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Abstract

Studies of homozygous PAR2 gene knockout mice have described a mix of phenotypic effects in vitro and in vivo. However,
there have been few studies of PAR2 heterozygous (wild-type/knockout; PAR2-HET) mice. The phenotypes of many hemi
and heterozygous transgenic mice have been described as intermediates between those of wild-type and knockout animals.
In our study we aimed to determine the effects of intermediary par2 gene zygosity on vascular tissue responses to PAR2
activation. Specifically, we compared the vasodilator effectiveness of the PAR2 activating peptide 2-furoyl-LIGRLO-amide in
aortas of wild-type PAR2 homozygous (PAR2-WT) and PAR2-HET mice. In myographs under isometric tension conditions,
isolated aortic rings were contracted by alpha 1-adrenoeceptor agonist (phenylephrine), and thromboxane receptor agonist
(U46619) and then relaxation responses by the additions of 2-furoyl-LIGRLO-amide, acetylcholine, and nitroprusside were
recorded. A Schild regression analysis of the inhibition by a PAR2 antagonist (GB-83) of PAR2 agonist-induced aortic ring
relaxations was used to compare receptor expression in PAR2-WT to PAR2-HET. PAR2 mRNA in aortas was measured by
quantitative real-time PCR. In aortas contracted by either phenylephrine or U46619, the maximum relaxations induced by 2-
furoyl-LIGRLO-amide were less in PAR2-HET than in the gender-matched PAR2-WT. GB-83 was 3- to 4-fold more potent for
inhibition of 2fly in PAR2-HET than in PAR2-WT. PAR2 mRNA content of aortas from PAR2-HET was not significantly different
than in PAR2-WT. Acetylcholine- and nitroprusside-induced relaxations of aortas from PAR2-HET were not significantly
different than in PAR2-WT and PAR2 knockout. An interesting secondary finding was that relaxations induced by agonists of
PAR2 and muscarinic receptors were larger in females than in males. We conclude that the lower PAR2-mediated responses
in PAR2-HET aortas are consistent with evidence of a lower quantity of functional receptor expression, despite the
apparently normal PAR2 mRNA content in PAR2-HET aortas.
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Introduction

One of the most significant models developed to study the

pharmacology of protease-activated receptor 2 (PAR2) is the par2

gene knockout mouse (PAR2-KO). In the past fifteen years,

researchers have created several PAR2-KO strains, which have

been used to explore the role of PAR2 in various pathological

conditions/models [1]. PAR2 activation is particularly interesting

from the standpoint of new pharmaceutical development for

treatment of vascular endothelium health. A considerable amount

of literature has been published on the vascular actions of PAR2

[1], which include endothelium-dependent relaxation of vascular

smooth muscle [2], and pro-inflammation activities [3]. In

instances of cardiovascular disease where other endothelium-

dependent vasodilators have an attenuated effectiveness, PAR2-

mediated vasodilation is retained [4–7]. PAR2 can be activated by

trypsin-like serine proteases [4,8–10], and by PAR2-activating

peptides e.g. 2-furoyl-LIGRLO-amide (2fly) [4]. Only in the

recent years past have researchers published their findings about in

vivo and in vitro effects of the non-peptide PAR2 antagonist GB-83

[11]. So far there is only limited phenotype descriptions about

PAR2 null heterozygous mice (PAR2-HET), which have half of

the par2 gene content of wild-type PAR2 mice (PAR-WT).

In a study based on an experimental mouse model of arthritis,

significantly higher measures of synovium and periarticular tissue

inflammation were reported in PAR2-WT than in both PAR2-

HET and PAR2-KO [12]. Though PAR2-HET showed moderate

joint tissue damage as determined by their histological scores for

arthritis, the joint tissue phenotype index was closer in scores to

PAR2-WT than to PAR2-KO. Other studies have shown that

phenotypes of heterozygous transgenic mice may correspond

better to the phenotype of the wild-type than to the homozygous

transgenic mice [13]. For example, heterozygous pancreatic beta

cell dysfunction diabetic gene db mice do not have pancreatic

abnormalities, and thus, were similar to wild-type mice [14].
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Researchers propose that compensatory mechanisms allow the db

heterozygotes to retain the apparent wild-type phenotype [14].

Another proposed explanation for the phenotype equivalency

between heterozygotes and wild-types is the circumstance of tissue

spare receptors; more receptors are expressed in the tissues than

needed for maximal effect [15]. Clearly, the regulation of

Figure 1. Representative par2 genotyping results of WT, HET and KO mice. PCR products from mouse tail samples were separated by
agarose gel electrophoresis. BP; base pairs. Positive identification of par2 gene, 385 base pairs, in lanes: 1, 3 and 4. Positive identification for neomycin
gene, 198 base pairs, in lanes: 2, 3 and 5. Previously identified PAR2-WT (lane 4) and PAR2-KO (lane 5) ran as positive and negative controls,
respectively. Lane 7 contains the 1 Kb Plus DNA Ladder used for band identification.
doi:10.1371/journal.pone.0055965.g001

Figure 2. Relaxation effects of 2-furoyl-LIGRLO-amide (2fly) on untreated a1 receptor agonist and thromboxane A2 receptor
agonist-contracted mouse aortas across PAR2 genotypes. Male (top) and female (bottom) aortic rings were contracted submaximally by
phenylephrine (a, c) and U46619 (b, d) then relaxed by the cumulative addition of 2-furoyl-LIGRLO-amide (2fly) under isometric tension conditions.
Symbols are means 6 S.E.M., n = number of mice. Lines represent 4 parameter logistic curves which calculate the variables: pD2, Emax and hill-slope.
Variables were compared by 2 way ANOVA (sex x genotype) followed by Bonferonni post-hoc tests. (a, b, c, d)*P,0.05, Emax, genotype effect. (c)
WP,0.05, pD2 and hill-slope, PAR2-WT male vs female. (d) WWWP,0.001, hill-slope, WP,0.05, Emax, PAR2-HET male vs female.
doi:10.1371/journal.pone.0055965.g002
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phenotype varies with transcript content, but the extent of

phenotype change for different tissues is quite variable. The

peculiarities of gene regulation and vascular phenotype can also be

confounded by interaction with gender (e.g. transgenic NOS

knockout mice [16] and muscarinic (M3) activation in rats [17]).

