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Abstract

Biodiversity is important in maintaining ecosystem viability, and the availability of adequate biodiversity data is
a prerequisite for the sustainable management of natural resources. As such, there is a clear need to map biodiversity at
high spatial resolutions across large areas. Airborne and spaceborne optical remote sensing is a potential tool to provide
such biodiversity data. The spectral variation hypothesis (SVH) predicts a positive correlation between spectral variability
(SV) of a remotely sensed image and biodiversity. The SVH has only been tested on a few terrestrial plant communities. Our
study is the first attempt to apply the SVH in the marine environment using hyperspectral imagery recorded by Compact
Airborne Spectrographic Imager (CASI). All coverage-based diversity measures of benthic macrophytes and invertebrates
showed low but statistically significant positive correlations with SV whereas the relationship between biomass-based
diversity measures and SV were weak or lacking. The observed relationships did not vary with spatial scale. SV had the
highest independent effect among predictor variables in the statistical models of coverage-derived total benthic species
richness and Shannon index. Thus, the relevance of SVH in marine benthic habitats was proved and this forms a prerequisite
for the future use of SV in benthic biodiversity assessments.
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Introduction

Biodiversity plays an important role in maintaining ecosystem

integrity and services over long periods of time [1,2,3,4,5]. The

cumulative effects of multiple human stressors such as resource

extraction, pollution, habitat destruction, spread of non-indige-

nous species, and climate change have ever-increasing impacts on

biological diversity. Mapping biodiversity at regional to global

scales is increasingly important in order to sustainably manage

natural resources and preserve biodiversity [6]. Time series of high

resolution biodiversity maps can be used to detect change in

natural systems and to assess the effects of management decisions

on biodiversity patterns over space and time [7]. Mapping

biodiversity by means of traditional sampling methods is expensive

and time-consuming. Moreover, traditional sampling-point-wise

field work is not suitable for covering extensive areas in high detail.

Rapid development of optical remote sensing techniques has

opened a new avenue for seamless mapping of biodiversity over

large areas. This has led to the development of new approaches to

biodiversity measurements, including the use of indirect abiotic

proxies, statistical modelling, remote sensing and a combination of

the above [8,9,10,11,12]. These methods are of particular

importance for marine biodiversity research as marine habitats

are often hard to reach and the biota is relatively difficult to

sample [13,8,12]. Nevertheless, existing studies have mainly

focussed on predicting individual species distributions from

physical variables (e.g. bathymetry derived measures, seabed

sediment and hydrophysical properties of water) and, as such, have

neglected biodiversity [14,15,16,17,18]. To date, remote sensing

has seldom been used to directly map biodiversity in terrestrial

ecosystems [19,20,21,22] and has very rarely been used in the

marine realm [8,11].

Spaceborne and airborne optical remote sensing has the

potential to quickly and cost-efficiently map large areas with high

spatial resolution that would not be achievable with conventional

in situ sampling. However, despite the advantages of remote

sensing in marine ecosystems, in situ measurements remain the

most important and reliable source of information on biodiversity.

Combining field measurements, remote sensing, and statistical

predictive models is currently seen as the most rewarding

approach to mapping biodiversity at large spatial scales [10].

There are different approaches to examining relationships

between remotely sensed optical parameters and biological

diversity. Nagendra [23] proposed several ways: 1) direct mapping

of species, an approach which is often unfeasible, 2) relating

species occurrence to the remotely sensed habitat type, and, 3)

correlating biological diversity with spectral radiance values. A

further formulation of the third approach is known as the spectral

variation hypothesis (SVH) [24,25]. The SVH predicts a positive

correlation between spectral variability (SV) of a remotely sensed

image and biodiversity. As the water column absorbs a significant

amount of bottom signal [26], optical remote sensing of aquatic

diversity has not been as widely used as remote sensing of
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terrestrial diversity and SVH has only been tested on a few

terrestrial plant communities [21,22,27].

