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Abstract

Posttranslational modifications (PTMs) of proteins are responsible for sensing and transducing signals to regulate various
cellular functions and signaling events. S-nitrosylation (SNO) is one of the most important and universal PTMs. With the
avalanche of protein sequences generated in the post-genomic age, it is highly desired to develop computational methods
for timely identifying the exact SNO sites in proteins because this kind of information is very useful for both basic research
and drug development. Here, a new predictor, called iSNO-PseAAC, was developed for identifying the SNO sites in proteins
by incorporating the position-specific amino acid propensity (PSAAP) into the general form of pseudo amino acid
composition (PseAAC). The predictor was implemented using the conditional random field (CRF) algorithm. As a
demonstration, a benchmark dataset was constructed that contains 731 SNO sites and 810 non-SNO sites. To reduce the
homology bias, none of these sites were derived from the proteins that had §40 pairwise sequence identity to any other. It
was observed that the overall cross-validation success rate achieved by iSNO-PseAAC in identifying nitrosylated proteins on
an independent dataset was over 90%, indicating that the new predictor is quite promising. Furthermore, a user-friendly
web-server for iSNO-PseAAC was established at http://app.aporc.org/iSNO-PseAAC/, by which users can easily obtain the
desired results without the need to follow the mathematical equations involved during the process of developing the
prediction method. It is anticipated that iSNO-PseAAC may become a useful high throughput tool for identifying the SNO
sites, or at the very least play a complementary role to the existing methods in this area.
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Introduction

The post-translational modifications (PTMs) play a key role in

providing proteins with structural and functional diversity, as well

as in regulating cellular plasticity and dynamics. As illustrated in

Fig. 1, the PTMs are covalent processing events that change the

properties of a protein by proteolytic cleavage for adding a

modifying group to one or more amino acids [1]. One of the most

important and universal PTMs is S-nitrosylation (SNO). Recent

reports have indicated that SNO can modulate protein stability

and activities [2,3], as well as play an important role in a variety of

biological processes, including cell signaling, transcriptional

regulation, apoptosis, and chromatin remodeling [4].

Meanwhile, increasing evidences have indicated that SNO also

plays an important role in various major diseases [5], such as

cancer [6], Parkinson’s [7,8], Alzheimer’s [9], and Amyotrophic

Lateral Sclerosis (ALS) [10].

Therefore, identifying the SNO sites in proteins is very

important to both basic science and drug development.

Many experimental methods have been developed for identi-

fying SNO sites, such as BST (biotin switch assay) [11], SNOSID

[2,12], and SNO-RAC [13]. These methods have indeed provided

very useful information in this area. Unfortunately, as pointed out

by Seth and Stamler [14], experimental identification of SNO sites

with a site-directed mutagenesis strategy is laborious and low-

throughput due to the labile nature and the low-abundance of

SNO. Particularly, with the avalanche of protein sequences

generated in the postgenomic age, it is highly desired to develop

computational method for timely and reliably identifying the SNO

sites in proteins.

Actually, some computational methods have been proposed in

this regard. For instance, based on a benchmark dataset consisting

of 65 positive and 65 negative samples, Gross and co-workers [15]

developed a computational method called SNOSID for identifying

the SNO sites in proteins. A few years later, based on 549

experimentally verified SNO sites in 363 proteins, Xue et al [16]

proposed a different method called GRS-SNO for the same

purpose. Shortly afterwards, Li et al. [17] tried to improve the

prediction performance by introducing the SVM (support vector

machine) algorithm. Recently, Li et al. [18] proposed a predictor

by means of the nearest neighbor algorithm (NNA) with the

maximum relevance minimum redundancy (mRMR) approach.
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Each of the aforementioned methods has its own merit and did

play a role in stimulating the development of this area although

bearing various limits. For example, no web-server has been

provided for the most recent method [18], and hence its usage is

quite limited, particularly for the majority of experimental

scientists.