Despite these observations, little is known about the general

impact of gender on PAR2 vascular biology.

The main aim of our current study was to determine the effect

of par2 zygosity on PAR2 activity as assessed by the relaxation of

vascular smooth muscle in PAR2-HET aortas and compared to

PAR2-WT. The main experimental approach was to measure the

isometric tension responses of aortas after exposure to different

vasodilators (PAR2 agonist (2fly), acetylcholine, and nitroprusside).

Based on evidence of a very small attenuation of PAR2-mediated

relaxation in PAR2-HET versus PAR2-WT, we conducted

myograph experiments with the PAR2 antagonist GB-83 that

quantified the tissue spare receptors in aortas of PAR2-WT and

PAR2-HET. Finally, PAR2 mRNA expression was measured in

aortas by quantitative real-time PCR. In light of the potential

interaction of gender with endothelium-mediated relaxation

mechanisms, descriptive comparisons of the vascular pharmacol-

ogy of aortas from PAR2-HET versus WT and KO, and males

versus females were deemed convenient secondary objectives. The

results indicate that the aortas of PAR2-HET were less responsive

to activation of PAR2, and the expression of functional PAR2 in

aortas was less in HET than in WT; despite constitutive levels of

PAR2 mRNA not being different between HET and WT. These

findings suggest a non-linear relationship between par2 gene copy

number and the pathophysiological consequences of PAR2

activation.

Methods

Ethics Statement
All animal handling and experimental procedures were

approved by the Institutional Animal Care Committee of

Memorial University in accordance with the guidelines and

principles of the Canadian Council of Animal Care.

Animals
Stock breeders of C57BL/6J (PAR2-WT) and B6.Cg-

F2rl1tm1Mslb/J (PAR2-KO) mice were purchased from Jackson

Laboratory (Bar Harbor, ME). Multiple PAR2-WT and PAR2-

KO mice breeders were crossed to produce F2 (PAR2-HET) mice

having different F1 lineages. These F2 PAR2-HET were crossed to

Table 1. Phenylephrine-contracted 2-furoyl-LIGRLO-amide
(2fly), acetylcholine and nitroprusside concentration-
relaxation relationships for PAR2-WT, PAR2-HET, and PAR2-KO
mouse aortas.

Vasodilator Genotype Sex n pD2
a

Emax

(%)b, c Hill slopef

2fly PAR2-WT m 7 8.060.1 9562 1.260.2

f 7 8.460.1f 9661 0.660.1f

PAR2-HET m 6 7.860.1 8963b 1.160.1

f 6 8.160.2 9263b 0.860.1

PAR2-KO m 7 0* 0* 0*

f 6 0* 0* 0*

Acetylcholine PAR2-WT m 8 7.760.1 8364 1.060.1

f 7 8.460.1d 9362c 0.760.1

PAR2-HET m 5 7.560.2a 8463 0.860.1

f 6 8.260.1a, e 9162c 0.760.1

PAR2-KO m 7 8.160.1a 9064 0.860.1

f 7 8.460.1a 9061c 0.860.1

Nitroprusside PAR2-WT m 8 8.660.1 9861 1.060.1

f 7 8.760.1 9263c 0.960.1

PAR2-HET m 6 8.660.1 9761 1.160.1

f 6 8.760.1 9463c 0.960.1

PAR2-KO m 7 8.760.1 9761 0.860.1

f 7 8.960.1 9662c 0.860.1

Values are means 6 S.E.M., n = number of mice/group. Variables were
determined by curve fitting vasodilator-induced relaxation responses to a 4
parameter logistic curve. Data were analyzed by 2 way ANOVA (sex x genotype)
followed by Bonferonni post-hoc testing. n/d, not determined. 0*, data not
significantly different from zero, P.0.05.
aP,0.01,
bP,0.05, main genotype effect.
cP,0.05, main gender effect.
dP,0.001,
eP,0.01,
fP,0.5, male vs female.
doi:10.1371/journal.pone.0055965.t001

Table 2. U46619-contracted 2-furoyl-LIGRLO-amide (2fly),
acetylcholine and nitroprusside concentration-relaxation
relationships for PAR2-WT, PAR2-HET, and PAR2-KO mouse
aortas.