Our study is the first attempt to apply the SVH in the marine

environment. The aims of this study were: 1) to test the SVH in

marine benthic macrophyte and macroinvertebrate diversity, and,

2) to assess the relative usefulness of SV and abiotic proxies

(bathymetry derived measures, seabed sediment and wave

exposure) for predicting benthic diversity.

Materials and Methods

1. Study Area
The study was conducted in coastal waters surrounding

Saaremaa Island, in the eastern Baltic Sea (Figure 1). The area

is characterized by complex topography with numerous islands,

islets, bays, and peninsulas. The western part of the study area is

wave-exposed while eastern bays are sheltered. Hard limestone

substrate dominates in the exposed areas and soft silty sediments

prevail in the sheltered bays. Different mixed sediments can be

found in the mid-range of exposure gradient. The prevailing depth

is 0.525 m with a maximum of about 10 m. Salinity ranges from

5 to 7.5. Regardless of low salinities, benthic flora and fauna are

relatively diverse and abundant. Vascular plants and charophytes

can be found at high densities in sheltered bays. Bladder wrack

(Fucus vesiculosus) and several filamentous algae (e.g. Ceramium

tenuicorne, Polysiphonia fucoides, Cladophora glomerata) dominate on hard

substrate. Among invertebrates, the blue mussel (Mytilus trossulus)

and the bay barnacle (Amphibalanus improvisus) prevail on hard

bottoms; gammarid amphipods, idoteid isopods, the snails laver

spire shell (Hydrobia ulvae) and river nerite (Theodoxus fluviatilis) are

common in vegetated areas; and the lagoon cockle (Cerastoderma

glaucum), the Baltic tellin (Macoma balthica) and the estuary ragworm

(Hediste diversicolor) dominate in soft sediments.

2. Biological Sampling
Sampling was conducted in September 2010. A total of 207

sampling stations were visited (Figure 1). At each station the

seabed was sampled by deploying a remote underwater video

device from an anchored boat. The camera was set at an angle of

35u below horizontal and held 1 m above the sea floor resulting in

a forward view of about 2 m. A full 360u rotation was captured at

each station. All recorded videos were subsequently analysed by

estimating the coverage of benthic macrophyte and invertebrate

species. In addition to the video recordings, biomass samples were

collected from 37 sampling stations. The sampling stations for

biomass samples were located to maximize the coverage of

different habitats. An Ekman type bottom grab sampler (0.02 m2)

was used on soft sediment, while on hard surfaces scuba divers

harvested all flora and fauna within a 0.04 m2 quadrat. Benthos

Figure 1. Study area. Filled circles and triangles indicate the location of sampling stations. Raster is the PCA image (3 first components) of CASI
bands 5 to 16. PCA components 1, 2, and 3 are superimposed as red, green, and blue composite raster bands, respectively. PCA – principal
component analysis; CASI – Compact Airborne Spectrographic Imager.
doi:10.1371/journal.pone.0055624.g001
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samples were sieved through a 0.25 mm mesh and all retained

material was transferred to plastic bags. The samples were stored

deep frozen (–18uC) until analysis. In the laboratory, all samples

were sorted under a binocular microscope (20–40 6 magnifica-

tion). All macrobenthic organisms were identified to species level

except for oligochaetes, chironomids, and juveniles of gammarid

amphipods (length ,5 mm). Abundances and biomasses of all

invertebrate taxa and biomasses of plant species were quantified.

Prior to weighing, animals and plants were dried at 60uC for 48

hours and two weeks, respectively. Abundances and biomasses

were calculated per square meter. Biomass sampling and analysis

followed the guidelines developed for the HELCOM COMBINE

programme [28] with the exception that no replicate samples were

collected. The following biological diversity measures were used:

number of benthic species/taxa, Shannon index (logarithm base

e), and number of taxonomic and/or functional groups (‘‘groups’’

hereafter). Macrophytes were divided according to their taxonom-

ic belonging and included groups of green algae, brown algae, red

algae, charophytes, and vascular plants. Macroinvertebrates were

grouped according to their feeding mode and included groups of

herbivores, deposit feeders, suspension feeders, and carnivores.