The present study was initiated in an attempt to develop a new

and more powerful method to identify the SNO sites in proteins in

hopes that it may become a useful tool for both basic research and

drug development in the relevant areas.

As summarized in [19] and demonstrated in a series of recent

publications (see, e.g., [20,21,22,23]), to establish a really useful

statistical predictor for a protein or DNA system based on the

sequence information, we usually need to consider the following

procedures: (i) construct or select a valid benchmark dataset to

train and test the predictor; (ii) formulate the protein or DNA

sequence samples with a feature vector that can truly reflect the

intrinsic correlation with the target to be predicted; (iii) introduce

or develop a powerful algorithm (or engine) to operate the

prediction; (iv) properly perform cross-validation tests to objec-

tively evaluate the anticipated prediction accuracy; (v) establish a

user-friendly web-server for the predictor that is accessible to the

public. Below, let us describe how to deal with these procedures

one by one.

Materials and Methods

1. Benchmark Dataset
The benchmark dataset used in this study was derived from the

dbSNO (http://dbsno.mbc.nctu.edu.tw/), a database that inte-

grates the experimentally verified cysteine SNO sites in 1,757

proteins from different species [24]. To reduce the redundancy

and avoid homology bias, we randomly picked 438 proteins in

which none had §40% pairwise sequence identity to any other.

Based on these proteins and the annotations in the dbSNO

database, a total of 731 experimentally verified SNO sites were

collected. Meanwhile, to construct a corresponding negative

dataset, a total of 810 experimentally verified non-SNO sites were

randomly collected from the 438 proteins as well. The corre-

sponding peptide fragments for the 731 SNO sites and 810 non-

SNO sites were derived from UniProt database (release 2012_08),

as can be generally formulated by

P~R{jR{(j{1) � � �R{2R{1C Rz1Rz2 � � �Rz(j{1)Rzj ð1Þ

where the subscript j is an integer, R{j is the j-th downstream

amino acid residue from cysteine (C), Rj the j-th upstream amino

acid residue, and so forth. Hereafter let us call a peptide as SNO

or non-SNO peptide if its center is a SNO or non-SNO site,

respectively. In the current study, we choose j~10. If the

upstream or downstream in a protein was less than 10, the lacking

residues were filled with the dummy code X. Thus, the benchmark

dataset S can be formulated as

S~S
zzS

{ ð2Þ

where the positive dataset Sz contains Nz~731 SNO peptide

fragments, while the negative dataset S
{

contains N{~810 non-

SNO peptide fragments (cf. Eq.1), respectively. For reader’s

convenience, their sequences as well as the corresponding sites and

protein codes are given in Supporting Information S1.

2. Sample Formulation or Feature Vector
To develop a sequence-based predictor for identifying the

attribute of a protein or peptide, one of the keys is to formulate its

sequence with an effective mathematical expression that can truly

reflect the intrinsic correlation with the attribute to be predicted

[25]. The most straightforward method to formulate the sample of

a protein or peptide is to use its entire amino acid sequence. To

identify its attribute, the tools for computing amino acid sequence

similarity, such as BLAST [26,27], were utilized to search the

database for those targets that have high sequence similarity to the

query protein or peptide. Subsequently, the attribute annotations

of the target proteins or peptides thus found were used to infer the

attribute for the query protein or peptide. Unfortunately, this kind

of straightforward sequential model, although containing the

entire sequence information, failed to work when the query

protein or peptide did not have any significant sequence similarity

to the attribute-known proteins or peptides.

To avoid the above difficulty, which is inherent to the sequential

model, various non-sequential or discrete models to formulate

protein or peptide samples were proposed in hopes to enhance the

prediction power.

Among the discrete models, the simplest one is the amino acid

(AA) composition or AAC [28]. However, if using AAC to

represent a peptide sample, its sequence-order or position-specific

information would be totally lost, and hence might considerably

limit the prediction quality.