Vasodilator Genotype Sex n pD2

Emax

(%)b, c Hill slopea

2fly PAR2-WT m 7 7.660.1 7962 1.960.3

f 8 7.760.1 8662 1.460.1

PAR2-HET m 8 7.460.1 7064b 1.560.1

f 6 7.660.1 8164b, e 3.260.5d

PAR2-KO m 7 0* 0* 0*

f 8 0* 0* 0*

Acetylcholine PAR2-WT m 7 7.460.2 6263c 1.360.2

f 7 7.660.1 7965c, e 1.360.2

PAR2-HET m 7 7.360.2 6167c 1.460.3

f 7 7.760.2 7963c, e 1.060.2

PAR2-KO m 8 7.660.1 8761c, f 0.960.1

f 7 7.860.3 7963c 0.960.2

Nitroprusside PAR2-WT m 6 7.960.2 9061 0.860.1

f 8 8.360.3 8563 2.060.6a

PAR2-HET m 6 8.060.2 8862 1.060.1

f 7 7.760.2 8362 2.960.9a

PAR2-KO m 6 8.260.2 8163 1.260.2

f 7 8.160.1 8463 2.360.7a

Values are means 6 S.E.M., n = number of mice/group. Variables were
determined by curve fitting vasodilator-induced relaxation responses to a 4
parameter logistic curve. Data were analyzed by 2 way ANOVA (sex x genotype)
followed by Bonferonni post-hoc testing. n/d, not determined. 0*, data not
significantly different from zero, P.0.05.
aP,0.01, main gender effect.
bP,0.05, main genotype effect.
cP,0.01, main interaction effect.
dP,0.001,
eP,0.05, male vs female.
fP,0.001, PAR2-WT vs PAR2-KO.
doi:10.1371/journal.pone.0055965.t002
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produce F3 which were used to generate F4 offspring; both F3 and

F4 were used in our experiments. Littermate mice were housed

and separated by sex in air filter-topped cages within a specific

pathogen-free barrier facility of the Health Sciences Centre at

Memorial University. Mice were provided food and water ad

libitum.

Sources of drugs and materials for myograph studies
Unless stated otherwise, all drugs and reagents were obtained

from Sigma Aldrich (Oakville, Ontario, Canada). 2-furoyl-leu-ile-

gly-arg-leu-orn-amide (2-furoyl-LIGRLO-amide) was obtained

from the University of Calgary Peptide Synthesis (Calgary,

Alberta, Canada). PAR2 antagonist GB-83 was obtained from

Axon Medchem (Groningen, Netherlands).

Genotyping
Mice (21 days of age) were genotyped according to the supplier’s

protocol with minor modification (Jackson Laboratory, Bar

Harbor, ME). Mouse tail clips (2 mm) were incubated in

50 mM NaOH at 95uC for 1 h then diluted with Tris HCl buffer

(pH 7.5) and centrifuged at 10,0006 g for 2 min before extracting

supernatant containing the DNA. DNA samples were stored at

220uC until used in assays. DNA concentrations were determined

by measuring A260 nm on a NanoDrop 1000 spectrophotometer

(Fischer Scientific, Ottawa, ON). PCR was carried out with three

oligonucleotide primer sets to target the characteristic genes in

PAR2-WT, PAR-HET and PAR2-KO [3]. The reaction mixture

with primers amplified a portion of exon 2 in the par2 gene present

in PAR2-WT and PAR2-HET and a fragment of the neomycin gene

present in PAR2-KO, and PAR2-HET. PAR2-HET was identi-

fied as containing amplified par2 exon 2 and neomycin gene

fragments. Gels cast were 1.5% agarose containing SYBR Safe

DNA chelating dye. A 1 kb DNA ladder (100 bp resolution) was

run parallel to PCR products for discerning fragment sizes. Gels

were run for 1.5 hours at 90 V to separate the DNA bands at a

distance $4 cm from the wells. Migrated PCR products were

imaged with Alpha Imager EP (Cell Biosciences, Santa Clara, CA)

using trans-ultraviolet light detection. A sample genotyping gel for

the above reaction is shown in Figure 1.

Figure 3. Relaxation effects of acetylcholine on untreated a1 receptor agonist and thromboxane A2 receptor agonist-contracted
mouse aortas across PAR2 genotypes. Male (top) and female (bottom) aortic rings were contracted submaximally by phenylephrine (a, c) and
U46619 (b, d) then relaxed by the cumulative addition of acetylcholine under isometric tension conditions. Symbols are means 6 S.E.M., n = number
of mice. Lines represent 4 parameter logistic curves which calculate the variables: pD2, Emax and hill-slope. Variables were compared by 2 way ANOVA
(sex x genotype) followed by Bonferonni post-hoc tests. (a, c) **P,0.01, pD2, main genotype effect. (b) ***P,0.001, Emax, PAR2-WT vs PAR2-KO
genotype effect. (c) WP,0.05, Emax, main gender effect. WWP,0.05, pD2, PAR2-HET male vs female. WWWP,0.001, pD2, PAR2-WT male vs female. (d)
WP,0.05, Emax, PAR2-WT and PAR2-HET male vs female.
doi:10.1371/journal.pone.0055965.g003
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Vascular reactivity
PAR2-WT, PAR2-HET and PAR2-KO (13 to 26 weeks of age)

were euthanized by overdose inhalation of isoflurane followed by

cardiac puncture. Descending thoracic aortas were removed from

mice and kept in ice-cold Krebs buffer until cleaned of

surrounding adipose and other adhering tissues. Krebs buffer

(pH 7.4, 37uC) was bubbled continuously with 95% O2/5% CO2

and was comprised of 114 mM NaCl, 4.7 mM KCl, 0.8 mM

KH2PO4, 1.2 mM MgCl2.6H2O, 2.5 mM CaCl2, 11 mM D-

glucose, and 25 mM NaHCO3. Rings of aortas (1 to 2 mm

lengths) were mounted on 200 mm diameter hooks in myograph

chambers (DMT 610M, DMT620M; Danish Myograph Tech-

nologies, Aarhus, DK) under isometric tension conditions.

