

development could be interpreted as an innovation arising in

tetrapods. However, identification of FGF9 in Latimeria supports an

origin during the 1R/2R whole genome duplication events that

took place in ancestral chordates and its loss in the lineage leading

to teleosts. In the teleost Oreochromis niloticus (Tilapia) FGF20b and

FGF16 are both expressed in ovary, whereas only FGF16 is (poorly)

expressed in testis [64]. Together with the complete absence of

FGF9, FGF20 and FGF16 expression in L. menadoensis liver and

testis, this indicates that the function of FGF signalling in testis, in

particular the central role of FGF9, was acquired later in tetrapod

evolution.

Surprisingly, the ERb gene was expressed in the liver of the

male coelacanth. A previous study of the same individual had

disclosed expression of the vitellogenin genes vtgABI, II and III

[50]. Vitellogenins are yolk proteins physiologically expressed in

the liver of reproductive females upon induction by oestrogens.

Thus expression of vitellogenins and oestrogen receptor indicates

the presence of oestrogens in this male specimen. They could

derive from environment pollutants, as reported in a number of

specimens from polluted waters; however this individual lived in

Bunaken Marine Park in submarine caves at a depth of 100 to

200 m, i.e. in a relatively protected environment. Alternatively,

ERb expression could be the result of a pathological condition, of a

hormone imbalance due to ageing, or of a physiological feature of

coelacanths.

Conclusions

Analysis of the coelacanth testis transcriptome, reported here for

the first time, disclosed important new information on which genes

involved in sexual development and testis differentiation in other

organisms are present and expressed in this living fossil and on the

evolution of this process in vertebrates. Interestingly, some genes

that are generally considered critical for testis maintenance in all

vertebrates, like SOX8 or a fibroblast growth factor gene from the

FGF9/16/20 subfamily, do not play this role in Latimeria. This

finding and the high GSDF expression found in the coelacanths

make their transcript profile more similar to that of modern fish. In

summary, the coelacanth testis transcriptome is expected to

contribute further important information to reconstruct the

ancestral tetrapod situation and indicates that evolutionary

innovations for sexual development occurred already during the

transition from water to land.

Supporting Information

Figure S1 Sequence pair comparison of male sex
development genes. Sequence pair comparison of male sex-

determining/differentiation transcripts from the L. menadoensis

transcriptome and L. chalumnae ENSEMBL predictions. Boxes

represent CDSs. Lines represent UTRs. Dashed boxes represent a

missing part in the CDS. Green lines/boxes represent an

inaccurate gene prediction or a mismatch between L. chalumnae

and L. menadoensis sequences. Scale dimension are preserved. B)

Sequence pair comparison of female sex development genes.

Sequence pair comparison of female sex-determining/differentia-

tion transcripts from the L. menadoensis transcriptome and L.

chalumnae ENSEMBL predictions. Boxes represent CDSs. Lines

represent UTRs. Dashed boxes represent a missing part in the

CDS. Green lines/boxes represent an inaccurate gene prediction

or a mismatch between L. chalumnae and L. menadoensis sequences.

Scale dimension are preserved.

(PDF)

Figure S2 Micro-syntenic conservation of CYP11B. Mi-

cro-syntenic conservation of genomic regions containing CYP11B

genes. Black pentagons represent CYP11B genes. The pentagon tip

points to the relative gene orientation. ENSEMBL data: H. sa

(Homo sapiens), M. mu (Mus musculus), B. ta (Bos taurus), L. ch (Latimeria

chalumnae), D. re (Danio rerio), T. ru (Takifugu rubripes).

(PDF)

Table S1 Gene Ontology analysis of the ‘‘sex determi-
nation’’ term.

(PDF)

Table S2 Gene Ontology analysis of the ‘‘sex differen-
tiation’’ term.

(PDF)
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