No specific permits are required for sampling benthos

(invertebrates, plants) in Estonia. The collection of samples did

not involve endangered or protected species. Estonian sea area is

government property.

3. Remote Sensing
Airborne imagery was collected on September 1st 2010 using

hyperspectral imager CASI (Compact Airborne Spectrographic

Imager; Itres, Canada) belonging to the Institute for Environmen-

tal Solutions, Latvia. The spectral range of the instrument is

37021045.2 nm and widths of the spectral bands are pro-

grammable. We used 25 spectral bands (Table 1) located at

wavelengths where different habitat types (sediment and biota)

have distinct spectral features. The number and width of the bands

were also optimized taking into account low water leaving signal

and the speed of the aircraft. The aircraft was flown at an altitude

of 2000 m resulting in a pixel size of 1 m. Flight direction was

chosen taking into account the sun angle in order to minimize the

sun and sky glint. Flight lines were planned in the form of ellipses

shifting west from the previous path. In this way, a half of the study

area was flown into the sun and a half of the study area off from

the sun in order to minimise striped mosaic that may occur when

flying back and forward. Pre-processing of the radiance imagery

included cross-track illumination correction, geocorrection of the

flight lines and mosaicking. The longitudinal extent of the

mosaicked image was 11.6 km and latitudinal extent 12.9 km.

Bands 1 to 4 and 17225 were excluded as they were noisy and did

not reflect seabed features. Individual bands of the CASI image

were highly similar and principal component analysis (PCA) on

bands 5 to 16 was used to reduce the amount of redundant

information [29]. All further analyses were done using the three

first principal components instead of original CASI bands.

Spectral variability (SV) was measured as a mean distance from

spectral centroid of a given radius. The following radii were used:

5, 10, 15, 25, 50, 100, and 200 m. Spectral centroid was calculated

as the mean value of each principal component in a specific radius.

The distance of each pixel from the spectral centroid was then

determined within each radius. The mean distance of all pixels

from the spectral centroid in a given radius was considered as the

SV of that radius. A general workflow of SV calculus is shown in

Figure 2 (see Rocchini [21] and Oldeland et al. [22] for more

detailed descriptions). The processing of CASI images and

calculation of SV was done in the ESRI ArcInfo software.

4. Statistical Methods
Univariate regression was used to identify the correlation

between CASI bands, CASI bands and principal components,

spectral variability (SV) at different spatial scales, SV and

biological variables. Generalized linear models (GLM) [30] were

used to analyse the relationships between several environmental

predictor variables and benthic biodiversity variables. Poisson

distribution was used in the GLMs as it best suits for count data

[30]. Models included depth, seabed slope, proportion of soft

sediment, distance to land, distance to 10 m isobath, wave

exposure [31], and SV as environmental predictor variables. SV

at a scale that best correlated with the biological response variable

was chosen for each model. Hierarchical partitioning [32] was

used to identify the independent explanatory power of predictor

variables in the GLMs. Hierarchical partitioning is an analytical

method that enables quantification of the independent effects of all

predictor variables on the response variable while handling

problems of multicollinearity. The statistical significance of

independent effects was obtained by using a randomization

routine with 500 iterations [33]. All statistical analyses were done

in the statistical software R version 2.11.1 [34].

Table 1. Central wavelengths of the CASI bands.

Band Central wavelength (nm)

1 370.0

2 398.6

3 439.2

4 458.3

5 479.8

6 498.9

7 520.3

8 549.0

9 568.1

10 589.6

11 601.5

12 620.6

13 629.0

14 649.3

15 673.1

16 699.4

17 718.5

18 739.9

19 759.0

20 779.3

21 818.7

22 837.8

23 879.5

24 939.1

25 1045.2

Bands in boldface were used in the data analysis.
doi:10.1371/journal.pone.0055624.t001
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Results

1. CASI Imagery
All CASI bands were highly intercorrelated (Table 2) and the

first three principal components cumulatively explained nearly

99% of the variance in CASI bands. The first principal

component explained more than 96% of variance and had

correlations of more than 0.9 with all the CASI bands. The

second component had highest correlations with bands 15 and

16. The third component correlated the most with bands 9, 8,

and 7 (Table 3).