Normalized resting tension was 13.3 kPa, which had been optimal

for obtaining maximal relaxation responses by agonists in a pilot

study by JCH. Tissue viability was determined by measuring aortic

ring contractions to K+ (30 to 120 mM). The high K+-induced

contractions were not different among par2 genotypes, and genders

(P.0.05). An aortic ring passed viability testing if these contrac-

tions were .1 mN/mm length of aorta. Contractility of aortas was

measured by concentration-response curve (CRC) relationships to

a1-adrenergic receptor agonist phenylephrine, and thromboxane

receptor agonist U46619. Contracting agents were used to

produce submaximal tension increases above resting tension levels

prior to determining the relaxations by 2-furoyl-LIGRLO-amide,

acetylcholine, and nitroprusside. In the experiments that assessed

NOS inhibition, aortas were exposed to an effective single

concentration of NO synthase (NOS) inhibitor (Nv-nitro L-

arginine-methyl ester; L-NAME). In the experiments assessing

PAR2 inhibition, aortic rings were incubated for 20 min with

either vehicle (controls; DMSO 0.1% (v/v) water) or GB-83

(0.1 mM–60 mM) and then cumulative 2fly, acetylcholine, and

nitroprusside concentration-relaxation response relationships were

constructed in aortas, submaximally contracted by addition of

phenylephrine (0.7 mM).

Quantitative real-time PCR
Purified RNA from lengths of aortas (2 mm, 3–5 mg) was

isolated using RNeasy Fibrous Kit QIAshredder spin columns

according to manufacturer’s directions (Qiagen, Mississauga, ON)

and a previously validated approach [6]. RNA samples were

stored at 220uC until used. RNA yield was determined using a

NanoDrop 1000 spectrophotometer (Fischer Scientific, Ottawa,

ON). Real-time PCR of the target and reference genes, par2 and

gapdh, respectively, was conducted using RNA-to-CT kit on ABI

7000 Real-time PCR System (Applied Biosystems, Streetsville,

ON).

Figure 4. Relaxation effects of nitroprusside on untreated a1 receptor agonist and thromboxane A2 receptor agonist-contracted
mouse aortas across PAR2 genotypes. Male (top) and female (bottom) aortic rings were contracted submaximally by phenylephrine (a, c) and
U46619 (b, d) then relaxed by the cumulative addition of nitroprusside under isometric tension conditions. Symbols are means 6 S.E.M., n = number
of mice. Lines represent 4 parameter logistic curves which calculate the variables: pD2, Emax and hill-slope. Variables were compared by 2 way ANOVA
(sex x genotype) followed by Bonferonni post-hoc tests. (c) WP,0.05, Emax, main gender effect. (b) WWP,0.01, hill-slope, main gender effect.
doi:10.1371/journal.pone.0055965.g004
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Data Analyses
Myograph data reported in tables and the symbols on graphs

are mean 6 standard error of the mean (S.E.M.). n = number of

mice. Graph Pad Prizm software ver. 4.1 was used to generate

curves and analyse statsitics. Emax was the observed maximum

effect for each drug. Drug CRC represent the best-fit relationship

for data by nonlinear regression using a four parameter logistic

equation, which was also used to calculate pD2, and hill slope

variables for each aorta. Effect = Bottom+(Emax - Bottom)/(1+
10 log EC50 - log [Drug]) * hill slope); Bottom is an asymptote equal to 0;

pD2 is negative logarithm base 10 of the EC50 value (drug

concentration (M) resulting in half of maximum effectiveness); %

relaxation = reversal of agonist-induced contraction i.e. 100%

relaxation is complete reversal of vasoconstrictor-induced tone.

Contractions are reported as effective pressure change (kPa),

which were calculated by normalization of the recorded isometric

tension changes relative to wall length and internal circumference

of each aortic ring. For myograph data, statistical comparisons

between two groups were made using Student’s t-test for unpaired

data, and more than two groups were made using two-way ANOVA

followed by Bonferroni post-hoc tests for multiple pairwise

comparisons.

To compare the expression of functional spare receptors in

PAR2-WT to PAR2-HET, a linear regression analyses was used:

pD2 = slope * (log10[GB-83])+intercept; where pD2 is determined

for the agonist (as described above) in the presence of varying

concentrations of antagonist (GB-83). Slopes were compared to 0

by Student’s t-test (P,0.05 was considered significant). Two data

points in PAR2-WT were excluded because these were considered

as being outliers of the linear regression scatter plots (dispersion

outside the 95% confidence intervals for the slopes). Equilibrium

binding constants for GB-83 (k GB-83) were calculated from 1/slope

as determined by a regression of the Schild equation [18,19]

defined by the formula: (rA21) = (1/k GB-83)[GB-83]+intercept;

Figure 5. Contractile effects of an a1 adrenergic receptor agonist and thromboxane A2 receptor agonist on untreated mouse aortas
across PAR2 genotypes. Male (top) and female (bottom) aortic rings were contracted by the cumulative addition of phenylephrine (a, c) and
U46619 (b, d) under isometric tension conditions. Symbols are means 6 S.E.M., n = number of mice. Lines represent 4 parameter logistic curves which
calculate the variables: pD2, Emax and hill-slope. Variables were compared by 2 way ANOVA (sex x genotype). (c) WP,0.05, hill-slope, main gender
effect.
doi:10.1371/journal.pone.0055965.g005

Vascular Function in Heterozygous par2 Null Mice
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where rA is defined as the ratio of agonist (2fly) EC50 in the

presence of antagonist (GB-83) to agonist EC50 in the absence of

inhibitor. For mRNA expression data, statistical comparisons were

made using REST software as previously described [6]. P,0.05

was considered significant. Gene expression data are expressed as

a box-and-whisker plot with error bars representing the upper and

lower 95% confidence intervals.

