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Abstract

The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology.
Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting
gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for
identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules
that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically
relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the
input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To
examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved
scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces
cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show
that despite some variation in global properties between networks, functional similarity remains high. Moreover, the
biological function captured by co-expression networks thresholded by RMT is highly robust.
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Introduction

Analyzing gene expression across one or more biological

systems is a complex challenge for experimental design, compu-

tational resource requirements, and biological interpretation. The

objective is a detailed understanding of complex gene interactions

underlying biological function. A number of methods have

emerged for accumulating gene co-expression relationships into

networks using microarray expression profiling experiments to

concomitantly measure gene activity of thousands of genes

[1,2,3,4]. In co-expression networks, nodes represent gene

products (e.g. mRNA transcripts) and edges indicate a significant

correlation of expression between a gene pair (co-expression).

Groups of nodes that are highly connected (and thus correlated)

indicate a biological relationship and can be separated into co-

functional gene interaction modules.

Many methods for construction of co-expression networks

compare gene expression measurements from samples across

multiple experimental conditions using a correlation statistic. The

most common and widely studied metric is Pearson’s correlation

coefficient. The Spearman and Kendall rank correlations are

common alternatives that may be weaker indicators in some cases

but are more resistant to outliers [5]. When the behavior of input

data does not match these correlation methods, mutual informa-

tion functions (MI) can be calculated to determine the relation-

ships among genes. Although MI is powerful, it is significantly

more computationally intensive than traditional correlation

metrics, making it less attractive for large-scale network analysis

[6]. Once a statistical method has been chosen, an n-transcript by

m-sample expression matrix is used as input for pair-wise

correlation analysis resulting in an n6n matrix of correlation

values—a similarity matrix.

After construction of the similarity matrix, a threshold must be

determined to separate significant, biologically meaningful corre-

lations from noise. Values in the similarity matrix below the

threshold are set to zero, and the result is an adjacency matrix

where each non-zero cell in the matrix represents an edge in the

co-expression network. Several methods have been used for

thresholding the similarity matrix. These include ad hoc methods

[7,8,9,10], permutation testing [11], linear regression [12], rank-

based methods [13,14], Fisher’s test of homogeneity [15], spectral

graph theory [16], Partial Correlation and Information Theory

(PCIT) [17], Weighted Gene Co-expression Network Analysis

(WGCNA) [18,19,20], methods that use topological properties

[21], and supervised machine learning methods [22,23]. Random

Matrix Theory (RMT), taken from the field of particle physics [24]

has been used in a number of applications that require separating

noise from disorder in complex systems. RMT is used to determine

a significance threshold and has been employed for studying

wireless communication channels [25], the stock market [26], and
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gene co-expression networks [27]. The RMT-based approach is a

reliable method for generating networks across a wide range of

datasets and has been used to generate biologically meaningful

networks for E. coli, yeast, Arabidopsis, maize, rice, Drosophila,

mouse, and human [27,28,29]. RMT based approaches have been

tested with multiple correlation metrics (e.g. Pearson’s, Spearman

or MI).

Despite the biological relevance of co-expression networks

derived from RMT, an in-depth exploration into the functional

robustness of the network has not been undertaken. Do changes in

the number and source of input samples have an effect on the

biological function represented in the network? What is the effect

on capture of biological function as transcript number is

decreased? One reason for the lack of detailed study on functional

robustness may be that testing on a mass scale with construction of

hundreds of networks across thousands of genes using existing

techniques would require excessive computation time and data

storage requirements.

To explore network functional robustness and algorithm

scalability we describe the construction of co-expression networks

from three very different organisms: Oryza sativa (rice), Homo sapiens

(human) and Saccharomyces cerevisiae (yeast). Using real mRNA

expression profiles, a series of expression matrices of varied sample

and transcript measurements (microarray probe sets) were

generated by randomly removing samples and probe sets from

the original input dataset. The RMT algorithm was then

employed for network thresholding over this wide range of input

dimensions and the resulting network properties were compared

with the original (non-varied) network as indicators of functional

robustness. We implemented an improved version of RMT in the

C programming language modeled after the original Java program

written by Luo et. al. [27]. We call this new version RMTGeneNet,

and demonstrate that it is highly scalable and can construct

networks at an unprecedented 103 scale thereby enabling high-

throughput network construction and analysis such as the

robustness analysis we describe.