The values of spectral variability (SV) at different spatial

scales were all statistically significantly intercorrelated with

correlations being stronger between closer scales than distant

scales (Table 4). SV at all spatial scales was significantly

negatively correlated with depth, wave exposure and distance to

land. All these correlations strengthened with increasing spatial

scale (Table 5).

2. Biological Data
A total of 17 macrophyte taxa and 4 macroinvertebrate species

were identified in the video samples. The most common species

(occurrence more than 30%) were Mytilus trossulus, followed by

Figure 2. General flowchart of processing of the remotely sensed data.
doi:10.1371/journal.pone.0055624.g002

Table 2. Correlations between the CASI bands.

6 7 8 9 10 11 12 13 14 15 16

5 0.99 0.95 0.90 0.86 0.99 0.98 0.96 0.96 0.95 0.92 0.92

6 0.96 0.92 0.88 0.98 0.98 0.97 0.97 0.95 0.93 0.93

7 0.95 0.92 0.96 0.96 0.95 0.96 0.95 0.94 0.92

8 0.94 0.91 0.91 0.92 0.92 0.92 0.92 0.89

9 0.87 0.88 0.89 0.90 0.89 0.90 0.87

10 0.99 0.98 0.98 0.97 0.93 0.94

11 0.99 0.99 0.98 0.95 0.96

12 0.99 0.99 0.97 0.97

13 0.99 0.97 0.98

14 0.97 0.98

15 0.97

All correlations were statistically significant at p,0.05.
doi:10.1371/journal.pone.0055624.t002
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Amphibalanus improvisus, Ceramium tenuicorne, Polysiphonia fucoides,

Potamogeton pectinatus, and Fucus vesiculosus. Based on video samples,

macrophytes were present in almost 95% and macroinvertebrates

in about 58% of sampling stations, respectively. See Table S1 for

detailed data.

A total of 24 macrophyte species and 29 macroinvertebrate taxa

were identified in the biomass samples. Ceramium tenuicorne,

Potamogeton pectinatus, and Polysiphonia fucoides were the most

frequently occurring macrophytes in the biomass samples. Among

benthic invertebrates, Cerastoderma glaucum, Theodoxus fluviatilis, and

Hydrobia ulvae were the most frequent. Macrophytes were found at

86% of biomass sampling stations and macroinvertebrates were

found in every biomass sample. See Table S2 for detailed biomass

data.

3. Correlations between SV and Biological Variables
Coverage data. The total number of macrobenthic species,

number of macrophyte species and groups, and Shannon indices

of macrobenthos and macrophytes were significantly positively

correlated with SV at all spatial scales (Table 6). However, all the

statistically significant correlations were weak with a maximum r of

0.32. The total number of macrobenthic species, number of

macrophyte species, and Shannon indices were most strongly

correlated with SV measured at a 10 m scale and the number of

macrophyte groups with SV at a 200 m scale, respectively

(Table 6).

Biomass data. Only the number of brown algal species,

vascular plant species, herbivore species and carnivore species

had statistically significant correlations with SV at some of the

spatial scales (Table 6). The number of brown algal species,

herbivore species, and carnivore species positively correlated

with SV whereas the number of vascular plants negatively

correlated with SV. The correlations between SV and biomass-

based diversity variables reached up to 0.46 (Table 6).

4. Statistical Models and Effects of Predictor Variables
SV had statistically significant independent effect in all models

that were based on coverage data but in only two models that were

based on biomass data (Table 7). SV had the highest contribution

among predictor variables in the models of total benthic species

richness and total benthic Shannon index, both based on the

coverage samples.