To avoid completely losing the sequence-order information, the

pseudo amino acid composition (PseAAC) was proposed to

represent the sample of a protein or peptide [29,30]. The idea

of PseAAC has been widely used in bioinformatics, proteomics,

and system biology [25], such as predicting protein structural class

[31], predicting metalloproteinase family [32], predicting protein

subcellular localization [33], predicting DNA-binding proteins

[21], identifying allergenic proteins [34], identify recombination

spots [35], identifying bacterial virulent proteins [36], predicting

protein folding rate [37], predicting GABA(A) receptor proteins

[38], predicting protein supersecondary structure [39], predicting

cyclin proteins [40], classifying amino acids [41], predicting

enzyme family class [42], identifying risk type of human

papillomaviruses [43], identifying protein quaternary structural

attributes [44], identifying GPCRs and their types [45], and

discriminating outer membrane proteins [46], among many others

(see a long list of references cited in [19]). Because of its wide and

increasing usage, in 2012 a powerful software called ‘‘PseAAC-

Builder’’ (http://www.pseb.sf.net) [47] was established for gener-

ating various special modes of PseAAC for protein or peptide

sequences.

Figure 1. A schematic illustration to show the S-nitrosylation
(SNO) site of a protein segment. The protein segment contains
2jz1 residues, where C (cysteine) is located at the center of the
peptide and all the other amino acids are depicted as an open circle
with a number to indicate their sequential positions, respectively.
doi:10.1371/journal.pone.0055844.g001
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According to a recent review [19], the general form of PseAAC

for a protein or peptide P is formulated by

P~ y1 y2 � � � yu � � � yV½ �T ð3Þ

where the subscript V is an integer, and its value as well as the

components y1, y2, … will depend on how to extract the desired

information from the amino acid sequence of P (cf. Eq.1). Below,

let us describe how to extract useful information from the

benchmark dataset S to define the peptide samples concerned

via Eq.3.

It is obvious from Eq.1 that when j~10, the corresponding

peptide contains (2jz1)~21 amino acid residues. Since the

residue at the center of the sequence is always C, we can omit it.

Thus, for the convenience of formulation, Eq.1 can be reduced to

P~R1R2 � � �R9R10R11R12 � � �R19R20 ð4Þ

Also, as mentioned above, besides the 20 native amino acids, the

sequence may also contain a dummy amino acid X. Here, let us

use the numerical codes 1, 2, 3, …, 20 to represent the 20 native

amino acids according to the alphabetic order of their single letter

codes, and use 21 to represent the dummy amino acid X.

Thus, we can introduce the following 21|20 matrix, the so-

called ‘‘Position Specific Amino Acid Propensity’’ (PSAAP) matrix

[48], to define the components of Eq.3

Z~

z1,1 z1,2 � � � z1,20

z2,1 z2,2 � � � z2,20

..

. ..
.

P
..
.

z20,1 z20,2 � � � z20,20

z20z1,1 z20z1,2 � � � z20z1,20

2
66666664

3
77777775

ð5Þ

where the element

zi,j~Fz(Ri Dj){F{(Ri Dj) (i~1,2, � � � ,21; j~1,2, � � � ,20) ð6Þ

where Fz(Ri Dj) is the occurrence frequency of the i-th amino acid

(i = 1,2,� � � ,21) in thej-th column in the positive benchmark

dataset S
z

that can be easily derived using the method described

in [49] from the sequences in the Supporting Information S1,

while F{(Ri Dj) is the corresponding occurrence frequency but

derived from the negative benchmark dataset S
{

.

Thus, the components in Eq.3 can be uniquely defined by

yu~

z1,u when Ri~A

z2,u when Ri~C

..

. ..
.

z20,u when Ri~Y

z21,u when Ri~X

8>>>>>>><
>>>>>>>:

u~1,2, � � � , V (~20)½ � ð7Þ

Since the components of the feature vector in Eq.3 are now

derived from the benchmark dataset S~SzzS{, its correlation

with SNO sites and non-SNO sites are self-evident.