Results

Effect of par2 zygosity and gender on PAR2-mediated
vasodilation

To determine whether par2 zygosity affected PAR2-mediated

vasodilation, aortas from PAR2-WT, PAR2-HET and PAR2-KO

were contracted submaximally by phenylephrine and then

exposed to 2fly. In phenylephrine-contracted aortas, the maximal

effectiveness of 2fly was attenuated in PAR2-HET by 6% in males

and 4% in females compared to PAR2-WT (P,0.05, Emax,

Figure 2 a, c and Table 1). In males, the sensitivity to 2fly was not

different between PAR2-WT and PAR2-HET (P.0.05, pD2 and

hill slope, Figure 2 a and Table 1). However, in phenylephrine-

contracted aortas from female PAR2-HET there was a decrease in

sensitivity to 2fly at the lower range of concentrations (from

0.1 nM to 30 nM) versus PAR2-WT (P,0.05, pD2 and hill slope,

Figure 2 c and Table 1). To determine whether the selection of

contractile agonist affected these results, 2fly-induced relaxation

was also measured in aortas that were contracted submaximally by

U46619. The maximal effectiveness of 2fly was also attenuated in

PAR2-HET by 9% in males and 5% in females compared to

PAR2-WT (P,0.05, Emax, Figure 2 b, d and Table 2). In female

PAR2-HET, the 2fly CRC also indicated an increase in steepness

by 2 fold and increase in relaxation by 11% (P,0.001, hill slope,

P,0.05 Emax, Figure 2 d and Table 2) compared to male PAR2-

HET. As we had expected, 2fly did not relax either the

phenylephrine (Table 1) or U46619 (Table 2)-contracted aortas

from PAR2-KO (Tables 1 and 2).

Effect of par2 zygosity and gender on NOS-mediated
vasodilation

To determine whether par2 zygosity affected NOS-mediated

vasodilation, aortas were contracted submaximally by phenyleph-

rine then exposed to acetylcholine. Relaxations by acetylcholine

were not significantly different between PAR2-WT, PAR2-HET

and PAR2-KO (P.0.05, all variables, Figure 3 a, c and Table 1).

However, acetylcholine was more effective and five times more

potent in aortas from female PAR2-WT, and PAR2-HET than

male PAR2-WT, and PAR2-HET (Figure 3 c and Table 1).

However, to determine whether the choice of vasoconstrictor

affected these results, relaxations by acetylcholine were also

recorded in aortas that were contracted submaximally by

U46619. The maximum relaxation by acetylcholine was higher

in aortas from male PAR2-KO by 25% compared to male PAR2-

WT (P,0.001, Emax, Figure 3 b and Table 2). In addition male

PAR2-WT and PAR2-HET had attenuated relaxation by 17%

and 18% respectively when compared to females (P,0.05, Emax,

Figure 3 b and Table 2). Otherwise there were no significant

differences in acetylcholine CRC between PAR2-WT, PAR2-

HET and PAR2-KO.

Effect of par2 zygosity and gender on nitroprusside-
induced vasodilation

To determine whether par2 zygosity affected vascular smooth

muscle’s sensitivity to NO, aortas were contracted submaximally

by phenylephrine and then exposed to nitroprusside. There were

no significant differences within gender of PAR2-WT, PAR2-

HET, and PAR2-KO. However, maximum relaxations by

nitroprusside were measurably larger in aortas from males vs.

females (P,0.05,Emax, Figure 4 c and Table 1). Conversely we

determined that the choice of vasoconstrictor affected these results

when relaxations by nitroprusside were recorded in aortas that

were contracted submaximally by U46619. There were no

significant differences between male PAR2-WT, PAR2-HET

and PAR2-KO. Also, there were no significant differences

between female PAR2-WT, PAR2-HET and PAR2-KO. How-

ever, nitroprusside CRC in aortas from females were approxi-

mately 2-times steeper than male PAR2-WT, PAR2-HET and

PAR2-KO (P,0.05, hill slope, Figure 4 d and Table 2).

Effects of par2 zygosity and gender on contractions of
aortas by phenylephrine and U46619

To determine whether par2 zygosity affected a1-adrenergic

receptor agonist-induced vascular reactivity, we measured the

contractions of aortic rings by cumulative concentrations of

phenylephrine. Phenylephrine-induced contractions were not

different between PAR2-WT, PAR2-KO and PAR2-HET

(P.0.05 for all variables, Figure 5 a, c and Table 3). Interestingly,

phenylephrine CRCs in the untreated aortas were characterized

by an increased steepness of these relationships in female vs. male

mice (P,0.05, hill slope, Figure 5 c and Table 3). To determine

the effect of par2 gene on thromboxane A2 agonist-induced

vascular reactivity, we measured the contractions of aortic rings by

U46619. U46619 CRCs were not different in aortas from PAR2-

WT, PAR2-KO, and PAR2 HET. Gender did not affect U46619-

induced contractions of aortas (P.0.05, all variables, Figure 5 b, d

and Table 3).

Table 3. Phenylephrine and U46619 concentration-
contraction relationships for PAR2-WT, PAR2-HET, and PAR2-
KO mouse aortas.