Discussion

The spectral variation hypothesis (SVH) [24,25] predicts

a positive correlation between spectral variability (SV) of a re-

motely sensed image and biodiversity. However, to date the SVH

has been tested only on a few terrestrial plant communities

[21,22]. In this study we applied the SVH for the first time in the

marine environment. The study demonstrated that all coverage-

based benthic diversity measures had statistically significant

positive correlations with SV indicating the relevance of SVH in

marine benthic habitats. The relevance of SVH in marine benthic

habitat forms a prerequisite for the future use of SV in benthic

biodiversity assessments. The potential of SV in improving

traditional methods of spatial modelling was further substantiated

by the results of the GLMs where SV had the highest independent

effect amongst environmental predictor variables in the models of

benthic species richness and Shannon index of macrobenthos

(both based on coverage data). This indicates that SV has a higher

potential in applications of predicting more general diversity

measures than diversity within a specific taxonomic or functional

group. Intuitively, spectral signal variability is greater at the scales

of whole-community or landscape, which include a multitude of

optically differing species compared with spectral variability within

a specific taxonomic group where species are optically more

similar [35,36,37].

Regardless of the statistical significance of the correlations

between benthic diversity measures and SV, the strength of the

correlations was low. As water column absorbs a significant

amount of bottom signal [38,26], the strength of correlation

between SV and biodiversity is expected to be higher in terrestrial

environments than in aquatic environments. Rocchini [21] used

imagery from four different satellites and found correlations of 0.4

to 0.7 between SV and species richness of a wetland. Oldeland

et al. [22] used an airborne hyperspectral spectrometer and found

correlations up to about 0.7 between SV and species richness in

a savannah vegetation. In contrast, the correlations presented in

our marine ecosystem ranged between 0.2 and 0.4. Palmer et al.

[25] also found weak correlation between SV and species richness

of grassland ecosystem, but they used a panchromatic aerial

photograph as an input for SV calculation that captures

considerably less optical variability compared to a hyperspectral

sensor. Additionally, Palmer et al. [25] discuss inaccuracies in

georeferencing and differences between the timing of image and

sampling as possible reasons for weak correlations in their study.

Table 3. Correlation of the CASI bands with the PCA
components.

CASI band PC1 (96.58) PC2 (1.43) PC3 (0.77)

5 0.98 0.15 20.01

6 0.99 0.12 0.05

7 0.97 20.01 0.20

8 0.93 20.10 0.31

9 0.90 20.15 0.35

10 0.99 0.09 20.01

11 0.99 0.00 20.04

12 0.99 20.08 20.03

13 0.99 20.09 20.02

14 0.99 20.13 20.03

15 0.96 20.22 0.04

16 0.97 20.21 20.08

The proportion of variance in the CASI bands explained by the first three
principal components are shown in brackets (%).
doi:10.1371/journal.pone.0055624.t003

Table 4. Correlations between spectral variability at different
spatial scales.

10 m 15 m 25 m 50 m 100 m 200 m

5 m 0.90 0.81 0.70 0.62 0.57 0.54

10 m 0.96 0.87 0.78 0.69 0.63

15 m 0.96 0.85 0.73 0.65

25 m 0.91 0.78 0.69

50 m 0.94 0.81

100 m 0.91

All correlations were statistically significant at p,0.001.
doi:10.1371/journal.pone.0055624.t004
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Besides the absorbing effect of the water column there may be

other reasons why the relationship between SV and biodiversity

was found weaker in this study than in previous terrestrial studies.

Our design included only one biological sample per one estimate

of SV while Rocchini [21] pooled lists of species from four separate

biological samples per one estimate of SV. Pooling diversity data

from a higher number of samples per spatial unit of SV would

have very likely resulted in significantly stronger correlations

between biodiversity and SV in our study. Nevertheless, the

emergence of statistically significant positive correlations with only

one sample per unit of SV is even a stronger evidence of the

validity of SVH in a marine environment than emergence of the

effect when using several pooled samples.