3. Operation Engine
In this study, the ‘‘Conditional Random Field’’ (CRF) algorithm

[50] was adopted to operate the prediction. It is a discriminative

probabilistic model that inherits the advantages of ‘‘Maximum

Entropy Markov Models’’ (MEMMs), often used for labeling and

segmenting sequence data. The CRF operation engine has been

quite successfully utilized in various areas of bioinformatics and

computational proteomics, such as gene prediction [51], SNP

array analysis [52], and protein structure [53].

In this study, the CRF software was downloaded from the web-

site at http://www.di.ens.fr/,mschmidt/Software/crfChain.

html. When used in the current study, the input of CRF is the

query peptide fragment P as formulated by the feature vector of

Eq.3 as well as Eqs. 5–7, and the output is Q(P), thus the query

peptide is identified as

P[
SNO peptide, if Q(P)wH

non-SNO peptide, otherwise

�
ð8Þ

where H~0:58 is a threshold obtained by optimizing the overall

success rate for the peptides in the benchmark dataset S as done in

[54].

The predictor thus established via the above procedures is called

iSNO-PseAAC, which can be used to identify the nitrosylated

proteins and their SNO sites. To provide an intuitive picture, a

flowchart is provided in Fig. 2 to illustrate the prediction process

of iSNO-PseAAC.

Results and Discussion

1. Four Different Metrics for Measuring the Prediction
Quality

One of the important procedures in developing a useful

statistical predictor [19] is to objectively evaluate its performance

or anticipated success rate. To provide a more intuitive and easier-

to-understand method to measure the prediction quality, here the

criteria proposed in [55] was adopted. According to those criteria,

the rates of correct predictions for the SNO peptides in dataset S
z

and the non-SNO peptides in dataset S
{

are respectively defined

by

Figure 2. A flowchart to show the prediction process of iSNO-
PseAAC.
doi:10.1371/journal.pone.0055844.g002

Identify Cysteine S-Nitrosylation Sites
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Lz~
Nz{Nz

{

Nz
, for the SNO-peptides

L{~
N{{N{

{

N{
, for the non-SNO peptides

8>><
>>: ð9Þ

where Nz is the total number of the SNO peptides investigated

while Nz
{ the number of the SNO peptides incorrectly predicted

as the non-SNO peptides; N{ the total number of the non-SNO

peptides investigated while N{
z the number of the non-SNO

peptides incorrectly predicted as the SNO peptides. The overall

success prediction rate is given by [56]

L~
LzNzzL{N{

NzzN{
~1{

Nz
{zN{

z

NzzN{
ð10Þ

It is obvious from Eqs. 9–10 that, if and only if none of the SNO

peptides and the non-SNO peptides are mispredicted, i.e.,

Nz
{~N{

z~0 and Lz~L{~1, we have the overall success rate

L~1. Otherwise, the overall success rate would be smaller than 1.

On the other hand, it is instructive to point out that the

following equation is often used in literatures for examining the

performance quality of a predictor

Sn~
TP

TPzFN

Sp~
TN

TNzFP

Acc~
TPzTN

TPzTNzFPzFN

MCC~
(TP|TN){(FP|FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p

8>>>>>>>>>>><
>>>>>>>>>>>:

ð11Þ

where TP represents the true positive; TN, the true negative; FP,

the false positive; FN, the false negative; Sn, the sensitivity; Sp, the

specificity; Acc, the accuracy; MCC, the Mathew’s correlation

coefficient.