Genotype Sex n pD2 Emax (kPa) Hill slopea

Phenylephrine

PAR2-WT m 12 7.060.1 4.060.4 1.460.1

f 11 6.960.1 2.760.3 1.860.1a

PAR2-HET m 8 6.960.1 3.560.3 1.260.1

f 8 6.860.1 3.760.3 1.560.1a

PAR2-KO m 12 6.960.1 3.360.3 1.660.3

f 11 6.960.1 3.660.3 1.760.2a

U46619

PAR2-WT m 12 7.560.1 11.660.7 2.460.2

f 11 7.660.1 13.260.6 2.360.2

PAR2-HET m 12 7.560.1 13.861.0 2.460.3

f 9 7.560.1 12.060.7 2.460.2

PAR2-KO m 10 7.460.1 11.760.6 2.660.3

f 11 7.760.1 13.560.8 2.560.2

Values are means 6 S.E.M., n = number of mice/group. Variables were
determined by curve fitting phenylephrine and U46619-induced contraction
responses to a 4 parameter logistic curve. Data were analyzed by 2 way ANOVA
(sex x genotype) followed by Bonferonni post-hoc testing.
aP,0.05, main gender effect.
doi:10.1371/journal.pone.0055965.t003
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Effect of NOS inhibitor L-NAME on phenylephrine and
U46619-induced contractions

To determine whether par2 zygosity affected constitutive NOS

activity in aortas, CRC for phenylephrine and U46619 were

measured in the absence and presence of 100 mM L-NAME. In

aortas from PAR2-WT, PAR2-HET, and PAR2-KO, treatment

with L-NAME increased the phenylephrine elicited maximum

contractions by ,2-times vs. untreated aortas (P,0.05, Emax,

Figure 6 a, c, e and Table 4). In aortas from PAR2-WT, PAR2-

HET and PAR2-KO, L-NAME treatment increased the sensitivity

to U46619 by less than 2-fold compared to untreated aortas

(P,0.05, pD2, Figure 6 b, d, f and Table 4).

Figure 6. Effect of a nitric oxide synthase inhibitor, L-NAME, on a1 adrenergic receptor agonist and thromboxane A2 receptor-
induced contractions of mouse aortas across PAR2 genotypes. PAR2-WT (a, b), PAR2-HET (c, d) and PAR2-KO (e, f) aortic rings were treated
with 100 mM L-NAME and contracted by the cumulative addition of phenylephrine or U46619 under isometric tension conditions. Symbols are means
6 S.E.M., n = number of mice. Lines represent 4 parameter logistic curves which calculate the variables: pD2, Emax and hill-slope. Variables were
compared by 2 way ANOVA (treatment x genotype) followed by Bonferonni post-hoc tests. (a, c) **P,0.01, (e) ***P,0.001, Emax, L-NAME vs
untreated. (e)**P,0.01, hill-slope, L-NAME vs untreated. (b, d, f) WP,0.05, pD2, main treatment effect.
doi:10.1371/journal.pone.0055965.g006
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Mechanism of PAR2-mediated vasodilation in PAR2-WT
and PAR2-HET aortas

To confirm that NOS alone is the main contributor to PAR2-

mediated vasodilations, aortas were contracted submaximally by

U46619 in the absence or presence of L-NAME and then exposed

to a single maximal effective concentration of 2fly (0.7 mM). In the

presence of L-NAME, 2fly-induced relaxations of aortas from

PAR2-WT and PAR2-HET were abolished (Figure 7 a). As well,

L-NAME abolished acetylcholine-induced relaxations, but not

nitroprusside-induced relaxations in PAR2-WT, PAR2-HET and

PAR2-KO (Figure 7 b, c). Equivalent results were obtained in

aortas contracted submaximally by phenylephrine in the absence

and presence of L-NAME (data not shown).

Differential inhibition by PAR2 antagonist GB-83 of the
relaxations of aortas by PAR2 agonist in PAR2-WT and
PAR2-HET

To determine whether a lower number of functional spare

receptors in PAR2-HET may have accounted for the lower level of

PAR2-agonist elicited activity in PAR2-HET aortas, we assessed

the effect of PAR2 antagonist GB-83 in PAR2-WT and PAR2-

HET. Exposure of aortas to GB-83 decreased the sensitivity of 2fly

in both PAR2-WT and PAR2-HET (Figure 8). The inhibitory

effects of equivalent doses of GB-83 were larger in PAR2-HET

than in PAR2-WT (slopes for PAR2-HET vs. PAR2-WT, 20.41

vs. 20.13, P,0.001, Figure 8). Based on a Schild regression of the

data in Figure 8, the equilibrium constants for GB-83 (k GB-83)

were estimated at 53617 mM in PAR2-WT and 1462 mM in

PAR-HET (P,0.01), which suggests a 3- to 4-fold difference in

functional receptors between strains. There was no significant

effect of GB-83 on phenylephrine-induced contractions, and

acetylcholine-, and nitroprusside-mediated relaxations of aortas

(data not shown).

Aorta par2 gene expression in PAR2-HET mice
To determine whether par2 gene expression was lowered in

aortas of PAR2-HET vs. PAR2-WT, mRNA content was

measured using quantitative real-time PCR. The par2 mRNA

level (normalized to gapdh expression within groups) in PAR2-HET

was not different that in PAR2-WT (Figure 9). Under the same

assay conditions no PAR2 mRNA was detected in PAR2-KO.

Discussion

The main finding of our study was that the maximal

effectiveness of the PAR2 agonist 2fly was attenuated in PAR2-

HET compared to PAR2-WT. This finding was consistent with

evidence obtained with the PAR2 antagonist GB-83 that indicated

a lower number of functional spare receptors in aortas of PAR2-

HET than in PAR2-WT. Despite the differential functional effects

of both a PAR2 agonist and PAR2 antagonist in PAR2-WT and

PAR2-HET, the content of PAR2 mRNA was not found to be

significantly different between these two strains. Acetylcholine and

nitroprusside were as effective in PAR2-HET as in PAR2-WT,

which indicated that the lower PAR2-AP response in PAR2-HET

was specific to PAR2 activation; and confirmed by finding that

PAR2 agonist did not affect PAR2-KO. Ancillary to the functional

differences between strains was a general observation that

endothelium-dependent relaxations were larger in aortas from

females than from males.