Another reason that possibly contributed to the weak correla-

tions was that the number of species that can be visually identified

from video samples was limited to large and easily distinguishable

species and the actual species diversity remained unrecorded.

However, these large species were also the main contributors to

the optical signal recorded by the airborne spectrometer. It is

possible to identify all macrobenthic species from the biomass

samples but due to the time constraints the number of collected

samples is often low. Increasing the number of biomass samples

may result in stronger correlations and higher numbers of

statistically significant correlations.

Earlier studies have shown that the strength of relationships

between SV and biodiversity vary with spatial scales, sites,

diversity measures used, and imagery type [20,21,22]. Palmer

et al. [25] suggested that the strength of correlation between SV

and biodiversity increases with increasing spatial scale. Oldeland

et al. [22] found this to be true in savannah plant diversity. Our

analyses did not reveal strong overall effects of spatial scale of SV

on biological variables. All coverage-derived diversity measures

were statistically significantly correlated with SV at every scale

without a clear effect of scale on the strength of correlation.

However, it must be noted, that in our study, biological sampling

was always done at the scale of a single sampling station while SV

was estimated at different radii around the biological sampling

point. Contrastingly, Oldeland et al. [22] had two different scales

for biological sampling. The selection of spatial scales of estimates

of SV ranged from 5 to 200 m in this study. Scales larger than

200 m should be included in future studies to further clarify scale-

dependent relationships between SV and benthic diversity.

Together with larger spatial scales, higher numbers of biological

samples per unit of SV should be collected.

In contrast to coverage-based diversity variables, only a few

diversity measures calculated from the biomass samples were

statistically significantly correlated with SV. We suggest two

explanations for this pattern. Firstly, as the number of biomass

samples was much lower than the number of coverage estimates,

the statistical power of analyses of biomass-derived measures was

lower compared to the analyses of coverage-derived diversity

measures. Secondly, the nature of coverage estimates, i.e. the

visual information from the seabed, directly related to the optical

signal received by the hyperspectral sensor while data from

biomass samples included a lot of information not perceivable by

remote optical means. This included the presence of species with

small dimensions and very low biomasses, taxonomically close and

Table 5. Correlations between spectral variability (SV) at different spatial scales and environmental variables.

SV Depth Prop. soft sediment Wave exposure Seabed slope Distance to land Distance to 10 m isobath

5 m 20.38 20.04 20.16 0.19 20.30 20.06

10 m 20.42 20.05 20.17 0.16 20.34 20.01

15 m 20.44 20.06 20.18 0.16 20.37 0.02

25 m 20.46 20.06 20.17 0.16 20.39 0.04

50 m 20.53 20.06 20.19 0.17 20.44 0.06

100 m 20.57 20.03 20.21 0.20 20.48 0.06

200 m 20.62 20.07 20.20 0.25 20.55 0.06

Statistically significant correlations at p,0.05 are shown in boldface.
doi:10.1371/journal.pone.0055624.t005

Table 6. Pearson correlation coefficients between SV and
biological variables at different spatial scales (m).

Scale of SV (m)

Biological variable 5 10 15 25 50 100 200

Coverage samples (n = 207)

Macrophyte S 0.25 0.31 0.28 0.25 0.26 0.26 0.30

Total benthic S 0.29 0.32 0.27 0.22 0.19 0.19 0.24

Macrophyte groups 0.26 0.28 0.27 0.24 0.26 0.26 0.31

Macrophyte Shannon 0.25 0.29 0.26 0.22 0.24 0.26 0.27

Total Shannon 0.22 0.24 0.20 0.15 0.14 0.16 0.19

Biomass samples (n = 37)