The relations between the symbols in Eq.10 and those in

Eq.11 are given by

TP~Nz{Nz
{

TN~N{{N{
z

FP~N{
z

FN~Nz
{

8>>><
>>>:

ð12Þ

Substituting Eq.12 into Eq.11 and also considering Eq.10, we

obtain

Sn~1{
Nz

{

Nz

Sp~1{
N{

z

N{

Acc~L~1{
Nz

{zN{
z

NzzN{

MCC~
1{

Nz
{

Nz z
N{

z
N{

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1z
N{

z{Nz
{

Nz

� �
1z

Nz
{{N{

z
N{

� �s

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð13Þ

From the above equation, we can see: when Nz
{~0 meaning

none of the SNO peptides was mispredicted to be a non-SNO

peptide, we have the sensitivity Sn~1; while Nz
{~Nz meaning

that all the SNO peptides were mispredicted to be the non-SNO

peptides, we have the sensitivity Sn~0. Likewise, when N{
z~0

meaning none of the non-SNO peptides was mispredicted, we

have the specificity Sp~1; while N{
z~N{ meaning all the non-

SNO peptides were incorrectly predicted as the SNO peptides, we

have the specificity Sp~0. When Nz
{~N{

z~0 meaning that

none of SNO peptides in the dataset Szand none of the non-SNO

peptides in S
{

was incorrectly predicted, we have the overall

accuracy Acc~L~1; while Nz
{~Nz and N{

z~N{ meaning

that all the SNO peptides in the dataset Sz and all the non-SNO

peptides in S
{

were mispredicted, we have the overall accuracy

Acc~L~0. The MCC correlation coefficient is usually used for

measuring the quality of binary (two-class) classifications. When

Nz
{~N{

z~0 meaning that none of the SNO peptides in the

dataset S
z

and none of non-SNO peptides in S
{

was

mispredicted, we have Mcc~1; when Nz
{~Nz=2 and

N{
z~N{=2 we have Mcc~0 meaning no better than random

prediction; when Nz
{~Nz and N{

z~N{ we have MCC~{1

meaning total disagreement between prediction and observation.

As we can see from the above discussion, it is much more intuitive

and easier-to-understand when using Eq.13 to examine a

predictor for its sensitivity, specificity, overall accuracy, and

Mathew’s correlation coefficient.

2. Cross-Validation to Evaluate Success Rates
In statistical prediction, the following three cross-validation

methods are often used to examine a predictor for its effectiveness

in practical application: independent dataset test, subsampling (K-

fold cross-validation) test, and jackknife test. However, as

elaborated in [57] and demonstrated by Eqs.28–32 of [19],

among the three cross-validation methods, the jackknife test is

deemed the least arbitrary and most objective because it can

always yield a unique result for a given benchmark dataset, and

hence has been increasingly used and widely recognized by

investigators to examine the accuracy of various predictor (see,

e.g., [36,45,58,59,60,61,62]). However, to reduce computational

time, here let us adopt the 10-fold cross-validation to examine the

prediction quality as done by many investigators for PTM sites

prediction [63,64,65,66]. The cross-validations were performed 50

times for different subsampling combinations, followed by

averaging their outcomes.

The results thus obtained on the benchmark dataset S for the

four metrics as defined in Eq.13 are given in Table 1, where for

facilitating comparison the corresponding results obtained by

GPS-SNO [16] are also given. As can be seen from the table, the

overall success, sensitivity and MCC rates achieved by iSNO-
PseAAC are all significantly higher than those by the GPS-SNO

predictor [16] regardless its threshold was set at ‘‘high’’,

‘‘medium’’, or ‘‘low’’. As for the method proposed in [17] and

the method recently proposed in [18], the former web-server was

not working, while the latter had no web-server at all, and hence

no corresponding data can be given in Table 1 for comparison.

3. Large-Scale Prediction in Identifying Nitrosylated
Proteins

Listed in Supporting Information S2 are the predicted results by

iSNO-PseAAC for a set of 461 independent nitrosylated proteins,

none of which occurs in the 438 proteins used to train the current

predictor. They were taken from Xue et al. [16] and known

belonging to nitrosylated proteins as verified by experiments. As

Identify Cysteine S-Nitrosylation Sites
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we can see from Supporting Information S3, of the 461 proteins,

416 were predicted containing at least one SNO sites meaning

belonging nitrosylated proteins. The overall success rate was

416=461~90:24%:

4. Web-Server Guide
For the convenience of the vast majority of experimental

scientists, a web-server for iSNO-PseAAC was established. Below,

let us give a step-by-step guide on how to use the web-server to get

the desired results without the need to follow the mathematic

equations that were presented just for the integrity in developing

the predictor.