Results and Discussion

Implementation of RMT
Random Matrix Theory (RMT) is an application of the spectral

theory of random matrices. RMT used by RMTGeneNet

examines changes in the nearest neighbor spacing distribution

(NNSD) of eigenvalues from the similarity matrix. It has been

shown that the NNSD of eigenvalues of any random matrix

appears as a Gaussian orthogonal ensemble (GOE) distribution,

and the distribution of a non-random matrix appears Poisson [27].

RMT selects a threshold for the co-expression network by finding

the point of NNSD transition from Poisson to Gaussian.

To determine this point of transition, RMT must iterate

through successively smaller correlation thresholds. RMT begins

at a large initial correlation value and then gradually decreases this

threshold, increasing the number of non-zero values in the

similarity matrix. Eigenvalues and the NNSD are determined at

each iteration. The NNSD of eigenvalues is determined by sorting

the eigenvalues, removing duplicates and then calculating the

differences (or spacing distance) between each adjacent eigenvalue.

Because the similarity matrix is a real matrix, a step value is used

to successively decrease the threshold.

To determine the threshold that transitions to a Gaussian

distribution, a Chi-square test is performed at each successive

level. By default, when a p-value of ,0.001 (Chi-square = 100,

df = 59) is obtained, the distribution is considered to have diverged

sufficiently from Poisson. After finding a significant threshold (at

Chi-square = 100), RMTGeneNet will continue to iterate through

lower thresholds until a Chi-square of 200 is found. This

additional computation prevents the software from selecting a

threshold that may simply be part of a local maximum.

RMTGeneNet uses the ssyev function from the Intel Math Kernel

Library LAPACK to calculate and sort the eigenvalues and the

gsl_spline_ init and gsl_spline_eval functions from the GNU

Scientific Library for calculating the spline curves.

The RMTGeneNet software provides three parameters for

controlling how the final correlation threshold is determined.

Users can set the starting correlation value (default of 0.92) and the

step value (default of 0.001) for successively diminishing the

correlation threshold. Additionally, users can set the Chi-square

test value (default of 100, which yields a p-value 0.001, df = 59) to

allow for more or less stringency. These parameters help fine tune

threshold calculation and the speed of calculation.

In some cases, a Chi-square value of 100 is never obtained and

all Chi-square values are higher than 100 despite a starting

threshold of 1. This occurs when correlation values are very high

across a large part of the similarity matrix, and indicates

homogeneity of expression across a large number of measurements

on the input samples. In this case, it is not possible to find a

threshold value or construct the network. In other cases,

RMTGeneNet may incorrectly miss a Chi-square value of 100 if

the step value is too high. In cases where RMTGeneNet fails to

identify a proper threshold, lower step values should be used.. In

the case where RMTGeneNet fails to identify a threshold because

the step value is too high, the results from the previous failed run

can help guide where to start the threshold at the next run.

Network Robustness Tests
Gene co-expression networks have been shown to be useful for

finding relevant gene interactions [3,12,13,28,30,31,32,33,34,35,

36,37,38,39,40,41,42]. In some cases, gene expression data from

public repositories such as NCBI GEO [43] are combined for an

organism to glean as many interactions across tissue types,

experimental conditions, genotypes, developmental stage or time

series in order to approximate a more holistic representation of an

organism’s interactome. It is not currently possible to measure

expression levels of every gene in every point in time and space;

therefore, it is useful to determine how missing data affects the

functional robustness of the network. As new samples are added or

removed, how will the significant biological relationships repre-

sented in the network change? Can any given network be

considered biologically relevant or do changes in sample

composition alter that relevance?

RMTGeneNet, allowed for mass construction of test networks

to examine functional robustness as data composition was varied.

In total, 528 total networks were constructed from NCBI GEO

datasets for human, rice, and yeast (see Table 1 for microarray

platform accession). Input datasets were derived from 2,000

randomly selected human samples, 1,360 rice samples (all

available at the time of study), and 1,701 yeast samples (all

available at the time of study). Prior to network construction,

outlier samples were removed and the normalized expression

matrices were reduced by randomly removing 25%, 50%, and

75% of the original samples and/or probe sets thereby mimicking

the effects of A) variable transcriptome sampling and B) variably

interrogated transcriptome. We refer to the network with 100%

probe sets and 100% samples as the ‘‘global’’ network. Networks

with randomly removed sample and probe sets are referred to as

‘‘perturbed’’ networks. Topological and functional properties of

the perturbed networks were each compared to the relevant global

network to examine the effects of input dataset variability.