Macrophyte S 20.06 20.09 20.04 0.01 0.08 0.12 0.13

Invertebrate S 0.25 0.26 0.23 0.22 0.28 0.32 0.32

Total benthic S 0.12 0.11 0.12 0.14 0.22 0.26 0.27

Macrophyte groups 20.07 20.04 0.04 0.07 0.11 0.08 0.07

Invertebrate groups 0.09 0.14 0.11 0.12 0.14 0.18 0.22

Macrophyte Shannon 20.17 20.17 20.12 20.08 20.05 20.06 20.06

Invertebrate Shannon 0.17 0.12 0.14 0.16 0.21 0.20 0.21

Total Shannon 20.19 20.22 20.23 20.22 20.22 20.24 20.18

Green algal S 20.17 20.16 20.12 20.05 0.03 0.07 0.13

Brown algal S 0.28 0.31 0.37 0.39 0.46 0.46 0.38

Red algal S 0.10 0.01 0.02 0.04 0.02 0.01 20.01

Vascular plants S 20.29 20.32 20.3320.3220.29 20.24 20.18

Herbivores S 0.36 0.32 0.32 0.31 0.37 0.43 0.43

Suspension feeders S 20.14 20.21 20.28 20.29 20.25 20.22 20.12

Deposit feeders S 0.07 0.15 0.09 0.03 20.01 20.02 20.09

Carnivores S 0.07 0.12 0.16 0.22 0.32 0.32 0.32

Statistically significant correlations at p,0.05 are shown in boldface. S – species
richness.
doi:10.1371/journal.pone.0055624.t006
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optically similar species that were distinguished based on

morphological (microscopic) features, and infaunal species. How-

ever, a positive relationship between visually perceivable and

visually unperceivable heterogeneity can be expected because the

former reflects the ‘‘landscape’’ for the latter.

Amongst diversity measures derived from biomass samples the

species richness of brown algal species had the strongest

correlation with SV. This may have been influenced by the fact

that the depth distribution of brown algae is the widest among

macrophyte groups studied [39], providing larger gradients in

environmental variability that, in turn, may facilitate the

emergence of stronger relationships between SV and brown algal

species richness.

Species richness of vascular plants was the only variable that

had statistically significant negative correlations with SV. Vascular

plants predominate in sheltered to moderately exposed areas with

homogenous soft seabed sediments where they may form dense

beds [40]. These beds may consist of multiple species (Potamogeton

spp, Myriophyllum spicatum, Zannichellia palustris) but due to their

spectral similarity and the homogeneity of the substrate the SV of

these areas are low and this may contribute to the negative

relationship between vascular plant species richness and SV.

Species richness of herbivores was the only zoobenthic variable

that was statistically significantly correlated with SV. Many

previous studies have shown that herbivores are selective to algal

species [41,42] and they respond strongly to the amount of

available resource [43] as plants provide habitat and food

resources for herbivores [44]. Consequently, the diversity,

biomasses of aquatic plants and thus, SV are expected to be

positively correlated with the diversity of herbivores in many

waterbodies [45,46].

To conclude, the relevance of the SVH in marine benthic

habitats was proved for the first time and this forms a basis for the

further use of SV in benthic biodiversity assessments. The

potential of SV in biodiversity assessments was further justified

by the results of statistical models showing that SV often had the

highest independent explanatory power amongst environmental

variables to predict benthic biodiversity. This study also highlights

the importance of biological sampling at multiple spatial scales in

future studies in order to clarify scale-dependent relationships

between SV and benthic diversity. The broader importance of the

study lies in promoting our understanding of the patterns of

macroalgal and invertebrate diversity in the coastal seascapes.

Supporting Information

Table S1 Occurrences and coverages of benthic species
that were identified in video samples.

(DOC)

Table 7. Results of generalized linear models.

Independent effects of predictor variables (%)

Biological response variable SV Depth Soft sed. Wave exp. Slope Dist. land Dist. 10 m SV scale Expl. dev.