PAR2-HET have half the par2 gene content of PAR2-WT, and

yet the total PAR2 mRNA content in aortas of PAR2-HET was

not different than in those of PAR2-WT. These data indicate that

processes other than mRNA content alone regulate the constitu-

tive PAR2 expression in aortas. The magnitude of attenuation of

2fly-induced relaxations in PAR2-HET vs. PAR2-WT was small,

but consistent with subsequent results that attribute the differences

between strains to a differential expression of spare receptors on

the endothelium. According to the concept of spare receptors in

receptor theory, the number of membrane surface receptors in

cells exceeds the number required to elicit a maximal cellular

response [15,20]. Thus, the constitutive levels of PAR2 in PAR2-

WT aortas may exceed that which is needed to be activated in

order to observe the maximum effect when tested by the

maximally effective concentrations of 2fly. In tissues of PAR2-

HET, which are missing a par2 allele, the total number of PAR2

may be less than in PAR2-WT and yet, the number of receptors

that would be bound to agonist could be only marginally reduced.

Our spare receptor hypothesis was supported by an estimated

four-fold lower k GB-83 in PAR2-HET compared to PAR2-WT,

which indicates there are fewer spare receptors in PAR2-HET.

The methods that we used to quantitatively estimate the spare

receptors in aortas of PAR2-HET and PAR-WT are considered

classical pharmacological approaches and have been used to

examine other seven transmembrane G-protein coupled receptors

[18,21]. While the concept of spare receptors aligns with our

observations and offers one explanation for the closer resemblance

of PAR2-HET to PAR2-WT than to PAR2-KO, it does exclude

other possible mechanisms. It is known that receptor number does

not always correlate with biological responsiveness [22]. One

could argue that PAR2-HET have less PAR2 expression than

PAR2-WT and compensatory downstream mechanisms sustain

the capacity to elicit a near maximal cellular response. Compen-

satory mechanisms have been reported in heterozygous null

Table 4. Phenylephrine and U46619 concentration-
contraction response relationships for PAR2-WT, PAR2-HET
and PAR2-KO mouse aortas in the presence and absence of L-
NAME.

Genotype Sex n Treatment pD2
a Emax (kPa) Hill slope

Phenylephrine

PAR2-WT p 4 untreated 6.960.1 3.460.1 1.560.1

p 4 L-NAME 6.960.1 7.660.7b 1.260.1

PAR2-HET p 4 untreated 6.960.1 3.860.6 1.560.2

p 4 L-NAME 6.960.1 7.860.9b 1.160.1

PAR2-KO p 4 untreated 6.960.1 3.560.7 2.160.4

p 4 L-NAME 7.060.1 8.961.2c 1.160.1b

U46619

PAR2-WT p 6 untreated 7.560.1 12.261.2 2.760.3

p 6 L-NAME 7.660.1a 11.061.0 3.260.3

PAR2-HET p 4 untreated 7.560.1 14.562.0 2.760.5

p 4 L-NAME 7.660.1a 15.061.2 3.060.5

PAR2-KO p 5 untreated 7.460.1 12.862.7 3.060.6

p 5 L-NAME 7.660.1a 15.462.0 3.160.4

Values are means 6 S.E.M., n = number of mice/group. Variables were
determined by curve fitting phenylephrine and U46619-induced contraction
responses to a 4 parameter logistic curve. Data were analyzed by 2 way ANOVA
(treatment x genotype) followed by Bonferonni post-hoc testing. Sex (p) are
pooled male and female groups.
aP,0.05, main treatment effect.
bP,0.01,
cP,0.001, within strain L-NAME vs untreated.
doi:10.1371/journal.pone.0055965.t004
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receptor mouse models, which resulted in apparently equivalent to

wild-type phenotypes [13,14]. Therefore, an increase in PAR2

signal transduction mediated at the level of G-protein activation in

PAR2-HET could also explain why relaxations resulting from

PAR2 activation in these animals more closely resembled PAR2-

WT than PAR2-KO.

For more than a decade it has been reported that PAR2

activation of large caliber arteries follows a signal transduction

mechanism like that of muscarinic receptor activation by

acetylcholine. Similarly, there has been consistent interest in

investigating the interaction of gender with vascular health.

Particular attention has focused on estrogen and its actions on

NO signal transduction [23]. Based on the experimental design of

Figure 7. Effects of a nitric oxide synthase inhibitor, L-NAME, on acetylcholine, 2-furoyl-LIGRLO-amide (2fly) and nitroprusside-
mediated relaxations in thromboxane A2 receptor agonist-contracted mouse aortas across PAR2 genotypes. Aortic rings were treated
with 100 mM L-NAME then contracted submaximally by U46619 before single concentration addition of (a) 2-furoyl-LIGRLO-amide (2fly), (b)
acetylcholine and (c) nitroprusside under isometric tension conditions. Symbols are mean Emax value, n = number of mice. Variables were compared
by 2 way ANOVA (treatment x genotype) followed by Bonferonni post-hoc tests. (a)***P,0.001, Emax, PAR2-WT and PAR2-HET L-NAME vs untreated.
WWWP,0.001, Emax, untreated PAR2-WT vs untreated PAR2-KO. (b)***P,0.001, Emax, L-NAME vs untreated.
doi:10.1371/journal.pone.0055965.g007
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our study which requires numerous controls, it was possible for us

to investigate whether the NO signal transduction system was

altered in PAR2-HET, and whether there was any interaction

between PAR2 and gender. In fact there were no differences

between PAR2-HET and PAR2-WT for either acetylcholine- or

nitroprusside-induced relaxations of aortas. These data indicate

par2 heterozygosity did not affect NO signal transduction in the

endothelium and smooth muscle of the aortas. Across PAR2

strains, acetylcholine-induced relaxations in females were larger

than in males. We observed that these same sex-related differences

for PAR2-mediated vasodilation in PAR2-WT and PAR2-HET.