Massive Gene Network Construction & Analysis
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Topology Robustness Results
Most naturally occurring networks, including biological net-

works, maintain certain topological characteristics [18]. We

measured some of these characteristics by counting nodes, edges,

nodes and edges in common (or shared) with the global network,

the average degree (,k.), clustering co-efficient, and scale-free

behavior (c) of each network. By measuring changes in topology

we examined when variation in sample and probe set size creates

networks that cease to look normal relative to the global network.

Shared node and edge counts for the human network can be found

in Figures 1A and 1B, respectively. Boxplots for rice and yeast

were similar and can be found in Figures S6B, S6C, S7B and S7C.

The non-perturbed human global network consisted of 3,111

edges and 828 nodes (Table 1). Randomly removing samples at

25%, 50% and 75% showed no significant change in the number

of connected nodes, nor in the number of edges between them.

Therefore, perturbations in the number of samples do not seem to

affect network size. In all cases, the network sizes were relatively

similar. However, as probe sets were randomly removed, the

number of connected nodes decreased to about one-half the nodes

in the global network and one-third of edges at 25% probe sets. A

similar decrease held true for both rice and yeast networks,

although the effect was less pronounced for yeast (Figures S4B,

S4C, S5B, S5C). The decrease in network size due to decreases in

probe sets is not unexpected since fewer probe sets would be

available to serve as nodes in the network. Summary statistics for

all properties tested for human, rice and yeast can be found in

Tables S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13.

Network size, in terms of the number of connected nodes and

edges, does not change by varying input sample size. However, do

changes in sample or probe set size radically change the

connections between the nodes? The number of similar (or

shared) nodes and edges with that of the global network quantified

how interactions in the perturbed networks were consistent with

the original global network. Results show that as samples were

removed, the number of similar or shared nodes and edges also

remained relatively high (Figure 1 A1–A4 and B1–B4), but there

was loss (Figures S6, S7). In human, at 25% samples, 157 nodes

(18% of the global network) were lost, and an additional 80 nodes

were new—not seen in the global network. For edges, at 25%

samples, 1,015 edges were lost (32%) but 442 were new edges.

Conservation of edges (relationships) for human, rice and yeast can

be seen in Table 2. It seems, therefore that variations in sample

quantity, even at 25% samples, left the majority of relationships

untouched, but there were large changes in the composition of the

networks with loss and gain of relationships.

The 2,000 samples used as input for the human global network

were randomly selected from over 48,000 candidate NCBI GEO

samples and therefore should represent a blend of measurements

from disparate tissues, conditions, stages and genotypes. Our

results indicated that with 25% of the original samples (approx-

imately 500 experiments) the relationships captured (shared edges)

in the human perturbed network looked very similar (67%) to that

of the global network. Because there were fewer samples for both

rice and yeast in NCBI GEO (1,360 and 1,701 respectively) we did

not randomly select from those, but used all samples for global

network construction. The percent difference in terms of shared

edges between the global network for rice and yeast with only 25%

samples (340 samples for rice and 425 for yeast) was 18% and 13%

respectively—fewer differences than for human (33%). The fact

that we saw fewer differences for rice and yeast may be because we

did not randomly sample from the dataset pool as we did for

human. If any given condition is over-represented in its co-
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Figure 1. Topological and functional properties of the human networks with randomly removed samples and probe sets. A) The
number of nodes shared with the global network for each perturbed network is shown at various sample removal rates (x-axis) when probe sets were
retained at rates of 25% (A1), 50% (A2), 75% (A3) and 100% (A4); B) The number of edges shared with the global network for each perturbed network
is shown at various sample removal rates (x-axis) when probe sets were retained at rates of 25% (B1), 50% (B2), 75% (B3), and 100% (B4); C) The
average Kappa, k, (functional similarity) between modules in the perturbed network with modules in the global network is shown at various sample
removal rates (x-axis) when probe sets were retained at rates of 25% (C1), 50% (C2), 75% (C3), and 100% (C4). The single line in the far right of plots
A4, B4 and C4 represents the global network.
doi:10.1371/journal.pone.0055871.g001

Massive Gene Network Construction & Analysis

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e55871



expression relationships, it should suffer less effect from a decrease

in number of samples.