Step 1. Open the web server at at http://app.aporc.org/

iSNO-PseAAC/ and you will see the top page of the predictor on

your computer screen, as show in Fig. 3. Click on the Read Me

button to see a brief introduction about iSNO-PseAAC predictor

and the caveat when using it.

Step 2. Either type or copy/paste the query protein sequences

into the input box shown at the center of Fig. 3. The input

sequence should be in the FASTA format. A sequence in FASTA

format consists of a single initial line beginning with a greater-than

symbol (‘‘.’’) in the first column, followed by lines of sequence

data. The words right after the ‘‘.’’ symbol in the single initial line

are optional and only used for the purpose of identification and

description. All lines should be no longer than 120 characters and

usually do not exceed 80 characters. The sequence ends if another

line starting with a ‘‘.’’ appears; this indicates the start of another

sequence. Example sequences in FASTA format can be seen by

clicking on the Example button right above the input box.

Step 3. Click on the Submit button to see the predicted result.

For example, if you use the query protein sequences in the

Example window as the input, after clicking the Submit button,

you will see on your screen the predicted SNO site positions and

the corresponding sequences segments as formulated by Eq.1. All

these results are fully consistent with the experimentally verified

results. It takes about a few seconds for the above computation

before the predicted results appear on the computer screen; the

more number of query proteins and longer of each sequence, the

more time it is usually needed.

Step 4. Click on the Citation button to find the relevant

papers that document the detailed development and algorithm of

iSNO-PseAAC.

Step 5. Click on the Data button to download the benchmark

datasets used to train and test the iSNO-PseAAC predictor.

Caveat. To obtain the predicted result with the expected

success rate, the entire sequence of the query protein rather than

its fragment should be used as an input. A sequence with less than

50 amino acid residues is generally deemed as a fragment. Also,

the size of your input for each submission should be less than

100K; if greater than 100K, please contact Yan Xu at xuyan@

ustb.edu.cn.

Table 1. The performance comparison of iSNO-PseAAC with
other existing prediction methodsa in this area.

Predictor Sn(%) Sp(%) Acc(%) MCC

iSNO-PseAAC 67.01 68.15 67.62 0.3515

GPS-SNOb 18.88 89.63 56.07 0.1210

GPS-SNOc 28.04 81.98 56.39 0.1193

GPS-SNOd 45.01 73.33 59.90 0.1915

aThe method proposed in [18] has no web-server provided, and the web-server
in [17] did not work. Therefore, the rates for the two methods are unavailable.
bThe method proposed in [16] when the threshold parameter was set ‘‘high’’.
cThe method proposed in [16] when the threshold parameter was set
‘‘medium’’.
dThe method proposed in [16] when the threshold parameter was set ‘‘low’’.
doi:10.1371/journal.pone.0055844.t001

Figure 3. A semi-screenshot to show the top page of the iSNO-PseAAC web-server. Its website address is at http://app.aporc.org/iSNO-
PseAAC/.
doi:10.1371/journal.pone.0055844.g003
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Supporting Information

Supporting Information S1 The benchmark dataset

S~S
z|S

{
, where the positive dataset S

z
contains

Nz~731 SNO sites while the negative dataset S
{

contains

N{~810 non-SNO sites.

(PDF)

Supporting Information S2 Predicted results by iSNO-

PseAAC on an independent dataset of 461 proteins, which have

been verified by experiments as nitrosylated proteins but none of

which occurs in the 438 proteins used to train the current

predictor. The overall success rate was 416=461~92:24%:
(PDF)

Supporting Information S3 The detailed SNO sites detected

by iSNO-PseAAC on an independent dataset with 461 nitrosy-

lated proteins, of which 416 were predicted containing at least one

SNO site.

(PDF)
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