Coverage samples (n = 207)

Total benthic S 34.98 10.76 30.04 3.14 2.24 18.39 0.45 10 17.06

Macrophyte S 15.30 28.36 2.61 11.57 2.24 22.39 17.54 10 25.09

Macrophyte gr. 10.34 31.03 10.84 12.32 2.46 19.21 13.79 200 26.15

Total Shannon 36.84 5.26 31.58 5.26 2.63 15.79 2.63 10 11.15

Macroph. Shan. 21.79 15.38 3.85 32.05 1.28 8.97 16.67 10 22.71

Biomass samples (n = 37)

Total benthic S 11.40 24.27 3.22 6.73 3.80 49.42 1.17 200 22.85

Macrophyte S 11.17 27.18 1.46 9.71 1.94 32.04 16.50 200 25.88

Invertebrate S 18.15 12.36 5.41 19.31 5.41 33.20 6.18 100 23.13

Macroph. gr. 4.04 21.21 19.19 16.16 3.03 16.16 20.20 50 24.38

Invertebr. gr. 7.81 34.38 7.81 28.13 1.56 12.50 7.81 200 27.41

Total Shan. 22.50 7.50 42.50 2.50 17.50 2.50 5.00 100 25.82

Macroph. Shan 12.50 21.88 6.25 15.63 31.25 6.25 6.25 10 27.11

Invertebr. Shan. 5.71 31.43 11.43 17.14 5.71 25.71 2.86 50 21.38

Green algal S 1.43 20.57 2.86 41.43 10.29 5.14 18.29 5 60.41

Brown algal S 22.12 11.50 30.97 1.77 7.08 24.78 1.77 50 51.44

Red algal S 2.44 29.27 9.76 2.44 19.51 26.83 9.76 5 22.73

Vasc. plants S 22.03 16.95 20.34 9.32 6.78 0.85 23.73 15 44.20

Herbivores S 24.83 15.86 1.03 28.97 4.48 16.55 8.28 100 36.87

Susp. feed. S 24.39 2.44 2.44 37.80 2.44 12.20 18.29 25 33.08

Deposit feed. S 24.30 15.89 28.04 1.87 7.48 1.87 20.56 10 28.63

Carnivores S 12.20 25.61 3.66 23.17 3.66 29.27 2.44 100 28.72

Independent effects of predictor variables calculated by hierarchical partitioning are shown with statistically significant effects (p,0.05) in boldface. SV at the spatial
scale (SV scale) that most strongly correlated with the biological response variable (see Table 6) was used in each model. Expl. dev. – explained deviance (%) of a model,
S – species richness, Shan. – Shannon index, gr. – number of groups.
doi:10.1371/journal.pone.0055624.t007
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Table S2 Occurrences and biomasses of benthic species
that were identified in biomass samples.

(DOC)
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27. White JC, Gómez C, Wulder MA, Coops NC (2010) Characterizing temperate
forest structural and spectral diversity with Hyperion EO-1 data. Remote Sens

Environ 114: 1576–1589.

28. HELCOM (2008) Manual for Marine Monitoring in the COMBINE
Programme of HELCOM. Available: http://www.helcom.fi/groups/monas/

CombineManual/en_GB/main/. Accessed 2012 Jun 16.

29. Avena GC, Ricotta C, Volpe F (1999) The influence of principal component
analysis on the spatial structure of a multispectral dataset. Int J Remote Sens 20:

3367–3376.

30. McCullagh P, Nelder JA (1989) Generalized linear models. Second Edition.
Volume 37 of Monographs on Statistics and Applied Probability. Chapman &

Hall/CRC.

31. Nikolopoulos A, Isæus M (2008) Wave exposure calculations for the Estonian
coast. Stockholm: AquaBiota Water Research.

32. Mac Nally R (1996) Hierarchical partitioning as an interpretative tool in

multivariate inference. Aust J Ecol 21: 224–228.

33. Mac Nally R (2002) Multiple regression and inference in ecology and
conservation biology: further comments on identifying important predictor

variables. Biodivers Conserv 11: 1397–1401.

34. The R Foundation for Statistical Computing (2010) R version 2.11.1. Available:
http://www.r-project.org/. Accessed 2012 Jun 15.
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