From our results, we can expect that a sample size of near 300–

500 samples would result in a network with a high number of

robust relationships. An additional 1,500 samples did add a

significant number of new interactions, but there were diminishing

returns. For sample sets that are more random in time and space,

such as the human dataset, the difference is greatest but a

diminishing return was still evident.

Also, varying the number of samples had another effect—that of

adding new relationships. As mentioned above, 442 new edges

appeared on average in the 25% sample networks for human.

Also, in some cases, such as for rice, the number of edges was

greater than the global (Table 2). We suspect these new

relationships missed the RMT threshold for the global network

but passed the threshold in the perturbed networks. The perturbed

networks may have captured real relationships that were not

visible in the global because sample measurements from a variety

of experimental conditions were mixed. Random removal of

samples, especially in rice and yeast where some conditions may be

over-represented, allowed for some relationships to appear above

the noise.

Removal of probe sets simulated an array platform with

diminished capture of the total transcriptome. As would be

expected, measuring fewer genes results in smaller networks. Loss

of probe sets that measure hub nodes would create a greater loss

than non-hubs, and the number of lost relationships would be

dependent on the scale-free distribution: P(k) = ck2c, where P(k) is

the probability of any node having k connections, c being a

normalization constant and c the power. We found that reducing

probe sets by half reduces edges in the network by 45% for human,

41% for rice and 33% for yeast, and shared edges by 73% for

human, 70% for rice and 73% for yeast. Therefore, a platform

with reduced capacity to meFasure expression of all transcripts, as

well as the fact that global networks only capture a small number

of genes (4–14%), severely restricted the network from approxi-

mating a holistic representation of gene product interactions.

Other topological properties such as scaling exponent (c) and

clustering coefficient were measured. Figure S8 shows an average

c that stays relatively unchanged across all levels of samples and

probe sets for all three species. The estimate of c was calculated by

fitting each network to a Kronecker scale-free graph model [44]

and all networks exhibited a c of 1.3–1.6—well within the

expected range for a scale-free network. For clustering coefficient,

seen in Figure S9, the value remained relatively constant across all

changes in samples and probe sets—all within 0.5–0.6. These

results indicate that despite changes in sample and probe set

composition, all networks generated using the Random Matrix

Theory (RMT) thresholding method exhibit characteristics of

typical naturally occurring networks.

Functional Robustness Results
To test for change in biological function, we examined the

number of modules found in the network. The method used for

selecting modules was the Link-Community Method (LCM)

[45,46]. LCM more accurately models mutli-functional genes by

allowing them to be present in more than one module. We

assumed that decreases in the number of modules would result

from a loss of biological relationships in the network. Similarly, a

loss of modules would decrease the ability to identify functional

units in a network—lowering applicability of the network (or

functional robustness). Decreases in the number of shared nodes

and edges indicate loss of captured relationships, which affects

module detection and functional classification of modules. To

measure functional similarity, terms from the Gene Ontology

(GO) [47], InterPro [48,49], KEGG [50] and Pfam [51] databases

were tested for enrichment in modules. Only terms that were

enriched (occurred more often than by random chance alone,

p, = 0.001) were considered.

We also compared functional similarity of each perturbed

network with the global network using Kappa statistics [52]. The

average Kappa (k) is the average of all k from a pair-wise

comparison of the modules of a perturbed network with the global

network. A k value of 1 indicates perfect functional similarity

between the two networks and a value of 0 indicates no significant

functional similarity. While a k score greater than 0 indicates a

significant similarity, in practice a higher k value is typically used

to threshold meaningful comparisons. We chose a stringent k
value of 0.6 as a meaningful threshold for examining biological

robustness.

Functional similarity was measured by counting the number of

modules (the number of co-functional groups of genes) and using

Kappa statistics to measure similarity between modules. When

samples were varied and probe sets remained at 100% the number

of modules varied only slightly for human (Table 2). For rice and

yeast no significant differences in the number of modules or in the

Table 2. Conservation of relationships between global and perturbed networks.