Surprisingly, nitroprusside-induced relaxations were larger in

males than in females. In a recent study, it was reported that the

PI3-kinase/endothelial NOS relaxation pathway of aortas in

female type II diabetic mice was preserved whereas this pathway

was attenuated in males [24]. This other study aligns with the

findings in our current work, and highlights that non-sex related

genotype mutations may produce de novo phenotypes that result in

actual sex-dependent effects. Overall our approach to investigating

the sex-related differences, which were relatively small was limited

to a descriptive assessment between strains. In addition, our data

reflects only the sex-related interactions in a healthy physiological

model, so our results could underestimate the sex-related

differences in response to pathological stresses. At the least, our

data provides a starting point for planning in-depth examinations

of sex-related differences in PAR2 vascular biology.

Considerable research has shown that heterozygous gene

knockout cells do not necessarily have reduced mRNA transcript

levels despite containing only one wild-type gene allele [25–27].

We have made an assumption that the results of the quantitative

real-time PCR assay of aortas represents endothelial cell expres-

sion of PAR2, which was based on a wide review of literature

describing PAR2 function in healthy mouse aortas. Though

PAR2-HET inherit half of the genomic content of par2, PAR2

mRNA levels were not different than in PAR2-WT aortas. An

intriguing hypothesis for future studies is that PAR2-HET cells at

baseline conditions accumulate excess PAR2 mRNA and there-

fore, PAR2-HET produce enough PAR2 mRNA to match that in

PAR2-WT. Likewise it is possible under the influence of a stimulus

which initiates receptor turnover, PAR2-HET may not produce

enough mRNA to meet the new protein synthesis demands [28].

In principal, both the mRNA turnover and the spare receptor

hypothesis could be investigated further using immunological

approaches to attempt to quantify receptor expression. Unfortu-

nately, such a proposal regarding PAR2 is not without practical

limitations. Our research group and others have published

evidence that the current array of commercial available antibodies

are ineffective for quantifying PAR2 by Western blot [6,29].

Future development and optimization of immunocytochemistry

techniques may eventually be used to further test these hypotheses.

While it was beyond the scope of our study, it is interesting to

consider whether the differences that we did observe between

PAR2-HET and PAR2-WT would be magnified under in vivo

conditions that stimulate PAR2 expression and activation, such as

tissue inflammation.

In conclusion, cells containing only one PAR2 wild-type allele

were unable to sustain the full wild type functionality of PAR2 in

mouse aortas. PAR2-HET do not have the same PAR2 vascular

responsiveness in vitro as PAR2-WT. These differences may be due

to a reduced quantity of functional PAR2 in PAR2-HET versus

PAR2-WT, despite equivalent mRNA content. Finally, relaxation

of mouse aortas by PAR2-AP is higher in females than in males,

which aligns with the broader literature on endothelial-dependent

vasodilation and raises interesting questions about the possible

interaction of gender with other PAR2-dependent activities.

Therefore, future studies are warranted to investigate the specific

mechanisms that lead to the differential effects of PAR2 agonist,

PAR2 antagonist, spare receptor expression in PAR2-HET, and to

evaluate mechanisms underlying the interaction of gender with

PAR2 vascular activities.

Figure 8. Differential inhibition by protease-activated receptor
2 antagonist GB-83 of 2-furoyl-LIGRLO-amide (2fly)-mediated
relaxations of aortas from male PAR2-WT and PAR2-HET. Aortic
rings were incubated for 20 min with either vehicle (controls; DMSO
0.1% (v/v) water) or GB-83 (0.1 mM–60 mM) and then cumulative 2fly
concentration-relaxation response relationships were constructed in
aortas, submaximally contracted by addition of phenylephrine (0.7 mM).
Thick lines indicate simple linear regression analyses of 2fly EC50 values
(symbols; log transformed) versus concentration of antagonist GB-83
(log transformed); thin dashed lines indicate S.E.M for each regression
line. n = number of mice. ***P,0.001, slope regression coefficient of
PAR-WT compared to PAR2-HET by Student’s t-test. Coefficient of
determination (R2) was 0.88 in both strains; *P,0.05, slopes for PAR2-
WT and PAR2-HET compared to 0, and WT vs. HET. 2fly -log EC50 values
of controls were 7.2560.05 in PAR2-WT and 7.4360.02 in PAR2-HET.
doi:10.1371/journal.pone.0055965.g008

Figure 9. par2 mRNA expression (PAR2-HET relative to PAR2-
WT) in mouse aortas. par2 mRNA from mouse aorta preparations
was measured by real-time PCR. par2 gene threshold cycle (CT) values
were normalized to gapdh gene CT values. Bars represent the 95% C.I.
par2 PCR reaction efficiency: 0.9517, gapdh PCR reaction efficiency:
0.9574. Expression ratio of par2 gene in PAR2-HET:PAR2-WT is not
significantly different from unity, P.0.05.
doi:10.1371/journal.pone.0055965.g009
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