Species
Percent Samples/Probe
sets

Global
Edges Edgesa Shared Edgesb

Edges
Lost New Edges Modules

Average
Kappac

Human 75/100 3,111 2,763 2,622 (84%) 489 141 129 0.72

Rice 75/100 34,470 36,210 32,530 (94%) 1,940 3,680 748 0.82

Yeast 75/100 8,643 8,758 8,240 (95%) 403 518 179 0.73

Human 50/100 3,111 2,542 2,326 (75%) 785 216 117 0.66

Rice 50/100 34,470 38,620 31,720 (92%) 2,750 6,900 786 0.78

Yeast 50/100 8,643 8,559 7,869 (91%) 774 690 180 0.67

Human 25/100 3,111 2,538 2,096 (67%) 1,015 442 124 0.59

Rice 25/100 34,470 34,530 28,080 (81%) 6,390 6,450 710 0.71

Yeast 25/100 8,643 8,583 7,437 (86%) 1,206 1,146 171 0.65

aThe average number of edges in network with samples removed.
bEdges in common between the perturbed network and the global network.
cKappa = 1 indicates perfect similarity, Kappa.0 is non-significant.
doi:10.1371/journal.pone.0055871.t002
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average degree of modules was found (Figures S10 and S11). This

lack of change may indicate that genes that are lost typically do not

play a critical role in maintaining module structure. Kappa testing

was then used to identify to what degree modules in perturbed

networks were new constructs or were conserved with the global

network. The average k across all pairwise module comparisons

between the perturbed networks and the global was very high for

all levels of sample variation, ranging from 0.59–0.72 for human

(Table 2, Figure 1 C1–C4) and similar for yeast and rice (Figure

S12; Table S9). These results indicate that networks, even with

25% of samples, are in general functionally conserved with

networks that have 3 times the number of samples. Random

removal of samples has little effect on the functional representa-

tions in the network. This functional consistency supports the idea

that the relationships lost by a decrease in samples are primarily

from genes that do not serve as hub nodes or that belong to highly-

connected modules that can maintain structure despite loss of

some constituents.

RMT Threshold Robustness
Finally, we were interested to identify how the RMT threshold

changed as samples and probe sets were randomly removed. A rise

in threshold would indicate an increase in variability of the gene

expression pairwise correlations. One important characteristic of

global networks thresholded using a knowledge-independent

approach is that they tend to be quite small. As described

previously, the human, rice and yeast global networks contained

only 4%, 7% and 14% respectively of the measurable genes of

their microarray platforms. This low gene count in the network is

a side-effect of high-variability in the dataset. This variability is

most likely a result of combining measurements from disparate

tissues, conditions, developmental stages and genotypes. For the

human, rice and yeast networks, there did seem to be a slight

upward trend in the threshold as samples were removed, and a

downward trend as probe sets were removed (Figure S13; Table

S10). However, the changes were minimal and potentially non-

significant. The results do seem to show that as probe sets are

removed the variability of the dataset decreases. This stability is to

be expected as probe sets are removed and cannot contribute to

the correlations.

Network Construction Scalability
Scalability of network construction was assessed from the two

steps of the construction process: construction of the correlation

matrix (CCM) and the random matrix modeling step (RMM) as

described in the ‘‘Implementation of RMT’’ section. Scalability

was measured in terms of execution time and data storage

footprint: two key metrics that impact a researcher’s ability to

study and generate networks efficiently. Scalability of both steps

was highly dependent on the size of the input dataset (the number

of probe sets and the number of experimental samples (micro-

arrays)). For CCM, the calculation time required to build the

Pearson correlation matrix was essentially fixed and did not

depend on the actual dataset numbers, so there was little variance

(,1% standard error). However, as the dataset size increased and

more computation was required, the correlation matrix generation

time increased proportionally to the number of samples, as shown

in Figure 2A. Increasing the number of probe sets produced an

exponential increase in correlation matrix generation time. It was

determined that this runtime was proportional to the square of the

number of probe sets (Figure 2B). Because the correlation matrix is

a pairwise calculation among all probe sets, this runtime scaling

was consistent with the expected behavior of the algorithm.

Figure 2. Scalability plots for human networks. A) CCM run time
with variable number of samples; B) CCM runtime with variable number
of probe sets; C) RMM runtime with variable size correlation matrix (size
n6n where n is the number of probe sets).
doi:10.1371/journal.pone.0055871.g002
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The random matrix modeling (RMM) step used the values in

the correlation matrix to determine a biologically significant

threshold for building the gene co-expression network [27]. For

execution time, the number of samples had no effect because the

pairwise correlation step creates a single correlation value

regardless of the number of samples. However, the number of

probe sets was a major factor for execution time. Figure 2C shows

that as the probe set size is varied, RMM runtimes scale similar to

CCM (Figure 2B). Runtimes once again scaled proportionally with

the square of the number of probe sets due to the rapidly

increasing size of the two-dimensional correlation matrix.

Although the overall data follows this trend, high variability was

seen in individual network generation trials due to differences in

the underlying biological signal. Networks that completed with a

higher RMT threshold (often creating a smaller co-expression

network with less coverage of the transcriptome) completed

significantly faster than networks with a lower threshold even

though the number of probe sets was identical. Averaging these

results over a wide range of networks resulted in the general trends

shown in Figure 2C. With both major steps of the co-expression

network generation scaling proportionally to the square of the

number of probe sets, additional program acceleration through

General-Purpose Graphics Processing Unit (GPGPU) and multi-

node implementation will be required to study increasingly large

datasets in the future. Our improvements to the RMT code

decreased average running time on a typical system from roughly

58 hours to 2 hours (296 speedup), but scaling to a human

network of 100,000 probe sets would still require approximately

35 hours without additional optimization. The data footprint was

also heavily reduced by 80–90% by taking advantage of matrix

symmetries and conversion to binary format (rather than plain

text). The full-scale rice network, for example, was reduced from

34GB of intermediate storage to 5GB. Scalability results for

human, rice and yeast networks can be found in Figures S1, S2,

S3.

We call this improved implementation of the RMT method for

gene co-expression network construction: RMTGeneNet. It is

currently available with an open source GNU GPLv2.0 license

and can be found on a GitHub repository at https://github.com/

spficklin/RMTGeneNet.

Methods

Construction of RMTGeneNet Software Package
The Random Matrix Theory (RMT) algorithm [27] used in this

study was previously written in Java—a high-level programming

language that excels in simplicity and portability with a wide range

of pre-programmed libraries. However, it has been demonstrated

that languages like C and FORTRAN generally provide better

overall performance and greater optimizations because of their

lower level access to computer system resources. Thus, a C

implementation of the RMT algorithm was written using the

GNU Scientific Library [53] and IntelH Math Kernel Library [54]

to test for performance improvement and address potential

optimizations. RMTGeneNet consists of three software compo-

nents: ‘ccm’ for performing Pearson correlations of probe set

expression profiles, ‘rmm’ for performing RMT to identify a

network cutoff threshold and a Perl script ‘parse_pearson_bin.pl’

which generates a network edge list. RMTGeneNet is freely

available in a GitHub repository at https://github.com/spficklin/

RMTGeneNet.

Construction of Global Co-Expression Networks
Global gene co-expression networks were constructed for

human (Homo sapiens), rice (Oryza sativa) and yeast (Saccharomyces

cerevisiae). First, AffymetrixH microarray samples were obtained

from NCBI GEO [43]. For the human network, a random

selection of 2,000 samples was obtained from the tens-of-

thousands available from the Human Genome U133 Plus 2.0

Array platform (GPL570). For rice, 1,360 samples were obtained

from the Rice Genome Array platform (GPL2025) and 1,701

samples from the Yeast Genome 2.0 Array platform (GPL2529).

Next, samples were RMA normalized [55] for each organism

respectively using the command-line interface for the RMAEx-

press software [56]. After normalization, outliers were detected

using the arrayQualityMetrics [57] package provided by BioCon-

ductor [58]. Samples indicated as outliers in two of three outlier

tests were removed from the dataset. Ambiguous probe sets that

could potentially hybridize with multiple gene products were

removed from the expression data. Ambiguous probe sets were

determined by mapping probe sets to genes and filtering those that

mapped to multiple genes. The mapping of probe sets to human

genes was obtained directly using the Table Browser of the UCSC

Genome Browser [59,60] for the hg19 build of the human

genome. For rice, the mappings were obtained directly from the

Michigan State University (MSU) Rice Genome Annotation

Project [61] for the rice genome v6.0. For yeast, the mappings

were obtained by using NCBI megablast (parameters: -W 25 -F F -

D 3) to align probe sequences to the Saccharomyces cerevisiae

S288C genome [62]. Next, a similarity matrix was constructed

using the ccm software of the RMTGeneNet package. The

similarity matrix contained Pearson correlations of probe set

expression profiles across all non-outlier samples. Random Matrix

Theory (RMT) was then used for knowledge-independence

identification of a signal-to-noise threshold for culling the similarity

matrix. The rmm software of the RMTGeneNet package was used

for RMT thresholding. Finally, a flat file edge list was constructed

by providing the RMT threshold and the similarity matrix to the

parse_pearson_bin.pl Perl script of the RMTGeneNet package.

The edge list for each organism served as the final global co-

expression network respectively.

Randomization of Samples and Probe sets
In order to test for network robustness, a percentage of samples

and probe sets in the human, rice, and yeast datasets were

randomly removed at 25%, 50% and 75% from the expression

matrix: columns are samples, rows are probe sets, and matrix cells

are expression values. This process employed a common random

number generator to iteratively tag samples and probe sets for

removal until the desired percentage of each was reached (e.g.

75% samples and 100% probesets; 75% samples and 75%

probesets; etc.) To obtain statistics for each combination of

sample/probe set percentage levels, the expression matrix was

randomly filtered at least 10 times for each combination. A new

network was constructed for each perturbed dataset with Pearson

correlation parameters and RMT thresholding (as described in the

‘‘Implementation of RMT’’ section) using the RMTGeneNet

package and each network was then tested using various metrics to

measure robustness. Networks were constructed in parallel on the

heterogeneous Palmetto computational cluster housed at Clemson

University.

Conclusions

Our results show that the RMT construction method that

employs a knowledge-independent thresholding strategy is able to
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create networks with a high degree of robust relationships and

modules. Where samples are randomly distributed across tissues,

developmental stages, genotypes, etc., (such as our human dataset)

networks were 67% similar despite only 25% of samples with a

high degree of functional similarity (0.59k). The robustness of

networks where samples were over-representations of certain

conditions, tissues, stages or genotypes, such as expected in the

yeast and rice networks, exhibited even higher similarity. We

conclude therefore that all of the networks where only samples

varied (probe sets remained at 100%) are moderately robust.

However, due to the diminishing return of adding more samples,

global networks cannot serve as a mechanism for capturing and

representing the entire interactome of an organism, or even at

least the entire interactome measured by the collection of samples

used to construct the network.

Also, the improved code exhibited approximately 296 speedup

over existing methods and reduced data storage enabling the

construction of hundreds of networks for applications such as our

robustness analysis. Network construction execution time was

shown to scale linearly with the number of samples per probe set

and exponentially with the total number of probe sets. Data

storage size also scaled exponentially with the total number of

probe sets indicating that future research on larger datasets will

require more sophisticated computing systems with increased

parallelization or algorithms optimized for many-core multi-node

architectures.
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global network. Each box contains plots for networks with 25%,

50%, 75% and 100% of probesets respectively. The x-axis in each

box represents the percentage of samples.

(DOCX)

Figure S10 Average degree, ,k., co-efficient per network for

A) human, b) rice and c) yeast. The single line in the far right

represents the global network. Each box contains plots for

networks with 25%, 50%, 75% and 100% of probesets

respectively. The x-axis in each box represents the percentage of

samples.

(DOCX)

Figure S11 Number of modules per network for A) human, b)

rice and c) yeast. The single line in the far right represents the

global network. Each box contains plots for networks with 25%,

50%, 75% and 100% of probesets respectively. The x-axis in each

box represents the percentage of samples.

(DOCX)

Figure S12 Average Kappa, k, per network for A) human, b)

rice and c) yeast. The single line in the far right represents the

global network. Each box contains plots for networks with 25%,

50%, 75% and 100% of probesets respectively. The x-axis in each

box represents the percentage of samples.

(DOCX)

Figure S13 RMT Threshold per network for A) human, b) rice

and c) yeast. The single line in the far right represents the global

network. Each box contains plots for networks with 25%, 50%,
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